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ABSTRACT. The main object of the present paper is to investigate several interesting properties
of a linear operatof,, 4 s(;) associated with the generalized hypergeometric function.
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1. INTRODUCTION

Let A(p) denote the class of functions of the form
(1.1) fE)=2"+ > az", (peN={1,23.}

which are analytic in the open unit digk= {z: z € C'and|z| < 1}.

Let f(z) andg(z) be analytic inU. Then we say that the functiog(z) is subordinate to
f(z) if there exists an analytic functiom(z) in U such thatjw(z)| < 1 (for z € U) and
g(z) = f(w(2)). This relation is denoted(z) < f(z). In casef(z) is univalent inU we have
that the subordination(z) < f(z) is equivalent tg;(0) = f(0) andg(U) C f(U).

For analytic functions

F) =3 e and g(z) =3 b,
n=0

n=0
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2 JN-LIN Liu

by f * g we denote the Hadamard product or convolutiorf @indg, defined by

(1.2) (f9)(2) =D anbuz" = (g% f)(2).
n=0
Next, for real parameterd andB such that-1 < B < A < 1, we define the function
14+ Az
(1.3) h(A, B;z) = T Bs (z€U).

It is well known thath(A, B; z) for —1 < B < 1 is the conformal map of the unit disk onto
the disk symmetrical with respect to the real axis having the céiter AB)/(1 — B?) and
the radiug A — B)/(1 — B?) for B # 1. The boundary circle cuts the real axis at the points
(1-A)/(1-B)and(1+ A)/(1+ B).

For complex parameters,, ..., a, andfy, ..., 05, (B; # 0,—1,-2,...;5 = 1,...,s), we
define the generalized hypergeometric functjéta, . .., ay; 51, - . ., Bs; 2) by

o

qu(ala"wCVq;ﬂla"'75532)_Z%‘;—T

n=0
(1.4) (g<s+1;q,s € Ng=NU{0};z€U),
where(z),, is the Pochhammer symbol, defined, in terms of the Gamma funttiby
" I(z) | z@+l)---(x+n—1) (n€N).

Corresponding to a functiof, (a4, . .., a,: f1, - . ., Bs; 2) defined by

Fplag,...;0q Py, Ps;2) = 2P Fs(an, ... a4 By - .o, Bs; 2),

we consider a linear operator

Hp(ala ey Oy 61) e 755) : A(p) - A<p)7
defined by the convolution

(1.5) Hy(ay,...,00 01, 0:)f(2) = Fplaa,...,ap01,..., 0 2) * f(2).

For convenience, we write

(1.6) Hyos(a) =Hy(on,...,qu, ... ,0q B, ..., 0s) (i=1,2,...,q).
Thus, after some calculations, we have

Z(Hp,q,S(O‘i)f(Z))l = il qs(ai +1)f(2) = (i = p)Hp g,s() f(2)
a.7) (i=1,2,...,q).

It should be remarked that the linear operatty, (a;) (: = 1,2,...,q) is a generalization
of many operators considered earlier. ko= 2 ands = 1 Carlson and Shaffer studied this
operator under certain restrictions on the parameigrs, and 3, in [1]. A more general
operator was studied by Ponnusamy and Rgnning [13]. Also, many interesting subclasses of
analytic functions, associated with the opera®r, ;(«;) (i = 1,2, ..., ¢) and its many special
cases, were investigated recently by (for example) Dziok and Srivastava [2, 3, 4], Gangadharan
et al. [5], Liu [7], Liu and Srivastava [8, 9] and others (see als0 [6, 12, 15, 16, 17]).

In the present sequel to these earlier works, we shall use the method of differential subor-
dination to derive several interesting properties and characteristics of the opEpat;)

(1=1,2,...,q).
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2. MAIN RESULTS

We begin by recalling each of the following lemmas which will be required in our present
investigation.

Lemma 2.1 (see [10]) Let h(z) be analytic and convex univalent i, ~(0) = 1 and let
g(2) =1+ b1z + by2? + - - - be analytic inU. If

(2.1) 9(2)+29'(2)/c < h(z) (2 €U;c+#0),
then forRec > 0,
2.2) o) < = /0 V(8 dt.

Lemma 2.2(see[[14]) The function1 — z)” = e7!°e(1=2) ~ £ 0, is univalent inlJ if and only
if v is either in the closed disly — 1| < 1 or in the closed disky + 1| < 1.

Lemma 2.3 (see [11]) Let ¢(z) be univalent inU and letd(w) and ¢(w) be analytic in a
domain D containingq(U) with ¢(w) # 0 whenw € ¢(U). SetQ(z) = zq'(2)¢(q(2)),
h(z) = 0(q(z)) + Q(z) and suppose that

1) Q(2)is starllke (unlvalent) i,
@) Re( ) —Re (S +:8@) >0 (zeU).
If p(2) sanalytlc inU, with p(0) = ¢(0), p(U) C D, and
0(p(2)) + 20'(2)0(p(2)) < 0(q(2)) + 24'(2)6(q(2)) = h(2),
thenp(z) < ¢(z) andq(z) is the best dominant.

We now prove our first result given by Theorgm|2.4 below.

Theorem 2.4.Leta; >0 (i = 1,2,...,9), A > 0,and—1 < B < A < 1. If f(2) € A(p)
satisfies
(2.3) (1 _ )\) HP,Q,s(ai)f(Z) + AHp7q7s(ai + 1)f(z)

P zP

< h(A, B; 2),

then

e ne( (Bl (3 [ (22 ) s,

The result is sharp.

Proof. Let

(2.5) 9(z) =

for f(2) € A(p). Then the functiory(z) = 1 + b1z + - - - is analytic inU. By making use of
(L.7) and[(2.b), we obtain

zP

(2.6) Hm,sm; - DIGE) _ s zgé(;)
From (2.3),[(2.5) and (2.6) we get
(2.7) 9(z) + iZ’QI(Z) < h(A, B;z2).

)
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Now an application of Lemma 3.1 leads to

1
g _ % Q1 1+At
(2.8) o) < % A/Om (H—Bt)dt
or
Hpgs(ai) f(2) o /1 ai 4 (14 Auw(z)
2. p,q, — 1
(2.:9) 2P A Jo v 1 + Buw(z) d,

wherew(z) is analytic inU with w(0) = 0 and|w(z)| < 1 (= € U).
Inview of —1 < B < A < 1 anda; > 0, it follows from (2.9) that

H, . s(oy it e (1A
(2.10) R%W)J&/{) u 1(1_37;) du (z€U).

Therefore, with the aid of the elementary inequalty(w'/™) > (Rew)'/™ for Rew > 0 and
m > 1, the inequality[(2.14) follows directly fron (2.10).
To show the sharpness ¢f (2.4), we take) € A(p) defined by

Hy s (00)f(2) _ o / pion (L Aus
2P A Jo 1+ Buz
For this function, we find that
Hp,q,S(O‘i>f<Z) i )\Hp,q,s(ai +1)f(2) 1+ Az

1-— =
( A zP zP 1+ Bz
and .
S =) PR
2P A Jo 1— Bu
Hence the proof of the theorem is complete. O

Next we prove our second theorem.

Theorem 2.5.Leta; > 0 (: = 1,2,...,9),and0 < p < 1. Lety be a complex number with
v # 0 and satisfy eithef2y(1 — p)a; — 1| < 1or |29(1 —p)a; + 1| <1 (i =1,2,...,q). If
f(z) € A(p) satisfies the condition

H,, (o; +1)f(z )
(2.11) Re ( ]}’_}1’ ( (oz)f)(J;g )> >p (z€eU;i=1,2,...,q),
p,q,S (3
then
Hygol0) f(2)) 1 -
(2.12) (MT < 1= )= =q(z) (z€eU;i=1,2,...,q),
whereq(z) is the best dominant.
Proof. Let
H ; 7
(2.13) p(z) = (W) (zeU;i=1,2,...,q).
Then, by making use of (1.7}, (2/11) and (2.13), we have
(2.14) 1+ 7 () 1+ <1__ 2002 (e,
yap(z) 1—=z
If we take

1 1

q(Z) = (1 _ Z)Z'y(lfp)ai’ e(w) =1 and gb(w) - ")/Oél'w’
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theng(z) is univalent by the condition of the theorem and Lenjma 2.2. Further, it is easy to
show thayy(z), #(w) andg(w) satisfy the conditions of Lemnfa 2.3. Since

Q(2) = 2q/(2)ola(2) = 2022
is univalent starlike irt/ and
) = 0fa(2)) + QL) = =22

It may be readily checked that the conditions (1) and (2) of Lefinma 2.3 are satisfied. Thus the
result follows from[(2.14) immediately. The proof is complete. O

Corollary 2.6. Leta; >0 (i =1,2,...,q) and0 < p < 1. Lety be a real number and > 1.
If f(z) € A(p) satisfies the conditio (2.]L1), then

H,,:(a m _ .
Re(—p’q’ <O‘)f(z)) >277 (e Usi=1,2,....q).

zP

The bound®~'/7 is the best possible.
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