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ABSTRACT. The main object of the present paper is to investigate several interesting properties
of a linear operatorHp,q,s(αi) associated with the generalized hypergeometric function.

Key words and phrases:Analytic functions; The generalized hypergeometric function; Differential subordination; Univalent
functions; Hadamard product (or convolution).

2000Mathematics Subject Classification.30C45, 26A33.

1. I NTRODUCTION

Let A(p) denote the class of functions of the form

(1.1) f(z) = zp +
∞∑

n=p+1

anz
n, (p ∈ N = {1, 2, 3, . . . })

which are analytic in the open unit diskU = {z : z ∈ C and|z| < 1}.
Let f(z) andg(z) be analytic inU . Then we say that the functiong(z) is subordinate to

f(z) if there exists an analytic functionw(z) in U such that|w(z)| < 1 (for z ∈ U ) and
g(z) = f(w(z)). This relation is denotedg(z) ≺ f(z). In casef(z) is univalent inU we have
that the subordinationg(z) ≺ f(z) is equivalent tog(0) = f(0) andg(U) ⊂ f(U).

For analytic functions

f(z) =
∞∑

n=0

anz
n and g(z) =

∞∑
n=0

bnz
n,
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by f ∗ g we denote the Hadamard product or convolution off andg, defined by

(1.2) (f ∗ g)(z) =
∞∑

n=0

anbnz
n = (g ∗ f)(z).

Next, for real parametersA andB such that−1 ≤ B < A ≤ 1, we define the function

(1.3) h(A, B; z) =
1 + Az

1 + Bz
(z ∈ U).

It is well known thath(A, B; z) for −1 ≤ B ≤ 1 is the conformal map of the unit disk onto
the disk symmetrical with respect to the real axis having the center(1 − AB)/(1 − B2) and
the radius(A − B)/(1 − B2) for B 6= ∓1. The boundary circle cuts the real axis at the points
(1− A)/(1−B) and(1 + A)/(1 + B).

For complex parametersα1, . . . , αq andβ1, . . . , βs (βj 6= 0,−1,−2, . . . ; j = 1, . . . , s), we
define the generalized hypergeometric functionqFs(α1, . . . , αq; β1, . . . , βs; z) by

qFs(α1, . . . , αq; β1, . . . , βs; z) =
∞∑

n=0

(α1)n · · · (αq)n

(β1)n · · · (βs)n

· zn

n!

(q ≤ s + 1; q, s ∈ N0 = N ∪ {0}; z ∈ U),(1.4)

where(x)n is the Pochhammer symbol, defined, in terms of the Gamma functionΓ, by

(x)n =
Γ(x + n)

Γ(x)
=

{
1 (n = 0),
x(x + 1) · · · (x + n− 1) (n ∈ N ).

Corresponding to a functionFp(α1, . . . , αq; β1, . . . , βs; z) defined by

Fp(α1, . . . , αq; β1, . . . , βs; z) = zp
qFs(α1, . . . , αq; β1, . . . , βs; z),

we consider a linear operator

Hp(α1, . . . , αq; β1, . . . , βs) : A(p) → A(p),

defined by the convolution

(1.5) Hp(α1, . . . , αq; β1, . . . , βs)f(z) = Fp(α1, . . . , αq; β1, . . . , βs; z) ∗ f(z).

For convenience, we write

(1.6) Hp,q,s(αi) = Hp(α1, . . . , αi, . . . , αq; β1, . . . , βs) (i = 1, 2, . . . , q).

Thus, after some calculations, we have

z(Hp,q,s(αi)f(z))′ = αiHp,q,s(αi + 1)f(z)− (αi − p)Hp,q,s(αi)f(z)

(i = 1, 2, . . . , q).(1.7)

It should be remarked that the linear operatorHp,q,s(αi) (i = 1, 2, . . . , q) is a generalization
of many operators considered earlier. Forq = 2 ands = 1 Carlson and Shaffer studied this
operator under certain restrictions on the parametersα1, α2 and β1 in [1]. A more general
operator was studied by Ponnusamy and Rønning [13]. Also, many interesting subclasses of
analytic functions, associated with the operatorHp,q,s(αi) (i = 1, 2, . . . , q) and its many special
cases, were investigated recently by (for example) Dziok and Srivastava [2, 3, 4], Gangadharan
et al. [5], Liu [7], Liu and Srivastava [8, 9] and others (see also [6, 12, 15, 16, 17]).

In the present sequel to these earlier works, we shall use the method of differential subor-
dination to derive several interesting properties and characteristics of the operatorHp,q,s(αi)
(i = 1, 2, . . . , q).

J. Inequal. Pure and Appl. Math., 7(4) Art. 131, 2006 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


MULTIVALENT ANALYTIC FUNCTIONS 3

2. M AIN RESULTS

We begin by recalling each of the following lemmas which will be required in our present
investigation.

Lemma 2.1 (see [10]). Let h(z) be analytic and convex univalent inU , h(0) = 1 and let
g(z) = 1 + b1z + b2z

2 + · · · be analytic inU . If

(2.1) g(z) + zg′(z)/c ≺ h(z) (z ∈ U ; c 6= 0),

then forRe c ≥ 0,

(2.2) g(z) ≺ c

zc

∫ z

0

tc−1h(t)dt.

Lemma 2.2(see [14]). The function(1− z)γ ≡ eγ log(1−z), γ 6= 0, is univalent inU if and only
if γ is either in the closed disk|γ − 1| ≤ 1 or in the closed disk|γ + 1| ≤ 1.

Lemma 2.3 (see [11]). Let q(z) be univalent inU and let θ(w) and φ(w) be analytic in a
domainD containingq(U) with φ(w) 6= 0 whenw ∈ q(U). SetQ(z) = zq′(z)φ(q(z)),
h(z) = θ(q(z)) + Q(z) and suppose that

(1) Q(z) is starlike (univalent) inU ;

(2) Re
(

zh′(z)
Q(z)

)
= Re

(
θ′(q(z))
φ(q(z))

+ zQ′(z)
Q(z)

)
> 0 (z ∈ U).

If p(z) is analytic inU , with p(0) = q(0), p(U) ⊂ D, and

θ(p(z)) + zp′(z)φ(p(z)) ≺ θ(q(z)) + zq′(z)φ(q(z)) = h(z),

thenp(z) ≺ q(z) andq(z) is the best dominant.

We now prove our first result given by Theorem 2.4 below.

Theorem 2.4. Let αi > 0 (i = 1, 2, . . . , q), λ > 0, and−1 ≤ B < A ≤ 1. If f(z) ∈ A(p)
satisfies

(2.3) (1− λ)
Hp,q,s(αi)f(z)

zp
+ λ

Hp,q,s(αi + 1)f(z)

zp
≺ h(A, B; z),

then

(2.4) Re

((
Hp,q,s(αi)f(z)

zp

) 1
m

)
>

(
αi

λ

∫ 1

0

u
αi
λ
−1

(
1− Au

1−Bu

)
du

) 1
m

(m ≥ 1).

The result is sharp.

Proof. Let

(2.5) g(z) =
Hp,q,s(αi)f(z)

zp

for f(z) ∈ A(p). Then the functiong(z) = 1 + b1z + · · · is analytic inU . By making use of
(1.7) and (2.5), we obtain

(2.6)
Hp,q,s(αi + 1)f(z)

zp
= g(z) +

zg′(z)

αi

.

From (2.3), (2.5) and (2.6) we get

(2.7) g(z) +
λ

αi

zg′(z) ≺ h(A, B; z).
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Now an application of Lemma 2.1 leads to

(2.8) g(z) ≺ αi

λ
z−

αi
λ

∫ 1

0

t
αi
λ
−1

(
1 + At

1 + Bt

)
dt

or

(2.9)
Hp,q,s(αi)f(z)

zp
=

αi

λ

∫ 1

0

u
αi
λ
−1

(
1 + Auw(z)

1 + Buw(z)

)
du,

wherew(z) is analytic inU with w(0) = 0 and|w(z)| < 1 (z ∈ U ).
In view of−1 ≤ B < A ≤ 1 andαi > 0, it follows from (2.9) that

(2.10) Re

(
Hp,q,s(αi)f(z)

zp

)
>

αi

λ

∫ 1

0

u
αi
λ
−1

(
1− Au

1−Bu

)
du (z ∈ U).

Therefore, with the aid of the elementary inequalityRe(w1/m) ≥ (Re w)1/m for Re w > 0 and
m ≥ 1, the inequality (2.4) follows directly from (2.10).

To show the sharpness of (2.4), we takef(z) ∈ A(p) defined by

Hp,q,s(αi)f(z)

zp
=

αi

λ

∫ 1

0

u
αi
λ
−1

(
1 + Auz

1 + Buz

)
du.

For this function, we find that

(1− λ)
Hp,q,s(αi)f(z)

zp
+ λ

Hp,q,s(αi + 1)f(z)

zp
=

1 + Az

1 + Bz

and
Hp,q,s(αi)f(z)

zp
→ αi

λ

∫ 1

0

u
αi
λ
−1

(
1− Au

1−Bu

)
du asz → −1.

Hence the proof of the theorem is complete. �

Next we prove our second theorem.

Theorem 2.5. Let αi > 0 (i = 1, 2, . . . , q), and0 ≤ ρ < 1. Letγ be a complex number with
γ 6= 0 and satisfy either|2γ(1 − ρ)αi − 1| ≤ 1 or |2γ(1 − ρ)αi + 1| ≤ 1 (i = 1, 2, . . . , q). If
f(z) ∈ A(p) satisfies the condition

(2.11) Re

(
Hp,q,s(αi + 1)f(z)

Hp,q,s(αi)f(z)

)
> ρ (z ∈ U ; i = 1, 2, . . . , q),

then

(2.12)

(
Hp,q,s(αi)f(z)

zp

)γ

≺ 1

(1− z)2γ(1−ρ)αi
= q(z) (z ∈ U ; i = 1, 2, . . . , q),

whereq(z) is the best dominant.

Proof. Let

(2.13) p(z) =

(
Hp,q,s(αi)f(z)

zp

)γ

(z ∈ U ; i = 1, 2, . . . , q).

Then, by making use of (1.7), (2.11) and (2.13), we have

(2.14) 1 +
zp′(z)

γαip(z)
≺ 1 + (1− 2ρ)z

1− z
(z ∈ U).

If we take

q(z) =
1

(1− z)2γ(1−ρ)αi
, θ(w) = 1 and φ(w) =

1

γαiw
,
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thenq(z) is univalent by the condition of the theorem and Lemma 2.2. Further, it is easy to
show thatq(z), θ(w) andφ(w) satisfy the conditions of Lemma 2.3. Since

Q(z) = zq′(z)φ(q(z)) =
2(1− ρ)z

1− z

is univalent starlike inU and

h(z) = θ(q(z)) + Q(z) =
1 + (1− 2ρ)z

1− z
.

It may be readily checked that the conditions (1) and (2) of Lemma 2.3 are satisfied. Thus the
result follows from (2.14) immediately. The proof is complete. �

Corollary 2.6. Letαi > 0 (i = 1, 2, . . . , q) and0 ≤ ρ < 1. Letγ be a real number andγ ≥ 1.
If f(z) ∈ A(p) satisfies the condition (2.11), then

Re

(
Hp,q,s(αi)f(z)

zp

) 1
2γ(1−ρ)αi

> 2−1/γ (z ∈ U ; i = 1, 2, . . . , q).

The bound2−1/γ is the best possible.
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