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ABSTRACT. There are two natural metrics defined on an arbitrary convex cone: Thompson’s
part metric and Hilbert’s projective metric. For both, we establish an inequality giving informa-
tion about how far the metric is from being non-positively curved.
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1. I NTRODUCTION

Let C be a cone in a vector spaceV . ThenC induces a partial ordering onV given byx ≤ y
if and only if y−x ∈ C. For eachx ∈ C\{0}, y ∈ V , defineM(y/x) := inf{λ ∈ R : y ≤ λx}.
Thompson’s part metriconC is defined to be

dT (x, y) := log max (M (x/y) , M (y/x))

andHilbert’s projective metriconC is defined to be

dH(x, y) := log (M (x/y) M (y/x)) .

Two points inC are said to be in the same part if the distance between them is finite in the
Thompson metric. IfC is almost Archimedean, then, with respect to this metric, each part ofC
is a complete metric space. Hilbert’s projective metric, however, is only a pseudo-metric: it is
possible to find two distinct points which are zero distance apart. Indeed it is not difficult to see
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2 ROGERD. NUSSBAUM AND CORMAC WALSH

thatdH(x, y) = 0 if and only if x = λy for someλ > 0. ThusdH is a metric on the space of
rays of the cone. For further details, see Chapter 1 of the monograph [23].

SupposeC is finite dimensional and letS be a cross section ofC, that isS := {x ∈ C :
l(x) = 1}, wherel : V → R is some positive linear functional with respect to the ordering on
V . Supposex, y ∈ S are distinct. Leta andb be the points in the boundary ofS such thata,
x, y, andb are collinear and are arranged in this order along the line in which they lie. It can
be shown that the Hilbert distance betweenx andy is then given by the logarithm of the cross
ratio of these four points:

dH(x, y) = log
|bx| |ay|
|by| |ax|

.

Indeed, this was the original definition of Hilbert. IfS is the open unit disk, the Hilbert metric
is exactly the Klein model of the hyperbolic plane.

An interesting feature of the two metrics above is that they show many signs of being non-
positively curved. For example, when endowed with the Hilbert metric, the Lorentz cone
{(t, x1, . . . , xn) ∈ Rn+1 : t2 > x2

1 + · · · + x2
n} is isometric ton-dimensional hyperbolic space.

At the other extreme, the positive coneRn
+ := {(x1, . . . , xn) : xi ≥ 0 for 1 ≤ i ≤ n} with ei-

ther the Thompson or the Hilbert metric is isometric to a normed space [11], which one may
think of as being flat. In between, for Hilbert geometries having a strictly-convexC2 boundary
with non-vanishing Hessian, the methods of Finsler geometry [28] apply. It is known that such
geometries have constant flag curvature−1. More general Hilbert geometries were investigated
in [17] where a definition was given of a point of positive curvature. It was shown that no
Hilbert geometries have such points.

However, there are some notions of non-positive curvature which do not apply. For example,
a Hilbert geometry will only be a CAT(0) space (see [6]) if the cone is Lorentzian. Another
notion related to negative curvature is that of Gromov hyperbolicity [15]. In [2], a condition is
given characterising those Hilbert geometries that are Gromov hyperbolic. This notion has also
been investigated in the wider context of uniform Finsler Hadamard manifolds, which includes
certain Hilbert geometries [12].

Busemann has defined non-positive curvature forchord spaces[7]. These are metric spaces
in which there is a distinguished set of geodesics, satisfying certain axioms. In such a space,
denote bymxy the midpoint along the distinguished geodesic connecting the pair of pointsx
andy. Then the chord space is non-positively curved if, for all pointsu, x, andy in the space,

(1.1) d(mux, muy) ≤
1

2
d(x, y),

whered is the metric.
In the case of the Hilbert and Thompson geometries on a part of a closed coneC, there will

not necessarily be a unique minimal geodesic connecting each pair of points. However, it is
known that, settingβ := M(y/x; C) andα := 1/M(x/y; C), the curveφ : [0, 1] → C :

(1.2) φ(s; x, y) :=


(

βs − αs

β − α

)
y +

(
βαs − αβs

β − α

)
x, if β 6= α,

αsx, if β = α

is always a minimal geodesic fromx toy with respect to both the Thompson and Hilbert metrics.
We view these as distinguished geodesics. If the coneC is finite dimensional, then each part of
C will be a chord space under both the Thompson and Hilbert metrics. Notice that the geodesics
above are projective straight lines. If the cone is strictly convex, these are the only geodesics that
are minimal with respect to the Hilbert metric. For Thompson’s metric, if two points are in the
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A M ETRIC INEQUALITY FOR THE THOMPSON ANDHILBERT GEOMETRIES 3

same part ofC and are linearly independent, then there are infinitely many minimal geodesics
between them.

In this paper we investigate whether inequalities similar to (1.1) hold for the Hilbert and
Thompson geometries with the geodesics given in (1.2). We prove the following two theorems.

Theorem 1.1. Let C be an almost Archimedean cone. Supposeu, x, y ∈ C are in the same
part. Also suppose that0 < s < 1 andR > 0, and thatdH(u, x) ≤ R anddH(u, y) ≤ R. If the
linear span of{u, x, y} is 1- or 2-dimensional, thendT (φ(s; u, x), φ(s; u, y)) ≤ sdT (x, y). In
general

(1.3) dT

(
φ(s; u, x), φ(s; u, y)

)
≤

[
2(1− e−Rs)

1− e−R
− s

]
dT (x, y).

Note that the bracketed value on the right hand side of this inequality is strictly increasing
in R. As R → 0, this value goes tos, which reflects the fact that in small neighborhoods the
Thompson metric looks like a norm. AsR →∞, the bracketed value goes to2− s.

Theorem 1.2. Let C be an almost Archimedean cone. Supposeu, x, y ∈ C are in the same
part. Also suppose that0 < s < 1 andR > 0 and thatdH(u, x) ≤ R anddH(u, y) ≤ R. If the
linear span of{u, x, y} is 1- or 2-dimensional, thendH(φ(s; u, x), φ(s; u, y)) ≤ sdH(x, y). In
general

(1.4) dH

(
φ(s; u, x), φ(s; u, y)

)
≤

[
1− e−Rs

1− e−R

]
dH(x, y).

Again, the bracketed value on the right hand side increases strictly with increasingR. This
time, it ranges betweens asR → 0 and1 asR →∞.

Our method of proof will be to first establish the results whenC is the positive coneRN
+ ,

with N ≥ 3. It will be obvious from the proofs that the bounds given are the best possible in
this case. A crucial lemma will state that any finite set ofn elements of a Thomson or Hilbert
geometry can be isometrically embedded inRn(n−1)

+ with, respectively, its Thompson or Hilbert
metric. This lemma will allow us to extend the same bounds to more general cones, although in
the general case the bounds may no longer be tight.

A special case of Theorem 1.2 was proved in [29] using a simple geometrical argument. It
was shown that if two particles start at the same point and travel along distinct straight-line
geodesics at unit speed in the Hilbert metric, then the Hilbert distance between them is strictly
increasing. This is equivalent to the special case of Theorem 1.2 whendH(u, x) = dH(u, y) and
R approaches infinity.

A consequence of Theorems 1.1 and 1.2 is that both the Thompson and Hilbert geometries
are semihyperbolic in the sense of Alonso and Bridson [1]. Recall that a metric space is semi-
hyperbolic if it admits a bounded quasi-geodesic bicombing. A bicombing is a choice of path
between each pair of points. We may use the one given by

ζ(x,y)(t) :=

φ

(
t

d(x, y)
; x, y

)
, if t ∈ [0, d(x, y)]

y, otherwise

for each pair of pointsx andy in the same part ofC. Hered is either the Thompson or Hilbert
metric. This bicombing is geodesic and hence quasi-geodesic. To say it is bounded means that
there exist constantsM andε such that

d(ζ(x,y)(t), ζ(w,z)(t)) ≤ M max(d(x, w), d(y, z)) + ε

for eachx, y, w, z ∈ C andt ∈ [0,∞).
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4 ROGERD. NUSSBAUM AND CORMAC WALSH

Corollary 1.3. Each part ofC is semihyperbolic when endowed with either Thompson’s part
metric or Hilbert’s projective metric.

It should be pointed out that for some cones there are other good choices of distinguished
geodesics. For example, for the cone of positive definite symmetric matrices Sym(n), a natural
choice would beφ(s; X, Y ) := X1/2(X−1/2Y X−1/2)sX1/2 for X, Y ∈ Sym(n) ands ∈ [0, 1].
It can be shown that, with this choice, Sym(n) is non-positively curved in the sense of Buse-
mann under both the Thompson and Hilbert metrics. This result has been generalized to both
symmetric cones [16] and to the cone of positive elements of aC∗-algebra [10].

Although Hilbert’s projective metric arose in geometry, it has also been of great interest to
analysts. This is because many naturally occurring maps in analysis, both linear and non-linear,
are either non-expansive or contractive with respect to it. Perhaps the first example of this is due
to G. Birkhoff [3, 4], who noted that matrices with strictly positive entries (or indeed integral
operators with strictly positive kernels) are strict contractions with respect to Hilbert’s metric.
References to the literature connecting this metric to positive linear operators can be found
in [14, 13]. It has also been used to study the spectral radii of elements of Coxeter groups [20].
Both metrics have been applied to questions concerning the convergence of iterates of non-
linear operators [8, 16, 23, 24, 25]. The two metrics have been used to solve problems involving
non-linear integral equations [27, 30], linear operator equations [8, 9], and ordinary differential
equations [5, 25, 31, 32]. Thompson’s metric has also been usefully applied in [24, 26] to obtain
“DAD theorems”, which are scaling results concerning kernels of integral operators. Another
application of this metric is in Optimal Filtering [19], while Hilbert’s metric has been used in
Ergodic Theory [18] and Fractal Diffusions [21].

2. PROOFS

A cone is a subset of a (real) vector space that is convex, closed under multiplication by
positive scalars, and does not contain any vector subspaces of dimension one. We say that a
cone is almost Archimedean if the closure of its restriction to any two-dimensional subspace is
also a cone.

The proofs of Theorems 1.1 and 1.2 will involve the use of some infinitesimal arguments. We
recall that both the Thompson and Hilbert geometries areFinsler spaces [22]. IfC is a closed
cone inRN with non-empty interior, thenint C can be considered to be anN -dimensional
manifold and its tangent space at each point can be identified withRN . If a norm

|v|Tx := inf{α > 0 : −αx ≤ v ≤ αx}

is defined on the tangent space at each pointx ∈ int C, then the length of any piecewiseC1

curveα : [a, b] → int C can be defined to be

LT (α) :=

∫ b

a

|α′(t)|Tα(t) dt.

The Thompson distance between any two points is recovered by minimizing over all paths
connecting the points:

dT (x, y) = inf{LT (α) : α ∈ PC1[x, y]},

wherePC1[x, y] denotes the set of all piecewiseC1 pathsα : [0, 1] → int C with α(0) = x
andα(1) = y. A similar procedure yields the Hilbert metric when the norm above is replaced
by the semi-norm

|v|Hx := M(v/x)−m(v/x).
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A M ETRIC INEQUALITY FOR THE THOMPSON ANDHILBERT GEOMETRIES 5

HereM(v/x) is as before andm(v/x) := sup{λ ∈ R : v ≥ λx}. The Hilbert geometry will be
Riemannian only in the case of the Lorentz cone. The Thompson geometry will be Riemannian
only in the trivial case of the one-dimensional coneR+.

Our strategy will be to first prove the theorems for the case of the positive coneRN
+ , and then

extend them to the general case. The proof in the case ofRN
+ will involve investigation of the

mapg : int RN
+ → int RN

+ :

g(x) := φ(s;1, x)(2.1)

=


(

bs − as

b− a

)
x +

(
bas − abs

b− a

)
1, if b 6= a,

as
1, if b = a,

whereb := b(x) := maxi xi anda := a(x) := mini xi. Heres ∈ (0, 1) is fixed and we are using
the notation1 := (1, . . . , 1). The derivative ofg atx ∈ int RN

+ is a linear map fromRN → RN .
Taking | · |Tx as the norm on the domain and| · |Tg(x) as the norm on the range, the norm ofg′(x)
is

||g′(x)||T := sup{|g′(x)(v)|Tg(x) : |v|Tx ≤ 1}.
If, instead, we take the appropriate infinitesimal Hilbert semi-norms on the domain and range,
then the norm ofg′(x) is given by

||g′(x)||H := sup{|g′(x)(v)|Hg(x) : |v|Hx ≤ 1}.
For each pair of distinct integersI andJ contained in{1, . . . , N}, let

UI,J :=
{

x ∈ int RN
+ : 0 < xI < xi < xJ for all i ∈ {1, . . . , N}\{I, J}

}
.

On each setUI,J , the mapg is C1 and is given by the formula

g(x) =

(
xs

J − xs
I

xJ − xI

)
x +

(
xJxs

I − xIx
s
J

xJ − xI

)
1.

Let U denote the union of the setsUI,J ; I, J ∈ {1, . . . , N}, I 6= J . If x ∈ RN
+\U , then there

must exist distinct integersm, n ∈ {1, . . . , N} with eitherxn = xm = maxi xi or xn = xm =
mini xi. The setx ∈ RN

+ with xn = xm has (N -dimensional) Lebesgue measure zero, so the
complement ofU in RN

+ has Lebesgue measure zero.
We recall the following results from [22]. The first is a combination of Corollaries 1.3 and

1.5 from that paper.

Proposition 2.1. LetC be a closed cone with non-empty interior in a finite dimensional normed
spaceV . SupposeG is an open subset ofint C such thatφ(s; x, y) ∈ G for all x, y ∈ G and
s ∈ [0, 1]. Suppose also thatf : G → int C is a locally Lipschitzian map with respect to the
norm onV . Then

inf{k ≥ 0 : dT (f(x), f(y)) ≤ kdT (x, y) for all x, y ∈ G} = ess sup
x∈G

||f ′(x)||T .

It is useful in this context to recall that every locally Lipschitzian map is Fréchet differentiable
Lebesgue almost everywhere. The next proposition is a special case of Theorem 2.5 in [22].

Proposition 2.2. LetC be a closed cone with non-empty interior in a normed spaceV of finite
dimensionN . Let l be a linear functional onV such thatl(x) > 0 for all x ∈ int C, and
defineS := {x ∈ C : l(x) = 1}. LetG be a relatively-open convex subset ofS. Suppose that
f : G → int C is a locally Lipschitzian map with respect to the norm onV . Then

inf{k ≥ 0 : dH(f(x), f(y)) ≤ kdH(x, y) for all x, y ∈ G} = ess sup
x∈G

||f ′(x)||H̃ ,
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6 ROGERD. NUSSBAUM AND CORMAC WALSH

where||f ′(x)||H̃ := sup{|f ′(x)(v)|Hf(x) : |v|Hx ≤ 1, l(v) = 0}. Here the essential supremum is
taken with respect to theN − 1-dimensional Lebesgue measure onS.

Since we wish to apply Propositions 2.1 and 2.2 to the mapg, we must prove that it is locally
Lipschitzian.

Lemma 2.3. The mapg : int(RN
+ ) → int(RN

+ ) defined by (2.1) is locally Lipschitzian.

Proof. We use the supremum norm||x||∞ := maxi |xi| on RN . Clearly,|b(x) − b(y)| ≤ ||x −
y||∞ and |a(x) − a(y)| ≤ ||x − y||∞ for all x, y ∈ int(RN

+ ). Therefore botha and b are
Lipschitzian with Lipschitz constant 1.

Let γ : [0,∞) → [0,∞) be defined by

γ(t) :=


ts − 1

t− 1
, for t 6= 1,

s, for t = 1.

Theng may be expressed as

g(x) = as−1γ (b/a) x + as
(
1− γ (b/a)

)
1.

The Binomial Theorem gives that

γ(t) =
∞∑

k=1

(
s

k

)
(t− 1)k for |t− 1| < 1

and soγ is C∞ on a neighborhood of 1. Hence it isC∞ on [0,∞), and thus locally Lipschitzian.
It follows thatg is also locally Lipschitzian. �

2.1. Thompson’s Metric. We have the following bound on the norm ofg′(x) with respect to
the Thompson metric.

Lemma 2.4. Consider the Thompson metric onint RN
+ . Letx ∈ U1,N . If N = 1 or N = 2 then

the norm ofg′ at x is given by||g′(x)||T = s. If N ≥ 3, then

(2.2) ||g′(x)||T =
xN − xN−1

xN − x1

θ

(
xN

x1

)
xs+1

1

EN−1

+
(xs

N − xs
1)xN−1

EN−1

+
xN−1 − x1

xN − x1

θ

(
x1

xN

)
xs+1

N

EN−1

whereθ(t) := (1− s)− ts + st andEi(x) := Ei := xi(x
s
N − xs

1) + xNxs
1 − x1x

s
N .

Proof. If N = 1 andx > 0, theng(x) = xs. We leave the proof in this case to the reader and
assume thatN ≥ 2.

Forx ∈ U1,N ,

g(x) =

(
xs

N − xs
1

xN − x1

)
x +

(
xNxs

1 − x1x
s
N

xN − x1

)
1.

Let

hij(x) :=
xj

gi(x)

∂gi

∂xj

(x).

Straightforward calculation gives, for eachj ∈ {1, . . . , N},
h1j(x) = sδ1j

and hNj(x) = sδNj.
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A M ETRIC INEQUALITY FOR THE THOMPSON ANDHILBERT GEOMETRIES 7

Hereδij is the Kronecker delta function which takes the value1 if i = j and the value0 if i 6= j.
Clearly,hij(x) = 0 for 1 < i < N andj 6∈ {1, i, N}. For1 < i < N ,

hi1(x) = xN−xi

xN−x1
θ
(

xN

x1

)
xs+1
1

Ei
≥ 0,(2.3)

hii(x) =
xs

N−xs
1

Ei
xi ≥ 0,(2.4)

hiN(x) = − xi−x1

xN−x1
θ
(

x1

xN

)
xs+1

N

Ei
≤ 0.(2.5)

Inequalities (2.3) – (2.5) rely on the fact thatθ(t) ≥ 0 for t ≥ 0. This may be established by
observing thatθ(1) = θ′(1) = 0 andθ′′(t) > 0 for t ≥ 0.

Let
B̃T :=

{
v ∈ RN : maxj |vj| ≤ 1

}
.

We wish to calculate

(2.6) ||g′(x)||T = sup

{∣∣∣∣∣∑
j

hijvj

∣∣∣∣∣ : 1 ≤ i ≤ N , v ∈ B̃T

}
.

For i = 1 or i = N , we have|
∑

j hijvj| ≤ s for any choice ofv ∈ B̃T . If N = 2, then it
follows that||g′(x)||T = s for all x ∈ U1,N .

For the rest of the proof we shall therefore assume thatN ≥ 3. For 1 < i < N , it is clear
from inequalities (2.3) – (2.5) that|

∑
j hijvj| is maximized whenv1 = vi = 1 andvN = −1.

In this case∣∣∣∣∣∑
j

hijvj

∣∣∣∣∣ =
1

Ei

[
xN − xi

xN − x1

θ

(
xN

x1

)
xs+1

1 + (xs
N − xs

1)xi +
xi − x1

xN − x1

θ

(
x1

xN

)
xs+1

N

]
(2.7)

=
c1xi + c2

c3xi + c4

,(2.8)

wherec1, c2, c3, andc4 depend onx1 andxN but not onxi. Observe thatc3xi + c4 6= 0 for
x1 ≤ xi ≤ xN . Given this fact, the general form of expression (2.8) leads us to conclude
that it is either non-increasing or non-decreasing when regarded as a function ofxi. When we
substitutexi = x1, we get|

∑
j hijvj| = s. When we substitutexi = xN , we get

(2.9)

∣∣∣∣∣∑
j

hijvj

∣∣∣∣∣ =
2
(
1− (x1/xN)s

)
1− (x1/xN)

− s.

Now, writing Γ(t) := 2(1 − ts)/(1 − t) − s, we haveΓ′(t) = −2tsθ(t−1)/(1 − t)2 < 0, in
other wordsΓ is decreasing on(0, 1). In particular,Γ(x1/xN) ≥ limt→1 Γ(t) = s. Therefore
expression (2.7) is non-decreasing inxi. So, the supremum in (2.6) is attained whenv is as
above andi = N − 1. Recall thatxN−1 is the second largest component ofx. The conclusion
follows. �

Corollary 2.5. Let R > 0. If N = 1 or N = 2, theness sup{||g′(x)||T : x ∈ int RN
+} = s. If

N ≥ 3, then

ess sup{||g′(x)||T : dH(x,1) ≤ R} =
2(1− e−Rs)

1− e−R
− s.

Proof. Note that ifσ : RN
+ → RN

+ is some permutation of the components, theng ◦ σ(x) =
σ ◦ g(x) for all x ∈ RN

+ . Furthermore,σ will be an isometry of both the Thompson and Hilbert
metrics. It follows that, given anyx ∈ UI,J with I, J ∈ {1, . . . , N}, I 6= J , we may reorder the
components ofx to find a pointy in U1,N such that||g′(y)||T = ||g′(x)||T . Recall, also, that the
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8 ROGERD. NUSSBAUM AND CORMAC WALSH

complement ofU in int RN
+ hasN -dimensional Lebesgue measure zero. From these two facts,

it follows that the essential supremum of||g′(x)||T overBR(1) := {x ∈ int RN
+ : dH(x,1) ≤

R} is the same as its supremum overBR(1) ∩ U1,N .
In the case whenN = 1 or N = 2, the conclusion follows immediately.
For N = 3, we must maximize expression (2.2) under the constraintsx1 < xN−1 < xN and

x1/xN ≥ exp(−R). First, we maximize overxN−1, keepingx1 andxN fixed. In the proof of
the previous lemma, we showed that expression (2.2) is non-decreasing inxN−1, and so it will
be maximized whenxN−1 approachesxN . Here it will attain the value

(2.10)
2
(
1− (x1/xN)s

)
1− (x1/xN)

− s = Γ(x1/xN).

We also showed thatΓ is decreasing on(0, 1). Therefore (2.10) will be maximized when
x1/xN = exp(−R), where it takes the value

2(1− e−Rs)

1− e−R
− s.

�

Lemma 2.6. Let C be an almost Archimedean cone and let{xi : i ∈ I} be a finite collection
of elements ofC of cardinalityn, all lying in the same part. Denote byW the linear span of
{xi : i ∈ I} and writeCW := C ∩ W . Denote byint CW the interior ofCW as a subset
of W , using onW the unique Hausdorff linear topology. Then each of the pointsxi; i ∈ I
is contained inint CW . Furthermore, there exists a linear mapF : W → Rn(n−1) such that
F ( int CW ) ⊂ int Rn(n−1)

+ and

(2.11) M(xi/xj; C) = M(F (xi)/F (xj); Rn(n−1)
+ )

for eachi, j ∈ I.

Proof. Since the points{xi : i ∈ I} all lie in the same part ofC, they also all lie in the same part
of CW . Therefore there exist positive constantsaij such thatxj − aijxi ∈ CW for all i, j ∈ I.
If we definea := min{aij : i, j ∈ I} it follows that xj + δxi ∈ CW whenever|δ| ≤ a and
i, j ∈ I. Now selecti1, . . . , im ∈ I such that{xik : 1 ≤ k ≤ m} form a linear basis forW .
For eachy ∈ W , we define||y|| := max{|bk| : 1 ≤ k ≤ m}, wherey =

∑m
k=1 bkxik is the

unique representation ofy in terms of this basis. The topology onW generated by this norm is
the same as the one we have been using. If||y|| ≤ a/m andj ∈ I, thenxj + mbkxik ∈ CW for
1 ≤ k ≤ m. It follows that

xj + y =
1

m

m∑
k=1

(xj + mbkxik) ∈ CW

whenever||y|| ≤ a/m. This proves thatxj ∈ int CW for all j ∈ I.
It is easy to see thatβij := M(xi/xj; C) = M(xi/xj; CW ) for all i, j ∈ I, i 6= j. Observe

thatβijxj − xi ∈ ∂CW . Since int CW is a non-empty open convex set which does not contain
βijxj −xi, the geometric version of the Hahn-Banach Theorem implies that there exists a linear
functionalfij : W → R and a real numberrij such thatfij(βijxj − xi) ≤ rij < fij(z) for all
z ∈ int CW . Because0 is in the closure ofint CW andfij(0) = 0, we haverij ≤ 0. On the
other hand, iffij(z) < 0 for somez ∈ int CW , then consideringfij(tz) we see thatfij would
not be bounded below onint CW . It follows thatrij = 0. Sinceβijxj − xi is in the closure of
int CW , we must havefij(βijxj − xi) = 0.

Now, define
F : W → Rn(n−1) : z 7→ (fij(z))i,j∈I, i6=j,
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so thatfij(z); i, j ∈ I, i 6= j are the components ofF (z). Clearly,F is linear and mapsint CW

into int Rn(n−1)
+ . Also, for all i, j ∈ I, i 6= j,

M(F (xi)/F (xj); Rn(n−1)
+ ) = inf{λ > 0 : fkl(λxj − xi) ≥ 0 for all k, l ∈ I, k 6= l}.

For λ ≥ βij, we haveλxj − xi ∈ clCW and sofkl(λxj − xi) ≥ 0 for all k, l ∈ I, k 6= l. On
the other hand, forλ < βij, we havefij(λxj − xi) < 0 sincefij(xj) > 0. We conclude that
M(F (xi)/F (xj); Rn(n−1)

+ ) = βij. �

Lemma 2.7. Theorem 1.1 holds in the special case whenC = RN
+ with N ≥ 3.

Proof. Each part ofRN
+ consists of elements ofRN

+ all having the same components equal to
zero. Thus each part can be naturally identified withint Rn

+, wheren is the number of strictly
positive components of its elements. We may therefore assume initially that{x, y, u} ⊂ int RN

+ .
DefineL : RN → RN by L(z) := (u1z1, . . . , uNzN). Its inverse is given byL−1(z) :=

(u−1
1 z1, . . . , u

−1
N zN). Both L andL−1 are linear maps which leaveRN

+ invariant. It follows
thatL andL−1 are isometries ofRN

+ with respect to both the Thompson and Hilbert metrics.
Therefore, foru, z ∈ int RN

+ ,

L−1(φ(s; u, z)) = φ(s; L−1(u), L−1(z)).

Thus, we may as well assume thatu = 1.
We now wish to apply Proposition 2.1 withf := g and G := BR+ε(1) = {z ∈ RN

+ :
dH(z,1) < R+ ε}. It was shown in [23] thatG is a convex cone, in other words that it is closed
under multiplication by positive scalars and under addition of its elements. Sinceφ(s; w, z) is
a positive combination ofw andz, it follows thatφ(s; w, z) is in G if w andz are. If we now
apply Lemma 2.3, Proposition 2.1, and Corollary 2.5, and letε approach zero, we obtain the
desired result. �

Lemma 2.8. Theorem 1.1 holds in the special case when the linear span of{x, y, u} is one- or
two-dimensional.

Proof. Let W denote the linear span of{x, y, u}, in other words the smallest linear subspace
containing these points. By Lemma 2.6,x, y, andu are in the interior ofC ∩W in W . It is easy
to see thatM(z/w; C) = M(z/w; C ∩W ) for all w, z ∈ int(C ∩W ). Therefore, we can work
in the coneC ∩W .

It is not difficult to show [14] that ifm := dim W is either one or two, then there is a
linear isomorphismF from W to Rm taking int(C ∩ W ) to int Rm

+ . It follows thatF is an
isometry of both the Thompson and Hilbert metrics andF (φ(s; z, w)) = φ(s; F (z), F (w)) for
all z, w ∈ int(C ∩W ). We may thus assume thatC = Rm

+ andu, x, y ∈ int C.
As in the proof of Lemma 2.7, we may assume thatu = 1.
To obtain the required result, we apply Lemma 2.3, Corollary 2.5, and Proposition 2.1 with

f := g andG := int Rm
+ . �

of Theorem 1.1.Let W denote the linear span of{x, y, u}. Lemma 2.8 handles the case when
these three points are not linearly independent; we will therefore assume that they are. Thus
the five pointsx, y, u, φ(s; u, x), andφ(s; u, y) are distinct. We apply Lemma 2.6 and obtain a
linear mapF : W → R20

+ with the specified properties. From (2.11), it is clear thatdT (z, w) =
dT

′(F (z), F (w)) for eachz, w ∈ {x, y, u, φ(s; u, x), φ(s; u, y)}. Here we are usingdT
′ to

denote the Thompson metric onR20
+ . Note thatφ(s; u, x) is a positive combination ofu and

x and that the coefficients ofu andx depend only ons, M(u/x; C), andM(x/u; C). The
latter two quantities are equal toM(F (u)/F (x); R20

+ ) andM(F (x)/F (u); R20
+ ) respectively.

We conclude thatF (φ(s; u, x)) = φ(s; F (u), F (x)). A similar argument givesF (φ(s; u, y)) =

J. Inequal. Pure and Appl. Math., 5(3) Art. 54, 2004 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


10 ROGERD. NUSSBAUM AND CORMAC WALSH

φ(s; F (u), F (y)). Inequality (1.3) follows by applying Lemma 2.7 to the pointsF (x), F (y),
andF (u) in the coneR20

+ . �

2.2. Hilbert’s Metric. We shall continue to use the same notation. Thus, for a givenN ∈ N
ands ∈ (0, 1), we useg to denote the function in (2.1) andU to denote the union of setsUI,J

with I, J ∈ {1, . . . , N}, I 6= J . We also use the functionsθ(t) := (1 − s) − ts + st and
Ei(x) := Ei := xi(x

s
N − xs

1) + xNxs
1 − x1x

s
N , and writehij(x) := (xj/gi(x))∂gi/∂xj(x). As

was noted earlier,θ(t) > 0 if t > 0 andt 6= 1. Also,γ(t) := (1−ts)/(1−t), γ(1) := s is strictly
decreasing on[0,∞). We shall also use the simple but useful observation that ifc1, c2, c3, and
c4 are constants such thatc3t+c4 6= 0 for a ≤ t ≤ b, then the functiont 7→ (c1t+c2)/(c3t+c4)
is either increasing on[a, b] (if c1c4 − c2c3 ≥ 0) or decreasing on[a, b] (if c1c4 − c2c3 ≤ 0).
Either way, the function attains is maximum over[a, b] ata or b.

Recall that ifg is Fréchet differentiable atx ∈ int RN
+ then ||g′(x)||H denotes the norm of

g′(x) as a linear map from(RN , || · ||Hx ) to (RN , || · ||Hg(x)), although, of course,|| · ||Hx and|| · ||Hg(x)

are semi-norms rather than norms.

Lemma 2.9. Consider the Hilbert metric onint RN
+ with N ≥ 2. Letx ∈ U1,N . If N = 2 then

the norm ofg′ at x is given by||g′(x)||H = s. If N ≥ 3, then

(2.12) ||g′(x)||H =
xN − xN−1

xN − x1

θ

(
xN

x1

)
xs+1

1

EN−1

+
(xs

N − xs
1)xN−1

EN−1

.

Proof. The norm ofg′(x) as a map from(RN , || · ||Hx ) to (RN , || · ||Hg(x)) is given by

||g′(x)||H = sup
v∈B̃H

max
i,k

∑
j

(hij − hkj)vj,

where

B̃H :=
{
v ∈ RN : maxj vj −minj vj ≤ 1

}
.

To calculate||g′(x)||H we will need to determine the sign ofhij − hkj for eachi, j, k ∈
{1, . . . , N}. We introduce the notation

(2.13) Lik := sup
v∈B̃H

∑
j

(hij − hkj)vj.

Note thatg is homogeneous of degrees, in other wordsg(λx) = λsg(x) for all x ∈ RN
+ and

λ > 0. Therefore, ∑
j

xj
∂gi

∂xj

(x) = sgi(x)

for eachi ∈ {1, . . . , N}. Thus
∑

j hij = s for eachi ∈ {1, . . . , N}, a fact that could also have
been obtained by straightforward calculation. It follows that

(2.14)
∑

j

(hij − hkj)vj =
∑

j

(hij − hkj)(vj + c)

for any constantc ∈ R.
It is clear that an optimal choice ofv in (2.13) would be to takevj := 1 for each componentj

such thathij − hkj > 0 andvj := 0 for each component such thathij − hkj < 0. Alternatively,
we may choosevj := 0 whenhij −hkj > 0 andvj := −1 whenhij −hkj < 0. That the optimal
value is the same in both cases follows from (2.14). Also, it is easy to see thatLik = Lki.

Fix i, k ∈ {1, . . . , N} so thati < k. There are four cases to consider.
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• Case 1.1 < i < k < N . Recall thath1j(x) = sδ1j andhNj(x) = sδNj. A calculation
using equations (2.3) – (2.5) gives

Ei(x)Ek(x)(hi1(x)− hk1(x)) = xs
Nxs+1

1 (xk − xi)θ
(xN

x1

)
≥ 0

and

(2.15) Ei(x)Ek(x)(hiN(x)− hkN(x)) = xs
1x

s+1
N (xk − xi)θ

( x1

xN

)
≥ 0.

We also have thathii(x) − hki(x) = hii(x) > 0 andhik(x) − hkk(x) = −hkk(x) < 0.
So an optimal choice ofv ∈ B̃H in equation (2.13) is given byvj := −δjk. We conclude
thatLik = hkk in this case.

• Case 2. 1 = i < k < N . We will show thathk1(x) ≤ h11(x) = s. Considerx1

andxN as fixed andxk as varying in the rangex1 ≤ xk ≤ xN . From equation (2.3),
hk1(x) = (c1xk+c2)/(c3xk+c4), wherec1, c2, c3, andc4 depend onx1 andxN , and both
c3 andc4 are positive. A simple calculation shows thatc1c4−c2c3 = −θ(xN/x1)x

s+1
1 xs

N ,
which is negative. Hencehk1 is decreasing inxk and takes its maximum value when
xk = x1. Here it achieves the value

x1

xN − x1

θ
(xN

x1

)
= s− x1−s

1 (xs
N − xs

1)

xN − x1

< s.

Thus we conclude thath11(x) − hk1(x) > 0. We also have thath1k(x) − hkk(x) =
−hkk(x) ≤ 0 andh1N(x) − hkN(x) = −hkN(x) ≥ 0. Thus the optimal choice of
v ∈ B̃H is given byvj := −δjk. We conclude that in this caseL1k(x) = hkk(x).

• Case 3.1 < i < k = N . Herehi1 ≥ hN1 = 0, hii ≥ hNi = 0, andhiN ≤ hNN = s. So
the optimalv ∈ B̃H is given byvj := δj1 + δji. We conclude thatLiN = hi1 + hii.

• Case 4.i = 1 andk = N . Heres = h11 ≥ hN1 = 0 and0 = h1N ≤ hNN = s. Thus
the optimalv ∈ B̃H is given byvj := δ1j. We conclude thatL1N = s.

If N = 2 then Case 4 is the only one possible, and so||g′(x)||H = s. So, for the rest of the
proof, we will assume thatN ≥ 3.

We know thathi1(x) + hii(x) = s − hiN(x) ≥ s so Case 3 dominates Case 4, that is to say
LiN(x) ≥ L1N(x) for i > 1. Sincehi1(x) ≥ 0 for i ∈ {1, . . . , N}, Case 3 also dominates Cases
1 and 2, meaning thatLiN(x) ≥ Lik(x) for k < N , i < k.

The final step is to maximizeLiN(x) = hi1(x)+hii(x) = s−hiN(x) overi ∈ {2, . . . , N−1}.
From (2.15),hmN(x) ≥ hnN(x) for m < n. Thus the maximum occurs wheni = N − 1.
Recall that we have ordered the components ofx in such a way thatxN−1 is the second largest
component ofx. We conclude that

||g′(x)||H = max
i,k:i<k

Lik = hN−1,1 + hN−1,N−1

By substituting the expressions in (2.3) and (2.4), we obtain the required formula. �

Corollary 2.10. Let R > 0 andN ≥ 2. Let l be a linear functional onRN such thatl(x) > 0
for all x ∈ int RN

+ and defineS := {x ∈ RN
+ : l(x) = 1}. If N = 2, theness sup{||g′(x)||H :

x ∈ S} = s. If N ≥ 3, then

ess sup{||g′(x)||H : dH(x,1) ≤ R, x ∈ S} =
1− e−Rs

1− e−R
.

In both cases, the essential supremum is taken with respect to theN − 1-dimensional Lebesgue
measure onS.
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12 ROGERD. NUSSBAUM AND CORMAC WALSH

Proof. Note that the complement ofU ∩S in S hasN −1-dimensional Lebesgue measure zero.
Using the reordering argument in the proof of Corollary 2.5, we deduce the result in the case
whenN = 2.

The case whenN ≥ 3 reduces to maximizing the right hand side of (2.12) subject to the
constraintsx1 < xN−1 < xN andx1/xN ≥ exp(−R). We can write the expression in (2.12) in
the forms + (c1xN−1 + c2)/(c3xN−1 + c4), wherec1, c2, c3, andc4 depend only onx1 andxN

andc1 ≥ 0, c2 ≤ 0, c3 ≥ 0, c4 ≥ 0. It follows that, if we viewx1 andxN as fixed andxN−1 as
variable, the expression is maximized whenxN−1 = xN . The value obtained there will be

1− (x1/xN)s

1− (x1/xN)
= γ(x1/xN).

If we recall thatγ is decreasing on[0, 1) andx1/xN ≥ exp(−R), we see that

||g′(x)||H ≤ 1− e−Rs

1− e−R
.

If x1/xN = exp(−R), then, by choosingx ∈ U1,N with xN−1 close toxN , we can arrange that
||g′(x)||H is as close as desired to this value. �

Lemma 2.11.Theorem 1.2 holds in the special case whenC = RN
+ with N ≥ 3.

Proof. As in the proof of Lemma 2.7, we may assume thatx, y ∈ int RN
+ andu = 1. Definel :

RN → R by l(z) :=
∑N

i=1 zi/N and letS := {x ∈ RN
+ : l(x) = 1}. Thenl is a linear functional

andl(z) > 0 for all z ∈ int RN
+ . It is easy to check thatφ(s; λz, µw) = λ1−sµsφ(s; z, w) for all

λ, µ > 0 andz, w ∈ int RN
+ . Thus

dH

(
φ

(
s;

u

l(u)
,

x

l(x)

)
, φ

(
s;

u

l(u)
,

y

l(y)

))
= dH(φ(s; u, x), φ(s; u, y)).

We also have thatdH(x/l(x), y/l(y)) = dH(x, y). Therefore we may assume thatx, y ∈ S. Let
ε > 0 and defineG := {z ∈ S : dH(z,1) < R + ε}. It was shown in [23] thatG is convex.
Also, Lemma 2.3 states thatg is locally Lipschitzian. We may therefore apply Proposition 2.2
with f := g. Sinceg is homogeneous of degrees, we have thatg′(x)(x) = sg(x) for all x ∈ G.
This, combined with the fact that|g(x)|Hg(x) = 0, implies that||g′(x)||H̃ = ||g′(x)||H . Using
Corollary 2.10, and lettingε approach zero, we deduce the required result. �

Lemma 2.12. Theorem 1.2 holds in the special case when the linear span of{u, x, y} is 1- or
2-dimensional.

Proof. If the linear span of{u, x, y} is one-dimensional, then all Hilbert metric distances are
zero, so assume that it is two-dimensional. The same argument as was used in Lemma 2.8 shows
that it suffices to prove the result forC = R2

+, u = 1, andx, y ∈ int R2
+. As shown in the proof

of Lemma 2.11, we may assume thatl(x) = l(y) = 1 wherel((z1, z2)) := (z1 + z2)/2. We now
apply Proposition 2.2 withf := g andG := S := {z ∈ int R2

+ : l(z) = 1}. Again,||g′(x)||H̃ =
||g′(x)||H for all x ∈ G. The result follows from the first part of Corollary 2.10. �

of Theorem 1.2.The proof uses Lemmas 2.11 and 2.12 and is exactly analogous to the proof of
Theorem 1.1. �

of Corollary 1.3.We first prove the result for the case of Thompson’s metric. We will use the al-
ternative characterization of semihyperbolicity given in Lemma 1.2 of [1]. Supposex, y, x′, y′ ∈
C are all in the same part and are such that neitherdT (x, x′) nor dT (y, y′) is greater than1.
Let t ∈ [0,∞) and writez := ζ(x,y)(t) andw := φ(dT (x, z)/dT (x, y); x, y′). Observe that
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dT (y, y′) ≤ 1 implies|dT (x, y)− dT (x, y′)| ≤ 1. SincedT (x, w) = dT (x, y′)dT (x, z)/dT (x, y),
we have

|dT (x, w)− dT (x, z)| ≤ dT (x, z)/dT (x, y) ≤ 1

Similar reasoning allows us to conclude that

|dT (x, w′)− dT (x′, z′)| ≤ 1,

wherez′ := ζ(x′,y′)(t) andw′ := φ(dT (x′, z′)/dT (x′, y′); x, y′). FromdT (x, z) = min(t, dT (x, y))
anddT (x′, z′) = min(t, dT (x′, y′)), we have that

|dT (x, z)− dT (x′, z′)| ≤ |dT (x, y)− dT (x′, y′)| ≤ 2.

So
dT (w, w′) = |dT (x, w)− dT (x, w′)| ≤ 4.

By Theorem 1.1,dT (z, w) ≤ 2dT (y, y′) ≤ 2 anddT (z′, w′) ≤ 2dT (x, x′) ≤ 2. The triangle
inequality givesdT (z, z′) ≤ dT (z, w) + dT (w, w′) + dT (w′, z′) ≤ 8. This is the uniform bound
required by the characterization of semihyperbolicity we are using.

The proof thatC is semihyperbolic when endowed with Hilbert’s metric is similar. �
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