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Abstract: In this note, we present sharp inequalities relating hypergeometric analogues
of the arithmetic-geometric mean discussed in [5] and the power mean. The
main result generalizes the corresponding sharp inequality for the arithmetic-
geometric mean established in [10].
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1. Introduction

In 1799, Gauss made a remarkable discovery (see equation (1.2) below) regarding
the closed form of the compound mean created by iteratively applying the arithmetic
meanA1 and geometric meanA0, which are special cases of

Aλ(a, b) ≡
(

aλ + bλ

2

) 1
λ

(λ 6= 0),

with A0(a, b) ≡
√

ab for a, b > 0. A standard argument reveals that the power
meanAλ is an increasing function of its orderλ. In particular, the arithmetic and
geometric means satisfy the well-known inequalityA0(a, b) ≤ A1(a, b). From this
it can be shown that the recursively defined sequences given byan+1 = A1(an, bn),
bn+1 = A0(an, bn) (with b0 = b < a = a0) satisfy

A0(a, b) ≤ bn < bn+1 < an+1 < an ≤ A1(a, b) for all n ∈ N.

Thus{an}, {bn} are bounded and monotone sequences satisfying

lim
n→∞

an+1 = lim
n→∞

A1(an, bn) = lim
n→∞

A0(an, bn) = lim
n→∞

bn+1,

by continuity and the fact that these means are strict (i.e.Aλ(a, b) = a iff a = b). It
is this common limit which is used to define the compound meanA1 ⊗ A0(a, b) ≡
limn→∞ an, commonly referred to as thearithmetic-geometric meanAG ≡ A1⊗A0.
Moreover, the convergence is quadratic for this particular compound iteration. For
more on the historical development ofAG, the article [1] by Almkvist and Berndt
and the textPi and the AGMby Borwein and Borwein [3] are lively and informative
sources.
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By construction,A0(a, b) < AG(a, b) < A1(a, b) for a > b > 0. However,A1 is
not the best possible power mean upper bound forAG. For example, since

a2 =
a+b
2

+
√

ab

2
=

(√
a +

√
b

2

)2

= A1/2(a, b),

it follows that

A0(a, b) < AG(a, b) < A1/2(a, b) for all a > b > 0.

Vamanamurthy and Vuorinen [10] showed that the order1/2 is sharp. As a result

(1.1) Aλ(a, b) < AG(a, b) < Aµ(a, b) for all a > b > 0

if and only ifλ ≤ 0 andµ ≥ 1/2. The aim of this note is to discuss sharp inequalities
that parallel (1.1) for hypergeometric analogues of the arithmetic-geometric mean
introduced in [5] and described below.

A review of the above iterative process leading toAG reveals that any two con-
tinuous strict meansM,N can be used to construct a compound mean, providedM
is comparable toN (i.e. M(a, b) ≥ N (a, b) for a ≥ b > 0). Moreover,M⊗N
inherits standard mean properties such as homogeneity (i.e.M(sa, sb) = sM(a, b)
for s > 0) when possessed by bothM andN (see [3, p. 244]). While the definition
of the compound mean as the limit of an iterative process is pleasingly simple, it is
natural to pursue a closed-form expression to facilitate further analysis. Gauss en-
gaged in this pursuit forAG and his discovery yields the following elegant identity
(see [3, 9]):

(1.2) AG(1, r) =
1

2F1(1/2, 1/2; 1; 1− r2)
,
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where2F1 is the Gaussian hypergeometric function

2F1(α, β; γ; z) ≡
∞∑

n=0

(α)n(β)n

(γ)nn!
zn, |z| < 1,

and(α)n ≡ Γ(α + n)/Γ(α) = α(α + 1) · · · (α + n− 1) for n ∈ N, (α)0 ≡ 1.
Using modular forms, Borwein et al. (see [5]) constructed quadratically conver-

gent compound means that can be expressed in closed form as

(1.3) M⊗N (1, r) =
1

2F1(1/2− s, 1/2 + s; 1; 1− rp)q
.

Motivated by a comparison with (1.2), compound means satisfying (1.3) are de-
scribed in [5] as hypergeometric analoguesof AG. Sharp inequalities similar to
(1.1) for these “close relatives” ofAG can be obtained by applying the following
theorem from [8] involving thehypergeometric mean2F1(−a, b; c; r)1/a (discussed
by Carlson in [6]) and the weighted power mean given by

Aλ(ω; a, b) ≡
[
ω aλ + (1− ω) bλ

]1/λ
(λ 6= 0)

andA0(ω; a, b) ≡ aωb1−ω, with weightsω, 1− ω > 0.

Theorem 1.1 ([8]). Suppose1 ≥ a, b > 0 andc > max{−a, b}. If c ≥ max{1 −
2a, 2b}, then

Aλ(1− b/c; 1, 1− r) ≤ 2F1(−a, b; c; r)1/a, ∀ r ∈ (0, 1)

if and only ifλ ≤ a+c
1+c

. If c ≤ min{1− 2a, 2b}, then

Aλ(1− b/c; 1, 1− r) ≥ 2F1(−a, b; c; r)1/a, ∀ r ∈ (0, 1)

if and only ifλ ≥ a+c
1+c

.
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2. Main Results

The principal contribution of this note is the observation that Theorem1.1 can be
used to obtain sharp upper bounds for the hypergeometric analogues ofAG. We also
note that the corresponding lower bounds can be verified directly using elementary
series techniques presented here (or as a corollary to more involved developments as
in [7]). Simultaneous sharp bounds of this type are of independent interest.

Proposition 2.1. Suppose0 < α ≤ 1/2. Then for allr ∈ (0, 1)

(2.1) Aλ(α; 1, rα) <
1

2F1(α, 1− α; 1; 1− r)
< Aµ(α; 1, rα)

if and only ifλ ≤ 0 andµ ≥ (1− α)/(2α).

Proof. By the monotonicity ofλ 7→ Aλ, it suffices to verify the first inequality
in (2.1) for the elementary case thatλ = 0. It follows easily by induction that
(α(1−α))n

n!
≥ (α)n(1−α)n

n!n!
for all n ∈ N. Thus

(1− r)−α(1−α) =
∞∑

n=0

(α(1− α))n

n!
rn

>
∞∑

n=0

(α)n(1− α)n

n!n!
rn = 2F1(α, 1− α; 1; r).

This implies

A0(α; 1, (1− r)α) = (1− r)α(1−α) < 2F1(α, 1− α; 1; r)−1.

The replacement ofr by (1− r) completes a proof of the established first inequality
in (2.1) for λ ≤ 0. Sharpness follows from the observation that ifλ > 0, then
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Aλ(α; 1, 0) > 0 while 2F1(α, 1− α; 1; r)−1 → 0 asr → 1− (see [9, p. 111]). Thus,
for λ > 0 andr sufficiently close to and less than 1, it follows that

Aλ(α; 1, (1− r)α)− 2F1(1/2, 1/2; 1; r)−1 > 0.

That is,λ ≤ 0 is necessary and sufficient for the first inequality in (2.1).
The proof of the second inequality is not as obvious. From Theorem1.1, if α =

−a > 0, β = 1 − α > 0 andmax{α, β} < γ ≤ min{1 + 2α, 2β}, then for all
r ∈ (0, 1)

2F1(α, β; γ; r)−1/α ≤
[(

1− β

γ

)
+

β

γ
(1− r)σ

] 1
σ

= Aσ

(
1− β

γ
; 1, 1− r

)
for the sharp orderσ = (γ − α)/(1 + γ). (By the proof of Theorem1.1 in [8],
the above inequality is strict unlessγ = 1 + 2α = 2β). The conditions for strict
inequality are met for0 < α ≤ 1/2, β = 1− α, γ = 1. Thus

2F1(α, 1− α; 1; 1− r)−1 < Aσ(α; 1, r)α for all r ∈ (0, 1),

if and only if σ ≥ (1− α)/2. Noting thatAσ(ω; 1, r)α = Aσ/α(ω; 1, rα), we obtain
the second inequality in (2.1) for µ = σ/α.

Corollary 2.2. Suppose0 < α ≤ 1/2 andp > 0. Then for allr ∈ (0, 1)

(2.2) Aλ(α; 1, r) <
1

2F1(α, 1− α; 1; 1− rp)
1

αp

< Aµ(α; 1, r)

if and only ifλ ≤ 0 andµ ≥ p(1− α)/2.
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Proof. Proposition2.1 implies that for allr ∈ (0, 1) andq > 0

Aλ̂(α; 1, rpα)q <
1

2F1(α, 1− α; 1; 1− rp)q
< Aµ̂(α; 1, rpα)q

if and only if λ̂ ≤ 0 andµ̂ ≥ (1− α)/(2α). Since

Aµ̂(α; 1, rpα)q = Aµ̂/q(α; 1, rpqα),

the result follows by settingλ = λ̂/q andµ = µ̂/q for pqα = 1.

It is interesting to note that properties of the important class ofzero-balanced
hypergeometric functions of the form2F1(a, b; a + b; · ), which includes those ap-
pearing in (2.2), can be applied (see [2, 4]) to obtain inequalities directly relating
these compound means.
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3. Applications

Borwein et al. (see [4, 5] and the references therein) used rather involved modu-
lar equations to discover meansMn, Nn that can be used to build hypergeometric
analoguesAGn ≡ Mn ⊗ Nn converging quadratically to closed-form expressions
involving 2F1(1/2 − s, 1/2 + s; 1; · ). In particular, they demonstrated that such
compound means exist fors = 0, 1/6, 1/4, 1/3 (and the trivial cases = 1/2). The
resulting closed forms include

AG2(1, r) = 2F1(1/2, 1/2; 1; 1− r2)−1,

AG3(1, r) = 2F1(1/3, 2/3; 1; 1− r3)−1,

AG4(1, r) = 2F1(1/4, 3/4; 1; 1− r2)−2,

AG6(1, r) = 2F1(1/6, 5/6; 1; 1− r3)−2.

Notice that each2F1 satisfies the form appearing in Corollary2.2. It can be shown
thatAG2, AG3, andAG4 are formed by compounding the following homogeneous
means:

M2(a, b) ≡ a + b

2
, N2(a, b) ≡

√
ab,

M3(a, b) ≡ a + 2b

3
, N3(a, b) ≡ 3

√
b(a2 + ba + b2)

3
,

M4(a, b) ≡ a + 3b

4
, N4(a, b) ≡

√
b(a + b)

2
.

(See [5] for the development of these and the more intricateM6, N6.) Applying
Corollary 2.2 with α = 1/3, p = 3, and invoking homogeneity withr = b/a, we
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find

Aλ

(
1

3
; a, b

)
< AG3(a, b) < Aµ

(
1

3
; a, b

)
for all a > b > 0,

if and only if λ ≤ 0 andµ ≥ 1. In a similar fashion, withα = 1/4 andp = 2, (2.2)
implies

Aλ

(
1

4
; a, b

)
< AG4(a, b) < Aµ

(
1

4
; a, b

)
for all a > b > 0,

if and only if λ ≤ 0 andµ ≥ 3/4. SinceA3/4(1/4; a, b) < A1(1/4; a, b) = M4(a, b),
this sharpens the known fact thatAG4(a, b) < M4(a, b). Next, withα = 1/6 and
p = 3, Corollary2.2yields

Aλ

(
1

6
; a, b

)
< AG6(a, b) < Aµ

(
1

6
; a, b

)
for all a > b > 0,

if and only ifλ ≤ 0 andµ ≥ 5/4. Finally, we note that another proof of the sharpness
of (1.1) can be obtained by applying Corollary2.2with α = 1/2 andp = 2.
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