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1. INTRODUCTION AND PRELIMINARIES

For a given interval C [0,00), a functionf : I — [0,00) is said to be multiplicatively
convex if for allr, s € I and all\ € (0,1) the inequality

(1.1) F(rI8Y) < Fr)' ()
holds. The functiory is said to be multiplicatively concave if
(1.2) FO2sY) > () f(s)

forallr,s € I and allx € (0,1). If for r # s the inequality[(1]1) (respectivelly (1.2)) is strict,
then f is said to be strictly multiplicatively convex (respectively multiplicatively concave). It
can be proved (see the paper of C.P. Niculesscl [15, Theorem 2.3]) that dontinuous, then

f is multiplicatively convex (respectively strictly multiplicatively convex) if and only if

1 (Vrs) < VI FGs)  (respectivelyf (vis) < /F(r)/(5))

forallr, s € I withr # s. A similar characterization of the continuous (strictly) multiplicatively
concave functions holds as well. In what follows, for simplicity of notation, the symbolS

and A will stand, respectively, for the unweighted harmonic, geometric and arithmetic means
of the positive numbersands, i.e.,

2rs _r+s

ot G=G(r,s)=+rs, A=Ar,s) = 5

H=H(rs) =
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2 ARPAD BARICZ

It is well-known thatH < G < A.

Fora,b,c € Candc # 0,—1,—2, ..., the Gaussian hypergeometric series is defined by
. n (a)n(b)n Tn
(1.3) oFi(a,b,c,r) := F(a,b,c,r) = ;dn'r’ = ; Wﬁ, Ir| <1,

where(a), = 1 and(a),, = a(a +1)---(a + n — 1) is the well-known Pochhammer symbol.
Recently we proved [6, Theorem 1.10] that the zero-balanced Gaussian hypergeometric function
F, defined byF(r) := 3Fi(a,b,a + b,r), for all a,b > 0 satisfies the following chain of
inequalities

(1.4) F(G(r,s)) < G(F(r),F(s)) < F1-G(l—r1-53)) <A(F(r), F(s)),

wherer, s € (0,1). We note that in 1998 R. Balasubramanian, S. Ponnusamy and M. Vuorinen
[3, Lemma 2.1] showed that the function— F'(r)/F(r) is strictly increasing o0, 1) for all

a,b > 0. Thus the functior¥" is log-convex on(0, 1), i.e.

(1.5) F(A(r,s)) < G(F(r), F(s))

holds, wherer, s € (0, 1). Because is strictly increasing o0, 1), combining [(1.4) with[(1.Jp),
we easily obtain

(1.6) F(G(r,s)) < F(A(r,s)) < G(F(r), F(s)) < A(F(r), F(s)),
forall a,b > 0 andr, s € (0,1). In [6, Theorem 1.10] we deduced that fan € (0, 1]
(1.7) F(G(r,s)) < H(F(r), F(s))

holds for allr, s € (0,z0), wherex, = 0.7153318630. .. is the unique positive root of the
equation2log(l — x) + /(1 — ) = 0. Moreover we conjectured[6, Remark 1.13] tHat|1.7)
holds for allr, s € (0, 1), which was proved recently by G.D. Anderson, M.K. Vamanamurthy,
M. Vuorinen [2, Theorem 3.7]. Using this result, ([L.7) and the (HG) inequality imply

(1.8) F(H(r,s)) < F(G(r,s)) < H(F(r), F(s)),

wherea, b € (0,1] andr, s € (0,1).
In fact, using|[(1.6) and (1].8) we have that forialk € (0, 1) the inequality

(1.9 F(M(r,s)) < M(F(r), F(s))

holds for certain conditions o b and for M being the unweighted harmonic, geometric and

arithmetic mean. Lef C R be a nondegenerate interval amfl : 1> — I be a continuous

function. We say thaf\/ is a mean on if it satisfies the following conditiomin{r, s} <

M(r,s) <max{r,s} forallr,s € I, r # s. Taking into account the inequaliti¢s ([L.6) ahd {1.8)

it is natural to ask whether the inequalify (1.9) remains true for some other means as well?
Our aim in this paper is to partially answer this question for Holder means.

2. CONVEXITY OF HYPERGEOMETRIC FUNCTIONS WITH RESPECT TO HOLDER
M EANS

Let / C R be a nondegenerate interval and I — R be a strictly monotonic continuous
function. The functionV/,, : I? — I, defined by

My (r,s) == ¢~ (Ale(r), ¢(s)))

is called the quasi-arithmetic mean associated, tahile the functiony is called a generating
function of the quasi-arithmetic meavi,, (for more details see the works of J. Aczél [1], Z.
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Dardczy [10] and J. Matkowski [11]). A functiofi: I — R is said to be convex with respect
to the meanV/,, (or M,,—convex) if for allr, s € I and all\ € (0, 1) the inequality

(2.1) FMP (r,5)) < MO (f(r), f(s))
holds, where

MM (r,s) = @7 (1= Ne(r) + Ap(s))
is the weighted version ai/,. If for » # s the inequality[(2.]1) is strict, thefi is said to be
strictly convex with respect td/,, (for more details see D. Borwein, J. Borwein, G. Fee and
R. Girgensohn([9], J. Matkowski and J. R&tz1[12],][13]). It can be proved (See [9])/tisat
(strictly) convex with respect td/,, if and only if p o f o =1 is (strictly) convex in the usual
sense onp(7). Among the quasi-arithmetic means the Holder means are of special interest.
They are associated to the functipp: (0, 00) — R, defined by

") rP, if p#0
0,(r) =
g logr, if p=0,

thus
[A(re, sP)]YP, i p#£0

M%(r,s) = Hp(ry 5) = { G(T, S), if p=0.

Our first mean result reads as follows.

Theorem 2.1.For all a,b > 0 andp € [0, 1] the hypergeometric function — F(r) :=
oF1(a,b,a+ b,r) defined b3) is convex @0, 1) with respect to the Holder meais,.

By Theorenj 2.]1, using the definition of convexity with respect to the Holder means, we get

that for all\, r, s € (0,1), a,b > 0 andp € (0, 1] the following inequality
F([(1=X)r? + As”]YP) < [(1 = N[F(r)]” + A[F(s)]7] 7

holds. Moreover, for al\, r, s € (0,1) anda, b > 0
(2.2) F(r'=2s*) < [F(r)] 7 E ()Y
i.e., the zero-balanced hypergeometric function is multiplicatively conveX an.
Proof of Theorem 2|1First assume that = 0. Then we need to prove that (2.2) holds. Using
the first inequality in[(1}4) and Theorem 2.3 due to C.P. Niculescu [15], the desired result fol-

lows. Note that in fact(2]2) can be proved using Holder’s inequality [14, Theorem 1, p. 50].
For this let us denot&, () = >_,_, dxr*. Then by the Holder inequality we have

n 1—-X\ n A
Z(dklf’\r(l Ak ) (dp ™M) < (Z dyr ) (Z dksk>
k=0

k=0
But this is equivalent to
Pn(rl_AS)\) < [Pn<r)]1_>\[Pn(S)]Au
so using the fact thatim P,(r) = F(r), we obtain immediateIZ).
Now assume that # 0. In order to establish the convexity éf with respect ta/7, we need
to show that the functiop, o F' o ¢, " is convex in the usual sense. Let us denote

fa(r) = (ppo Fop,')(r) = [F(r'/P)]P.
Settingg := 1/p > 1 we havefq(r) = [F(r?)]'/?, thus a simple computation shows that

g1 F'9) ovijg L d(log F'(r?))
(2.3) 18 F glFr )Y = Je=—g—

> 0.
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Recall that from[[3, Lemma 2.1] due to R. Balasubramanian, S. Ponnusamy and M. Vuorinen,
the functionF' is log-convex on(0, 1). On the other hand the function+— 7 is convex on
(0,1). Thus by the monotonicity of" for all A, r, s € (0, 1) we obtain

F([(1=XNr+Xs]?) < F((1 = \)r? + As?) < [F(r))' A F(sD)) .

This shows that — F(r?) is log-convex and consequently— d(log F'(r?))/dr is increasing.
From (2.3), we obtain thaf is increasing, thereforg, is increasing too as a product of two
strictly positive and increasing functions. 0J

Taking into account the above proof we note that Thedrein 2.1 may be generalized easily in
the following way. The proof of the next theorem is similar, so we omit the details.

Theorem 2.2.For all a,b > 0 andp € [0, m], wherem = 1,2, ... the function” — F(r) :=
oFi(a,b,a + b,r™) is convex on(0, 1) with respect to Holder mean#,,. In particular, the
complete elliptic integral of the first kind, defined by

/2 df m (11
w0 [ e = 3 (7).

is convex or(0, 1) with respect to mean#,, wherep < [0, 2]. In other words, for all\, r, s €
(0,1) andp € (0, 2] we have the following inequality

KL= N)r? 4+ As”]1P) < [(1 = NC(r)]” + AIC(s) P12
Moreover, for all\, r, s € (0, 1),

K (r'™2s%) < [KK(n)] A K(s))

holds, i.e., the complete elliptic integril is multiplicatively convex of0, 1).

By the proof of Theorem 3.7 due to G.D. Anderson, M.K. Vamanmurthy and M. Vuorinen
[2], we know that the function: — 1/F(x) is concave on0, 1) for all a,b € (0, 1]. This
implies that we have

(2.4) F(H(r,5)) < F((1= X+ xs) < HY(F(r), F(s)),

where\, r, s € (0,1) anda, b € (0, 1]. Here we denoted witlﬁ{(fl) (r,s) :==[(1=X)/r+X/s]7!
the weighted harmonic mean and we used the (HA) inequality between the weighted harmonic
and arithmetic means efands. We note that in fac{ (2]4) shows that the functiBns convex
on (0, 1) for all a,b € (0, 1] with respect to the HOlder medi_, .
The following result is similar to Theorem 2.2.

Theorem 2.3.1f a,b,p > 0 andm = 1,2,..., thenr — f,,(r) :== 2Fi(a,b,a+ b,r™) — 11is
convex on0, 1) with respect to the Holder meats,. In particular for m = 1 andm = 2 the
functionsf;(r) := o Fi(a,b,a + b,r) — 1 and f,(r) := 2K(r)/m — 1 are convex or{0, 1) with
respect to mean#,,, i.e. forall \,r, s € (0,1) andp > 0 one has

F([(1 =N+ As?]P) <14 [(1 = N[F(r) = 1] + A[F(s) — 17",

2k -+ < 1 a-x (2ee 1) o (2 -1) | "

™ ™

In order to prove this result we need the following lemma due to M. Biernacki and J. Krzyz
[8]. Note that this lemma is a special case of a more general lemma established by S. Ponnusamy
and M. Vuorinen([186].
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Lemma 2.4 ([8| [1€]). Let us suppose that the power serigs) = > ., a,z" andg(z) =

Y us0 Bnx™ both converge fofz| < 1, wherea,, € R and g, > 0 for all n > 0. Then the
ratio f/g is (strictly) increasing (decreasing) dif, 1) if the sequencéa,, /3, }n>o is (strictly)

increasing (decreasing).

It is worth mentioning that this lemma was used, among other things, to prove many inter-
esting inequalities for the zero-balanced Gaussian hypergeometric functions (see the papers of
R. Balasubramanian, S. Ponnusamy and M. Vuorinen([3], [16]) and for the generalized (in par-
ticular, for the modified) Bessel functions of the first kind (see the papers of A. Baricz and E.
Neumanl[4| 5, 6,17] for more details).

Proof of Theorerfi 2]3We just need to show that+— [f,,(r'/?)]? is convex on(0,1). Let us

denote
) = ()P = [F() 1.
Settingg := 1/p > 0, we gety(r) = [F(r?™) — 1]'/9. Thus a simple computation shows that
, B T,qu/mq) F(qu) _ 1 1/‘1
7(T)_m|:F(rmq)_1 .
Now takingr™? := = € (0, 1), we need only to prove that the function
zF'(x) F(z)—1]""
F(z)—1 zt/m

is strictly increasing. From Lemnja 2.4 it follows that the fuctior- = F'(xz)/(F(z) — 1) is
strictly increasing because

vF'(x) D1 Ndn " _ > nso(n + Ddpz”
Flr)—1 Y o dpa” Ym0 dnprx™
and clearly the sequenc¢e + 1)d,,,1/d,+1 = n + 1 is strictly increasing. Now sincg/q > 0,
it is enough to show that — (F'(x) — 1)/ ¥/ is increasing. We have that

d (F(x)—1 F(z)—1 1
1+1/m @ — o F () — d " — — d,x"
x ( ) zF'(x) - E nd,x - E W

dz xl/m
n>1 n>1

which is positive because by assumptiom < 1 < n andd,, > 0. O

rd

If—>m|:

3. CONVEXITY OF GENERAL POWER SERIES WITH RESPECT TO HOLDER MEANS
Let us consider the power series
(3.1) f(r)y=> " Ay (whereA, > 0 foralln > 0)

n>0
which is convergent for alt € (0, 1). In this section our aim is to generalize Theor¢gms 2.1 and
[2.3, i.e. to find conditions for the convexity ¢fwith respect to Holder means. From the proof
of Theoren] 21, it is clear that the fact thatis log-convex was sufficient foF' to be convex
with respect toH,, for p € (0, 1]. Moreover, taking into account the proof of Theorem 2.3, we
observe that the statement of this theorem holds for an arbitrary power series. Our main result
in this section is the following theorem, which generalizes Theofems 22 gnd 2.3.

Theorem 3.1. Let f be defined by (3]1)n = 1,2,..., and for alln > 0 let us denote3,, :=
(n+ 1)A,+1/A,. Then the following assertions are true:

(a) If the sequencds,, is (strictly) increasing them — f(r™) is convex on0, 1) with
respect toH,, for p € [0, m];
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(b) If the sequenceés,, — n is (strictly) increasing them — f () is convex o0, 1) with
respect toH,, for p € [0, c0);
(c) The function- — f(r™) — 1 is convex or{0, 1) with respect taH,, for p € (0, co).
Proof. (a) First assume that = 0. Then a simple application of Holder's inequality gives

the multiplicative convexity off. Now letp # 0. Then by Lemma 24, it is clear that—
f'(r)/f(r) is (strictly) increasing o0, 1). Let us denote

3(r) = (wpo fow, )(r) = [Fr™P)P.
Settingg := m/p > 1 we havep(r) = [f(r?)]™/9, thus a simple computation shows that

1qg—1 f/q) q\1m/q — @ d(log f(/rq))
(32) I = ) T
On the other hand, the function+— 79 is convex on(0, 1). Therefore becausg is strictly
increasing and log-convex, one has forall, s € (0,1), r # s

FUA =X+ As]) < F((L=A)rd+ As?) < [frO)] A f (D)

This shows that the function — f(r9) is log-convex too and consequently the function
r — d(log f(r?))/dr is increasing. From (3]2) we obtain thatis increasing, therefore’

is increasing too as a product of two strictly positive and increasing functions.

(b) Let us denot€)(r) := d(log f(r))/dr = f'(r)/f(r). Using again Lemmia 2.4, from the fact
that the sequencB,, — n is (strictly) increasing we get that

MO = (1 —r flir) ano[(n + 1) Any1 — nA,r"
(1-7r)Q(r) = (1 )f(r) = S A

is (strictly) increasing too. Thus the function— log[(1 — r)Q(r)] will be also (strictly)
increasing, i.edlog[(1 — r)Q(r)]/dr > 0 for all r € (0,1). This in turn implies that

Q) 1
Qr) —1-r
holds for allr € (0,1). Taking into accoun{ (3]2) fay := m/p > 0 we just need to show that

m . d(log f(r?)) _m

¢'(r) = E¢(T>T = E¢(T)Q(7’q) >0

> 0.

(3.3)

is strictly increasing. Now using (3.3) we get that

1 =M 00y | o 4 108(@0)
') =" r)Q(r") [ Qe + R

> 6000007 [ QU + -

which completes the proof of this part.
(c) The proof of this part is similar to the proof of Theorgm|2.3. We need to show-that
[f(r™/P) —1]7 is convex on(0, 1). Let us denoter(r) := [f(r™/?) — 1]7. Settingg := 1/p > 0
we geto(r) = [f(r®™) — 1]'/2. Thus a simple computation shows that
oy [ ][ £ 17
0=t [T
Now takingr™? := = € (0, 1), we need only to prove that the function
f'(@) ] [fla) = 1]
fly=1] [t

E

x|—>m{
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is strictly increasing. By Lemnija 3.4 itis clear that- = f'(x)/( f(x) — 1) is strictly increasing

because
zf'(z) . ZnZl nA,z" B ano(n + 1A, 2"

flz)—1 anl Az ano Ap
and clearly the sequence + 1)A,.1/A,+1 = n + 1 is strictly increasing. Finally, since
1/q > 0, itis enough to show that — (f(z) — 1)/ {/x is increasing. We have that

fﬂmg(ﬂw—l):me_ﬂﬂ;AZEZWMﬁ_%§:&w

dx xl/m m
n>1 n>1

which is positive by the assumptiongm < 1 < n andA4, > 0. 0J

As we have seen in Theorém .1, the log-convexity of the power series was crucial in proving
convexity properties with respect to Holder means. The following theorem contains sufficient
conditions for a differentiable log-convex function to be convex with respect to Holder means.

Theorem 3.2.Let f : I C [0,00) — [0, c0) be a differentiable function.

(a) If the functionf is (strictly) increasing and log-convex, thgns convex with respect to
Holder meandd,, for p € [0, 1].

(b) If the functionf is (strictly) decreasing and log-convex, théms convex with respect to
Holder meandd, for p € [1, 00). Moreover, iff is decreasing therfi is multiplicativelly
convex if and only if it is convex with respect to Holder meHpdor p € [0, o).

Proof. (a) Suppose that = 0. Then using the (AG) inequality, the monotonicity pfand the
log-convexity property, one has

Fri72s%) < F((A=Nr+As) < [ f ()
forallr,s € I and\ € (0,1). Now assume that # 0. Let us denotey(r) := [f(r/?)]? and
q:=1/p>1.Theng(r) = [f(r?)]"/? and

(3.4) g(r) = Lg(ryoe /()]

> 0.
q dr

In this case" — r7 is convex, thus
(3.5) FA =X+ As]?) < F((1 = AN)r + As?) <[] Af (s

holds for allr, s € I andX € (0, 1), which means that — f(r9) is log-convex too. Thus, by
(3.4),¢ is increasing as a product of two increasing functions.

(b) Using the same notation as in part (a&);= 1/p € (0,1] and consequently — r?is
concave. Butf is decreasing, thu$ (3.5) holds again. Now supposejthigmultiplicativelly
convex and decreasing. Foe (0, 1] we havey := 1/p > 1 andr — r? is log-concave. Thus

(3.6) FA@ =X+ 2s]7) < F((r) 76NN < [FEONF)P
holds for allr, s € I andX € (0,1). Whenp > 1,theng := 1/p € (0, 1] andr — r?is concave.
Thus using the fact that is decreasing, one has

(3.7) FA =2+ As]?) < F((1 = A)r? + As?)

< F(r) AN < OO
forall r,s € I andX € (0,1). So (3.) and[(3]7) imply that — f(r) is log-convex and,
consequentlyg is convex. Finally it is clear that the convexity gfwith respect to Holder

meang,, p € [0, co) implies the convexity of with respect td4, and this is the multiplicative
convexity. O
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The decreasing homeomorphism: (0,1) — (0, c0), defined by

m(r) = oFi(a,b,a +b,1 —1?)

T oF(a,bya+b,r?)
and other various forms of this function were studied by R. Balasubramanian, S. Ponnusamy
and M. Vuorinen([3] and also by S.L. Qiu and M. Vuorinen|[17] (see also the references therein).
In [3, Theorem 1.8], the authors proved thatdog (0,2) andb € (0,2 — a| the inequality
(3.8) m(G(r,s)) > H(m(r),m(s))
holds for allr, s € (0, 1). In [5, Corollary 4.4] we proved that in fadt (3.8) holds for alb > 0
andr,s € (0,1). Our aim in what follows is to generalizg (3.8). Recall that'in [3], in order to
prove [3.8), the authors proved that the function(0, co) — (0, o), defined by
F(e™)

F(1—et)
is convex. In order to generaliZe (B.8) we prove that in fact convex with respect to Holder
meansH,, p € [1, c0).

L(t) :=

Corollary 3.3. If a,b > 0 andp > 1, then the functiorl is convex on0, co) with respect to
Holder meandd,, i.e. forall \,r, s € (0,1) anda,b > 0, p > 1 we have

1-A A 1 w (1L 1 1
P P - ey (m<r>’m<s>) = . 9)’
wherea(r, s) = exp —HI(,A)(log(l/r),log(l/s))] and

{ (1= N)r? + AsP)]MP, i p # 0,

HW(r,s) =
P ri=Ash, ifp=0

is the weighted version df,,.

Proof. By [5, Lemma 2.12] we know that is strictly decreasing and log-convex. Thus by part
(b) of Theoren] 3]2 we get thdt is convex on(0, co) with respect to Hélder means,, for
p € [1,00). This means that

L (HD(t, 1)) < HM(L(t1), L(t2))
holds for allt;,t, > 0, A € (0,1) anda,b > 0. Now lete™ := r?> € (0,1) ande™ :=
s € (0,1), then we obtain thaL(t,) = 1/m(r), L(ts) = 1/m(s) and L (H;A)(tl,t2)> -
1/m(a(r,s)). Clearly, when\ = 1/2 andp = 1, we get thata(r,s) = G(r,s), thus the
inequality in Corollary 3.3 reduces to (B.8). O
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