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ABSTRACT. In this paper we introduce a new classH(φ, α, β) of analytic functions which is
defined by means of a Hadamard product (or convolution) of two suitably normalized analytic
functions. Several properties like, the coefficient bounds, growth and distortion theorems, radii
of starlikeness, convexity and close-to-convexity are investigated. We further consider a subor-
dination theorem, certain boundedness properties associated with partial sums, an integral trans-
form of a certain class of functions, and some integral means inequalities. Several interesting
consequnces of our main results are also pointed out.
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1. I NTRODUCTION AND PRELIMINARIES

LetA denote the class of functionsf(z) normalized byf(0) = f ′(0) − 1 = 0, and analytic
in the open unit diskU = {z; z ∈ C : |z| < 1}, thenf(z) can be expressed as

(1.1) f(z) = z +
∞∑

k=2

akz
k.

Consider the subclassT of the classA consisting of functions of the form

(1.2) f(z) = z −
∞∑

k=2

|ak|zk,
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2 R. K. RAINA AND DEEPAK BANSAL

then a functionf(z) ∈ A is said to be in the class of uniformlyβ- starlike functions of orderα
(denoted byUSF (α, β)), if

(1.3) <
{

zf ′(z)

f(z)
− α

}
> β

∣∣∣∣zf ′(z)

f(z)
− 1

∣∣∣∣ (−1 5 α < 1, β = 0; z ∈ U).

For α = 0 in (1.3), we obtain the class of uniformlyβ-starlike functions which is denoted by
USF (β). Similarly, if f(z) ∈ A satisfies

(1.4) <
{

1 +
zf ′′(z)

f ′(z)
− α

}
> β

∣∣∣∣zf ′′(z)

f ′(z)

∣∣∣∣ (−1 5 α < 1, β = 0; z ∈ U),

thenf(z) is said to be in the class of uniformlyβ-convex functions of orderα, and is denoted
by UCF (α, β). Whenα = 0 in (1.4), we obtain the class of uniformlyβ-convex functions
which is denoted byUCF (β).

The classes of uniformly convex and uniformly starlike functions have been extensively stud-
ied by Goodman ([2], [3]), Kanas and Srivastava [4], Kanas and Wisniowska [5], Ma and Minda
[8] and Ronning [10].

If f, g ∈ A (wheref(z) is given by (1.1)), andg(z) is defined by

(1.5) g(z) = z +
∞∑

k=2

bkz
k,

then their Hadamard product (or convolution)f ∗ g is defined by

(1.6) (f ∗ g)(z) := z +
∞∑

k=2

akbkz
k =: (g ∗ f)(z).

We introduce here a classH(φ, α, β) which is defined as follows:
Suppose the functionφ(z) is given by

(1.7) φ(z) = z +
∞∑

k=2

µkz
k,

whereµk = 0 (∀k ∈ N\{1}). We say thatf(z) ∈ A is inH(φ, α, β), provided that(f ∗ φ) (z) 6=
0, and

<
{

z [(f ∗ φ)(z)]′

(f ∗ φ)(z)

}
> β

∣∣∣∣z [(f ∗ φ)(z)]′

(f ∗ φ)(z)
− 1

∣∣∣∣+ α,(1.8)

(−1 5 α < 1, β = 0; z ∈ U).

Generally speaking,H(φ, α, β) consists of functionsF (z) = (f ∗ φ)(z) which are uniformly
β-starlike functions of orderα in U .We also let

(1.9) HT (φ, α, β) = H(φ, α, β) ∩ T .

Several known subclasses can be obtained from the classH(φ, α, β), by suitably choosing the
values of the arbitrary functionφ, and the parametersα andβ. We mention below some of these
subclasses ofH(φ, α, β) consisting of functionsf(z) ∈ A. We observe that

(1.10) H
{

z

(1− z)λ+1
, α, β

}
= Sλ

p (α, β) (−1 5 α < 1, β = 0, λ > −1; z ∈ U),

in which case the function z
(1−z)λ+1 is related to the Ruscheweyh derivative operatorDλf(z)

([12]) defined by

Dλf(z) =
z

(1− z)λ+1
∗ f(z) (λ > −1).
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PROPERTIES OF ANEW CLASS OFANALYTIC FUNCTIONS 3

The classSλ
p (α, β) was studied by Rosyet al. [11] and Shamset al. [13] and this class also

reduces toS(α) andK(α) which are, respectively, the familiar classes of starlike functions of
orderα (0 5 α < 1) and convex functions of orderα (0 5 α < 1) (see [15]).

Also

(1.11) H{φ(a, c, z), α, β} = S(α, β),

and in this case the functionφ(a, c, z) is related to the Carlson and Shaffer operatorL(a, c)f(z)
([1]) defined by

L(a, c)f(z) = φ(a, c, z) ∗ f(z).

The classS(α, β) was studied by Murugusundaramoorthy and Magesh [9].
Further, we let

(1.12) T Sλ
p (α, β) = Sλ

p (α, β) ∩ T ; T S(α, β) = S(α, β) ∩ T .

The object of the present paper is to investigate the coefficient estimates, distortion prop-
erties and the radii of starlikeness, convexity and close-to-convexity for the class of functions
H(φ, α, β). Further (for this class of functions), we obtain a subordination theorem, bound-
edness properties involving partial sums, properties relating to an integral transform and some
integral mean inequalities. Several corollaries depicting interesting consequences of the main
results are also mentioned.

2. COEFFICIENT ESTIMATES

We first mention a sufficient condition for the functionf(z) of the form (1.1) to belong to the
classH(φ, α, β) given by the following result which can be established easily.

Theorem 2.1. If f(z) ∈ A of the form (1.1) satisfies

(2.1)
∞∑

k=2

Bk (µk; α, β) |ak| 5 1,

where

(2.2) Bk (µk; α, β) =
{k(β + 1)− (α + β)}µk

1− α
,

for someα(−1 5 α < 1), β(β = 0) andµk = 0 (∀ k ∈ N\{1}), thenf(z) ∈ H(φ, α, β).

Our next result shows that the condition (2.1) is necessary as well for functions of the form
(1.2) to belong to the class of functionsHT (φ, α, β).

Indeed, by using (1.2), (1.6) to (1.8), and in the process lettingz → 1− along the real axis,
we arrive at the following:

Theorem 2.2.A necessary and sufficient condition forf(z) of the form (1.2) to be inHT (φ, α, β),
−1 5 α < 1, β = 0, µk = 0 (∀k ∈ N\{1}) is that

(2.3)
∞∑

k=2

Bk (µk; α, β) |ak| 5 1,

where

(2.4) Bk (µk; α, β) =
{k(β + 1)− (α + β)}µk

1− α
.

J. Inequal. Pure and Appl. Math., 9(1) (2008), Art. 22, 9 pp. http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


4 R. K. RAINA AND DEEPAK BANSAL

Corollary 2.3. Letf(z) defined by (1.2) belong to the classHT (φ, α, β), then

(2.5) |ak| 5
1

Bk(µk; α, β)
(k = 2).

The result is sharp (for eachk), for functions of the form

(2.6) fk(z) = z − 1

Bk(µk; α, β)
zk (k = 2, 3, . . . ),

whereBk(µk; α, β) is given by (2.4).

Remark 2.4. It is clear from (2.4) that if{µk}∞k=2 is a non-decreasing positive sequence, then

{Bk(µk; α, β)}∞k=2 and
{
Bk(µk;α,β)

k

}∞
k=2

would also be non-decreasing positive sequences (being

the product of two non-decreasing positive sequences).

Remark 2.5. By appealing to (1.10), we find that Theorems 2.1, 2.2 and Corollary 2.3 corre-
spond, respectively, to the results due to Rosyet al. [11, Theorems 2.1, 2.2 and Corollary 2.3].
Similarly, making use of (1.11), then Theorems 2.1, 2.2 and Corollary 2.3, respectively, give
the known theorems of Murugursundarmoorthyet al. [9, Theorems 2.1, 2.2 and Corollary 2.3].

3. GROWTH AND DISTORTION THEOREMS

In this section we state the following growth and distortion theorems for the classHT (φ, α, β).
The results follow easily, therefore, we omit the proof details.

Theorem 3.1. Let the functionf(z) defined by (1.2) be in the classHT (φ, α, β). If {µk}∞k=2 is
a positive non-decreasing sequence, then

(3.1) |z| − (1− α)

(2 + β − α)µ2

|z|2 5 |f(z)| 5 |z|+ (1− α)

(2 + β − α)µ2

|z|2 .

The equality in (3.1) is attained for the functionf(z) given by

(3.2) f(z) = z − 1− α

(2 + β − α)µ2

z2.

Theorem 3.2. Let the functionf(z) defined by (1.2) be in the classHT (φ, α, β). If {µk}∞k=2 is
a positive non-decreasing sequence, then

(3.3) 1− 2 (1− α)

(2 + β − α)µ2

|z| 5 |f ′(z)| 5 1 +
2 (1− α)

(2 + β − α)µ2

|z| .

The equality in (3.3) is attained for the functionf(z) given by (3.2).

In view of the relationships (1.10) and (1.11), Theorems 3.1 and 3.2 would yield the corre-
sponding distortion properties for the classesT Sλ

p (α, β) andT S(α, β).

4. I NTEGRAL TRANSFORM OF THE CLASS HT (φ, α, β)

Forf(z) ∈ A, we define the integral transform

(4.1) Vµ(f(z)) =

∫ 1

0

µ(t)
f(tz)

t
dt,

whereµ is a real-valued non-negative weight function normalized, so that
∫ 1

0
µ(t)dt = 1. In

particular, whenµ(t) = (1 + η)tη, η > −1 thenVµ is a known Bernardi integral operator. On
the other hand, if

(4.2) µ(t) =
(1 + η)δ

Γ(δ)
tη
(

log
1

t

)δ−1

(η > −1, δ > 0),
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thenVµ becomes the Komatu integral operator (see [6]).
We first show that the classHT (φ, α, β) is closed underVµ(f). By applying (1.2), (4.1) and

(4.2), we straightforwardly arrive at the following result.

Theorem 4.1.Letf(z) ∈ HT (φ, α, β), thenVµ(f(z)) ∈ HT (φ, α, β).

Following the usual methods of derivation, we can prove the following results:

Theorem 4.2.Let the functionf(z) defined by (1.2) be in the classHT (φ, α, β). ThenVµ(f(z))
is starlike of orderσ(0 5 σ < 1) in |z| < r1, where

(4.3) r1 = inf
k

Bk(µk; α, β)(1− σ)

(k − σ)
(

η+1
η+k

)δ


1

k−1

(k = 2, η > −1, δ > 0; z ∈ U),

andBk(µk; α, β) is given by (2.4). The result is sharp for the functionf(z) given by (3.2).

Theorem 4.3.Let the functionf(z) defined by (1.2) be in the classHT (φ, α, β). ThenVµ(f(z))
is convex of orderσ(0 5 σ < 1) in |z| < r2, where

(4.4) |z| < r2 = inf
k

Bk(µk; α, β)(1− σ)

k (k − σ)
(

η+1
η+k

)δ


1

k−1

(k = 2, η > −1, δ > 0; z ∈ U),

andBk(µk; α, β) is given by (2.4).

Theorem 4.4.Let the functionf(z) defined by (1.2) be in the classHT (φ, α, β). ThenVµ(f(z))
is close-to-convex of orderσ(0 5 σ < 1) in |z| < r3, where

(4.5) r3 = inf
k

Bk(µk; α, β)(1− σ)

k
(

η+1
η+k

)δ


1

k−1

(k = 2, η > −1, δ > 0; z ∈ U),

andBk(µk; α, β) is given by (2.4).

Remark 4.5. On choosing the arbitrary functionφ(z), suitably in accordance with the subclass
defined by (1.10), Theorems 4.1, 4.2 and 4.3, respectively, give the results due to Shamset al.
[13, Theorems 1, 2 and 3]. Also, making use of (1.11), Theorems 4.1, 4.2, 4.3 and 4.4 yield the
corresponding results for the classT S(α, β).

5. SUBORDINATION THEOREM

Before stating and proving our subordination theorem for the classH(φ, α, β), we need the
following definitions and a lemma due to Wilf [16].

Definition 5.1. For two functionsf andg analytic inU , we say that the functionf is subordinate
to g in U (denoted byf ≺ g), if there exists a Schwarz functionw(z), analytic inU with
w(0) = 0 and|w(z)| < |z| < 1 (z ∈ U), such thatf(z) = g(w(z)).

Definition 5.2. A sequence{bk}∞k=1 of complex numbers is called a subordination factor se-
quence if wheneverf(z) is analytic, univalent and convex inU , then

(5.1)
∞∑

k=1

bkakz
k ≺ f(z) (z ∈ U , a1 = 1).
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Lemma 5.1. The sequence{bk}∞k=1 is a subordinating factor sequence if and if only

(5.2) <

{
1 + 2

∞∑
k=1

bkz
k

}
> 0, (z ∈ U).

Theorem 5.2. Let f(z) of the form (1.1) satisfy the coefficient inequality (2.1), and〈µk〉∞k=2 be
a non-decreasing sequence, then

(2 + β − α) µ2

2 {(2 + β − α) µ2 + (1− α)}
(f ∗ g)(z) ≺ g(z),(5.3)

(−1 5 α < 1, β = 0, z ∈ U , µk = 0 (∀k ∈ N\{1}))

for every functiong(z) ∈ K (class of convex functions). In particular:

(5.4) <{f(z)} >
−{(2 + β − α) µ2 + (1− α)}

(2 + β − α) µ2

(z ∈ U) .

The constant factor

(5.5)
(2 + β − α) µ2

2 {(2 + β − α) µ2 + (1− α)}
,

in the subordination result (5.3) cannot be replaced by any larger one.

Proof. Let f(z) defined by (1.1) satisfy the coefficient inequality (2.1). In view of (1.5) and
Definition 5.2, the subordination (5.3) of our theorem will hold true if the sequence

(5.6)

{
(2 + β − α) µ2

2 {(2 + β − α) µ2 + (1− α)}
ak

}∞

k=1

(a1 = 1),

is a subordinating factor sequence which by virtue Lemma 5.1 is equivalent to the inequality

(5.7) <

(
1 +

∞∑
k=1

(2 + β − α) µ2

{(2 + β − α) µ2 + (1− α)}
akz

k

)
> 0 (z ∈ U).

In view of (2.1) and when|z| = r (0 < r < 1), we obtain

<

(
1 +

∞∑
k=1

(2 + β − α) µ2

{(2 + β − α) µ2 + (1− α)}
akz

k

)

= 1− (2 + β − α) µ2

{(2 + β − α) µ2 + (1− α)}
r

−
∞∑

k=2

(1− α)

{(2 + β − α) µ2 + (1− α)}
|ak|r > 0.

This evidently establishes the inequality (5.7), and consequently the subordination relation (5.3)
of Theorem 5.2 is proved. The assertion (5.4) follows readily from (5.3) when the functiong(z)
is selected as

g(z) =
z

1− z
= z +

∞∑
k=2

zk.

The sharpness of the multiplying factor in (5.3) can be established by considering a function
h(z) defined by

h(z) = z − 1− α

(2 + β − α) µ2

z2,
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which belongs to the classHT (φ, α, β). Using (5.3), we infer that

(5.8)
(2 + β − α) µ2

2 {(2 + β − α) µ2 + (1− α)}
h(z) ≺ z

1− z
,

and it follows that

(5.9) inf
|z|51

{
<
(

(2 + β − α) µ2

2 {(2 + β − α) µ2 + (1− α)}
h(z)

)}
= −1

2
,

which completes the proof of Theorem 5.2. �

If we choose the sequenceµk appropriately by comparing (1.7) with (1.10) and (1.11), we
can deduce additional subordination results from Theorem 5.2.

6. PARTIAL SUMS

In this section we investigate the ratio of real parts of functions involving (1.2) and its se-
quence of partial sums defined by

(6.1) f1(z) = z; and fN(z) = z −
N∑

k=2

|ak| zk (∀k ∈ N\{1}),

and determine sharp lower bounds for<{f(z)/fN(z)} , <{fN(z)/f(z)} , <{f ′(z)/f ′N(z)}
and<{f ′N(z)/f ′(z)} .

Theorem 6.1.Letf(z) of the form (1.2) belong toHT (φ, α, β), and〈µk〉∞k=2 be a non-decreasing

sequence such thatµ2 = 1−α
2+β−α

(
0 < 1−α

2+β−α
< 1;−1 5 α < 1, β = 0

)
, then

(6.2) <
(

f(z)

fN(z)

)
= 1− 1

BN+1(µN+1; α, β)

and

(6.3) <
(

fN(z)

f(z)

)
=

BN+1(µN+1; α, β)

BN+1(µN+1; α, β) + 1
,

whereBN+1(µN+1; α, β) is given by (2.4). The results are sharp for everyN , with the extremal
functions given by

(6.4) f(z) = z − 1

BN+1(µN+1; α, β)
zN+1 (N ∈ N\{1}).

Proof. In order to prove (6.2), it is sufficient to show that

(6.5) BN+1(µN+1; α, β)

[
f(z)

fN(z)
−
(

1− 1

BN+1(µN+1; α, β)

)]
≺ 1 + z

1− z
(z ∈ U).

We can write

BN+1(µN+1; α, β)


1−

∞∑
k=2

|ak| zk−1

1−
N∑

k=2

|ak| zk−1

−
(

1− 1

BN+1(µN+1; α, β)

) =
1 + w(z)

1− w(z)
.

J. Inequal. Pure and Appl. Math., 9(1) (2008), Art. 22, 9 pp. http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


8 R. K. RAINA AND DEEPAK BANSAL

Obviouslyw(0) = 0, and

|w(z)| 5
BN+1(µN+1; α, β)

∞∑
k=N+1

|ak|

2− 2
N∑

k=2

|ak| − BN+1(µN+1; α, β)
∞∑

k=N+1

|ak|
,

which is less than one if and only if

(6.6)
N∑

k=2

|ak|+ BN+1(µN+1; α, β)
∞∑

k=N+1

|ak| 5 1.

In view of (2.3), this is equivalent to showing that

(6.7)
N∑

k=2

{Bk(µk; α, β)− 1} |ak|+
∞∑

k=N+1

{Bk(µk; α, β)− BN+1(µN+1; α, β)} |ak| = 0.

We observe that the first term of the first series in (6.7) is positive whenµ2 = 1−α
2+β−α

, which
is true (in view of the hypothesis). Now, since{Bk(µk; α, β)}∞k=2 is a non-decreasing sequence
(see Remark 2.4), therefore, all the other terms in the first series are positive. Also, the first term
of the second series in (6.7) vanishes, and all other terms of this series also remain positive.
Thus, the inequality (6.7) holds true. This completes the proof of (6.2). Finally, it can be
verified that the equality in (6.2) is attained for the function given by (6.4) when,z = re2πi/N

andr → 1−.
The proof of (6.3) is similar to (6.2), and is hence omitted. �

Similarly, we can establish the following theorem.

Theorem 6.2.Letf(z) of the form (1.2) belong toHT (φ, α, β), and〈µk〉∞k=2 be a non-decreasing

sequence such thatµ2 = 2(1−α)
2+β−α

(
0 < 1−α

2+β−α
< 1;−1 5 α < 1, β = 0

)
, then

(6.8) <
(

f ′(z)

f ′N(z)

)
= 1− N + 1

BN+1(µN+1; α, β)

and

(6.9) <
(

f ′N(z)

f ′(z)

)
=

BN+1(µN+1; α, β)

N + 1 + BN+1(µN+1; α, β)
,

whereBN+1(µN+1; α, β) is given by (2.4). The results are sharp for everyN , with the extremal
functions given by (6.4).

Making use of (1.10) to (1.12), then Theorems 6.1 and 6.2 would yield the corresponding
results for the classesT Sλ

p (α, β) andT S(α, β).

7. I NTEGRAL M EANS I NEQUALITIES

The following subordination result due to Littlewood [7] will be required in our investigation.

Lemma 7.1. If f(z) andg(z) are analytic inU with f(z) ≺ g(z), then

(7.1)
∫ 2π

0

∣∣f(reiθ)
∣∣µdθ 5

∫ 2π

0

∣∣g(reiθ)
∣∣µdθ,

whereµ > 0, z = reiθ and0 < r < 1.
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Application of Lemma 7.1 for functionsf(z) in the classHT (φ, α, β) gives the following
result using known procedures.

Theorem 7.2. Let µ > 0. If f(z) ∈ HT (φ, α, β) is given by (1.2), and{µk}∞k=2, is a non-
decreasing sequence, then, forz = reiθ (0 < r < 1):

(7.2)
∫ 2π

0

∣∣f(reiθ)
∣∣µdθ 5

∫ 2π

0

∣∣f1(re
iθ)
∣∣µdθ,

where

(7.3) f1(z) = z − (1− α)

(2 + β − α)µ2

z2.

We conclude this paper by observing that several integral means inequalities can be deduced
from Theorem 7.2 in view of the relationships (1.10) and (1.11).
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