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ABSTRACT. In this paper we restrict ourselves to the case when conics are circles one com-
pletely inside of the other. Certain inequalities concerning bicentric quadrilaterals, hexagons and
octagons in connection with Poncelet’s closure theorem are established.
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1. INTRODUCTION

A polygon which is both chordal and tangential is briefly called a bicentric polygon. The
following notation will be used.

If A;--- A, isconsidered to be a bicentriegon, then its incircle is denoted lay;, circum-
circle by, radius ofC by r, radius ofC, by R, center ofC; by I, center ofC; by O, distance
between/ andO by d.

The first person who was concerned with bicentric polygons was the German mathematician
Nicolaus Fuss (1755-1826). He found th@ is the incircle andC; the circumcircle of a
bicentric quadrilaterali; A, A3 A, iff

(1.1) (R* — d?)* = 2r*(R* + d°),

(see[4]). The problem of finding this relation has been mentioned in [3] as one of 100 great
problems of elementary mathematics.

Fuss also found the corresponding relations (conditions) for bicentric pentagon, hexagon,
heptagon and octagon [5]. For bicentric hexagons and octagons these relations are

(1.2) 3p'qt = 20’ (VP + ¢°) = r'(p® — ¢°)?
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Figure 1.1 Figure 1.2

and
(1.3) (0 + ¢*) — ¢ = 16p" ¢ r (p? — r?) (¢ — 1),
wherep =R+ d,q= R — d.

The very remarkable theorem concerning bicentric polygons was given by the French math-
ematician Poncelet (1788-1867). This theorem is knowPoseelet’s closure theorerfkor the
case when conics are circles, one inside the other, this theorem can be stated as follows:

If there is one bicentrie-gon whose incircle i€'; and circumcircle’s, then there are infin-
itely many bicentric:-gons whose incircle i€, and circumcircle is”;. For every point?; on
Cs there are point$, ..., P, on (5 such thatP,; - - - P, are bicentrice-gons whose incircle is
C; and circumcircle i€5.

Although the famous Poncelet’s closure theorem dates from the nineteenth century, many
mathematicians have been working on a number of problems in connection with it. Many
contributions have been made, and much interesting information can be found concerning it in
the references [1] and|[6].

An important role in the following will have the least and the largest tangent that can be
drawn fromCj to C;. As can be seen from Figure 1.2, the following holds

(1.4) tw =/ (R—d)2—12, ty =+/(R+d)?—12

2. CERTAIN INEQUALITIES CONCERNING BICENTRIC QUADRILATERALS

Let A, A; A3 A, be any given bicentric quadrilateral whose incircl€isand circumcircle’s
and let

(21) tl + ti+1 = ’AiAi+1’, Z = 1, 2, 3, 4

(Indices are calculated modulo 4.) [ [8, Theorem 3.1 and Theorem 3.2] it is proven that the
following hold

(2.2) tits = toty = 17,
and
(2.3) tity + tots + taty + tut; = 2(R* — d?).
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Reversely, ift1, to, t3, t4 are such thaf (212) and (2.3) hold, then there is a bicentric quadrilateral
such that[(2]1) holds.

Theorem 2.1. The tangent-lengths, ¢», t3, t4 given by(2.1) satisfy the following inequalities

(2.4) 2 <ty +t3 <tp +tu,

(2.5) 2r <ty +ty <ty + tar,

(26) 47’§t1+t2+t3+t4§47"m,
(2.7) 4r? <+t + 15+t <A(RP+d* —1r?),
and

(2.8) 2k ek 2 2k > 42 Ee N

The equalities hold only if = 0.

Proof. First let us remark that,,t,; = r? since there is a bicentric quadrilateral as shown in
Figure 2.1. Now, leC denote a circle whose diametertjs + t,, (Figure 2.2). Then for each
t;, i=1,2,3,4, sincet,, <t; <ty there are point§) and R on C' such that

(2.9) ti = |PQ|, tio=|PR]|,

where| PQ| + |PR| = |QR]. In this connection let us remark that the power of the cié¢lat
Pist,ty. Therefored PQ||PR| = tta.

Figure 2.1 Figure 2.2

Obviouslyt; + t;1o < t,, + tp Sincet,, + t); is a diameter ofC. Also it is clear that
ti +tiio > 2r sincer? =t tay.

This proves[(24) andl (2.5).
In the proof that[(2J6) holds we shall use the relations
—d d
(2.10) PR ¢ fi+d

R+d M~ R-4d
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It is easy to show that each of the above relations is equivalent to the Fuss ré¢lation (1.1). So, for
the first of them we can write

R—d\?
(R—d)? —r*=r? <R——|—d>
(R2 —d2)2 —TQ(R+d)2 _ 7“2(R— d)2
(R* — d*)* = 2r*(R* + d°).
The proof that[(2J6) holds can be written as
2r + 2r <ty +t3 + 1y + t4,
bty b+t < 2ty +tag) = 2r (B2 4 BED) = gy B2

R+d R2—d?-
The proof that[(2]7) holds is as follows.
Since2r < t; + t3, 2r < ty + t4, we have

4r? <2412 4 2t0ts,  Ar? <342 4 2oty
or, SiNCE2t 1t = 2tot, = 212,
2r <tl+13, 2r* <t5 4+t

Thus,4r? < 2 + 3 + 12 + 12.
Fromt, +t3 < t,, + tar, to +t4 < t,, + t)s it follows that

< +15, GB+B<E 4+,
since2t ts = 2tyty = 2t,,ty. Thus, we obtain
4+t 15+t < 2(82, +15)),

wheret? +t2, = (R—d)? —r*+ (R+d)? —r* = 2(R* + d* — r?).
In the same way it can be proved that {2.8) holds. So, starting frort ¢, + ¢3, since
25tk = 2r?*  we can write

2r* <t} + 13,
drt <t +ty+ 2t or2rt <t + 15

and so on.
Starting fromt; + t3 < t,, + t), it can be written

th+ 13 <t +13,,
t+t3 <th +ty,
and so on.

Sincet,, = ty; only if d = 0, it is clear that the relations (2.4) - (2.8) become equalities only
if d =0. Thus, ifd # 0, then in the above relations instead<ofve may put<.

Theorenj 2.]L is thus proved. O
Corollary 2.2. The following holds
4
4 1 4 R*+d?
: - < < 2. '
(2.11) T_Zti_r R? — d?

1 1
Lol _htls bty 2r 2
tl t3 tltg 7’2 _7”2 T
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Fromt, + t3 < t,, + t it follows thati + % <L+ i since

1 1 4ty 1 1 tptty
t1 t3 r2 7 t,  tu rz
O
Corollary 2.3. Leta =t +ty, b =ty +t3,c =t3+t4,d =ty + t;.Then
R2 _ 2
(2.12) 8r§a+b+c+d§8r-R2—+dQ.
Corollary 2.4. Leta, b, c,d be as in Corollary 2.3. Then
(2.13) YRP—d*+2r*) <a® +b* + 2+ d® < 4(3R* — 2r?).
Proof. Using relation|[(Z.]3) we can write
A+ 0+ + =20t + 5+t +t]) + AR — dP).
Now, using relationd (2] 7) we can write relatiops (2.13). O
Corollary 2.5. The following holds
(2.14) 2rt + d? < R* < 2r% + d? + 2rd.
Proof. Sincet; + t3 > 2r, ty + t4 > 2r, we can write
(tr + t3)(t2 + ta) > 417,
tity + toty + taty + taty > 4r?
2(R* — d*) > 4r?,
R? — @ > 2r2.
The fact thatR? < 272 + d? + 2rd is clear from the quadratic function
f(d) = d* 4 2rd + R* — 2r°.
If d =0, thenf(d) =0, butifd > 0, thenf(d) > 0. O

Remark 2.6. It may be interesting that relations (2/14) can be obtained directly from Fuss’
relation [1.1). It was done by L. Fejes Toth in[11]. Namely, relatjon](1.1) implies

(2.15) &P =r®+ R*— rV/r? +4R?,
so the left side inequality of (Z.14) becomes equivalertto< R?* or
(2.16) rv2 < R.
The right side of[(2.7]4) is equivalent to (quadratic polynomial inequalitf) in
d>—r+vVR2—12

or by using [(2.1b), after some simple computationg] to {2.16), again.

Concerning the sigrt in the relations][(2.11) -f (2.14), it is clear that in the case when0,
that is, whent,,, # t,, then instead o£ may be puk.
In connection with Theorem 3.1, the following theorem is of some interest.
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Theorem 2.7.LetP = PP, P3P, and(Q = Q1Q-Q3Q4 be axially symmetric bicentric quadri-
laterals whose incircle i€); and circumcircleC, (Figure 2.3). Denote bgp,, and2p,, respec-
tively the perimeters @P and(. Then for every bicentric quadrilateral = A; A, A3 A, whose
incircle is C; and circumcircleC, it holds that

4

(2.17) Pm <Y i < pu,

=1

wheret; + t;11 = |A;Aiq|, 1 = 1,2,3,4. Also, ifd # 0, thenp,, < py; and

4 4
(2.18) D ti=pu it A=P Y ti=py, iff A=Q.
i=1 =1

Proof. First we see that
(219) Pm = tm + 2r + tM» Pm = 2(51 + 53)7
wherer = |P,H| and

(2.20) tm = |PIG| =/ (R—d)> =12, ty =|PH|=/(R+d)?—12

(221)  h=|EQ|=VR - (r+dP i5=|FQs| =R —(r—d>

Figure 2.3 Figure 2.4

According to Theorem 3.3 ir_[8], the tangent lengthsts, t, can be expressed by as
follows:

(R2 - dz)tl ++vD r? r2
2.22 ty = P
( ) 2 7”2 + t% ) 3 tl y 4 2,
where
(223) D = (R2 _ d2)2t% + 7,,2(7,,2 + t%>2

In this connection let us remark that for every paiton Cs there is a tangertt drawn from
Cs to ¢ (Figure 2.4). Ift, is given, then quadrilateral; A, A3 A4 is completely determined by
t1, andt,, ts, t4, can be calculated using expressidns (R.22).
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Let the sume:l t;, wheret,, t3, t, are expressed by, be denoted by(¢;). It can be easily
found that%s(tl) = 0 can be written as

(2 — [t — 2(R* — d*> — )2 + '] = 0,
from which it follows that
(=7 (=8, ()s=15,
wheret, andi; are given by[(2.21). In this connection let us remark that
+/(R2 — d2 —12)2 — r4 = +2dr
since, using Fuss’ relatiop (1.1), we can write
(R2 42 7a2)2 P - (R2 _ d2)2 _ 2(R2 _ dz)r2
=23 (R* + d*) — 2(R* — d&*)r* = 4d°r”.

The part of the expressio(%f;s(tl) important for discussion can be expressed as
t1—2(R* — d* —rH2 +r* +2(t3 — r)[t? — (R* — d* — r?)].
For brevity, let the above expression be denoted'fiy). It is easy to find that

(2.24) S(r)y=—-R*+2r* +d*> < 0,
(2.25) S(ty) = 2dr > 0,
(2.26) S(t3) = (R* — 2r* — d*> — 2rd)(—2dr) > 0,

where the relations (2.14) are used.
In this connection let us remark that by Theorem 3.3in [8] the following holds:

4
if £, = r andt,, t, t4 are given by[(2.22), theli t = par,

=1

4
if ¢, = £, andt,, t5, t, are given by[(Z.22), theli t = D,

=1

4
if t, = {3 andt,, t5, t, are given by[(Z.22), theli ti = Dim.
=1

Theorenj 2.]7 is thus proved. O

Corollary 2.8. Let A be as in Theorefn 2.7, that id,is any given bicentric quadrilateral whose
incircle is C; and circumcircleC,. Then

area of() < area ofA < area of P.
Proof. From [2.17) it follows that
(227) TDm S T’(tl + t2 —+ t3 + t4) S D -

Using relations[(2.22) and denoting the areadoby J(t¢,), the inequalities[(2.27) can be
written as

J(t) < J(t1) < J(tm),
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where

t+ —+
Ty 24 12 (R? — d)t, + VD

2 2 g2 2(,.2 2
J(t) = ( 2 (R*—d®)t; +vVD LT (r* +t7) > '
Since, according to Theorem 3.31in [8], we have
J(tm) = J(r) = J(tm),
‘]({1) - ‘](tA3)7
the graph of/(¢,) is like that shown in Figure 2.5.

JFL)
4
J(t.)
J() .
| | |
| | |
| | |
| | |
+— % > t
@) t, t r f, t, 1
Figure 2.5

Of course,J (t,,) = r(ty, + 2r + tar), J(ty) = 2r(t; + 15). Let us remark that, = #5. (See
Figure 2.3.)

Corollary 2.9. The following holds

o 4
FEPoh

=1

| —

< v
— 2

<+~
.

Proof. Sincetts; = tot, = 2, we have

24: 1 titots + botgty + tslaly + tataly b+ ta+ts+ 1y

2.28 = =
( ) t; t1t2t3t4 T2

<

i=1

From the proof it is clear that

4 4
;= maximum (minimum) iff E t; = maximum (minimum).
i=1 i=1

Corollary 2.10. The following holds

4
o — AR = d®) <> 7 < piy — AR — ).
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Proof. Since(t; + ty +ts + t4)> = 3.1, 12 + 4(R? — d?), we have

(2

4
pa, <) B4R - d*) < pi,
=1

From the proof it is clear that

4 4
> 7 = maximum (minimum) iff > " ¢; = maximum (minimum).
=1

=1

Corollary 2.11. When the arithmetic meafi(¢,, 5, t3, t4) is maximum, then the harmonic mean
H(tq,1s,t3,t4) is minimum and vice versa.

Proof. From [2.28) it follows that
A<t17 t27 t37 t4) : H<t17 t27 t37 t4) - T2'

Corollary 2.12. Lett; be given such that,, < t; < t;,. Then the equation
J(t)J(z) = J(tm)J (t))
has four positive roots, =, x3, 4 and we have
T1T9 + ToTy + D31y + 247, = 2(R? — d?), 11107374 = 77

Proof. There is a bicentric quadrilateral; X, X5;.X, whose incircle ig”; and circumcircleC,
such that

area ofA, Ay A3 Ay - area of X, Xo X3 X, = J(t,,)J (1),
Ti+ Tit1 = |XiXi+1|7 L= ]-7 2a 374
O

In connection with the surty + ¢4 + ¢4 + t}, wherev is a real number, the following theorem
will be proved.

Theorem 2.13.If there is a bicentric quadrilateral whose tangent lengths@are,, ts, t4, then
there is a bicentric quadrilateral whose tangent lengths gre?, ¢, ¢}, wherev may be any
given real number.

Proof. Let A = A;A; A3 A, be a bicentric quadrilateral whose incircle(s and circumcircle
Cy and |et|AZAH_1| =t; + tiy1, 1=1,2,3,4. Then

(2.29) Ut = ot = (rv)2
According to what we said in connection with the relatidns](2.2) (2.3) there is a bicentric
quadrilaterald® = A AL A% A" such that

AP AN =y i =1,2,3,4.
Let its incircle and circumcircle be denoted respectivelycéﬁ) andCé“) and let
r, = radius ofo”),
R, = radius ofCé”),
d, = distance between the centerscdf’ andCL?.
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From [2.29) we see that

(2.30) Ty =1

In order to obtaink, andd, we shall use relations

(2.31) Ety 4+ oty + 15t + 15ty = 2(R2 — d2),
(2.32) (R} — d3)* = 2r3(R; + d3),

where the second is Fuss’ relation. If, for brevity, the left-hand sidg of|(2.31) is denoted by
we can write

S 2 2 57 2/ P2 2
5 :Rv_dw Z ZQTU(Rv+dv)

from which follows that

2 4 2 2 _ 4 2
(2.33) R, = VS AsTy d, = VT

N 4r, ’ 4r,

Theorenj 2.13 is thus proved. O
Before we state some of its corollaries here are some examples.

Example 2.1.1f v = 0, thens = 4,r, = 1, R, = v/2,d, = 0.

Example 2.2.1f v = —1, thens = 2228 . 1 p — B g — 4

Corollary 2.14. The following holds

4
2(t1,v + t3,v) S Zt;) S tm,v + tM,v + 2TU7
i=1

where
t?n,v = (RU - dv)2 - 7“3, t?wﬂ; = (Rv + dv)2 - qujy
i, =R —(dy+1,)°, 5,=R—(dy—1,)°
This corollary is analogous to Theorém|2.7. (See (2.17).)
Corollary 2.15. The following holds
2ry <t 4+ t5 <tpmo +tare
QTU S t12} + tZ S tm,v + tM,v
R+ d?
R — &

The proof is analogous to the proof that {2.4) —2.6) hold. We can imagine that in Figure 2.2
instead oft;, t; 12, tm, tar, 7 there arey, 7, o, ty v, tar,es 7o

Ary <tV 418+ 15 + 19 < 4r,

Corollary 2.16. The following holds
(2.34) A, 85, 88, 15) - H(E, 83,15, 85) = 7.
This corollary is analogous to Corollgry 2]11.
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Theorem 2.17.Each of the following six sums is maximum (minimum) iff the @j@l t; is
maximum (minimum).

4 4 4 4 4
a) ) t, b) Zﬂ o)t A 7 et H
=1 =1 =1 =1 =1

In other words,
4

(2.35) 28 +15) <D 0 <ty + 2V 15, v=2,-2,3,-3,4,—4,
=1

wheret,,, tir, t1, t3 are given by(2.20)and (2.21)
Proof. a) It holds

(ty 4ty +t3 + tq)? Zt2+4 4?).

b) Sincet,t; = t2t4 = r2, we can write

P2+ + 2 +12) B+t

2 __ 1 2
Zt -
r8 rd

c) From
(t1 +ta+t3+ t4)3 =(t; +ta+1t3+ t4)2(t1 + ity + i3+ 1)

or
(Zt) (12 + 62 412+ 12+ 4(R2 — 2+ r2)|(ty + by + L3 + ty)

follows

(t1 + tz + t3 + t4)[<t1 + tz + t3 + t4)2 - 6(R2 - dz) — 37”2] = Zt?

d) It holds
4
S = t 413 + 13 +t§1.
i=1 Z TG
e) From
4 2 4 4
(o) = Soeten (S ean).
=1 =1 =1
since
4 4
(2.36) (Z titi+1> Z 22, + 2r? (Z t?) + 47t
=1 =1
we get
4 4 2
> ot = (Zt?) + 472 (Zt > — d?)? + 4",
=1 =1
f) It holds
4
S = ti‘+t§+t§+t§.
=1 Z TS
Theorenm 2.17 is proved. O
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In connection with b), d), f) in this theorem let us remark that
4 1 4 t k
Y- (w)
It is easy to see that this is equivalent to
A g, U, 87) - H(tY, 85, 5, 13) = r™".
Corollary 2.18. Let f;(t1), i = 1,2, 3,4, be the functions given by

7,.2 7“2

filth) =t,  folt) =t2,  f3(th) = o fath) = i

wheret, is expressed i2.22) Then each of the following two equations

d o d — .,
(2.37) d—tl;ﬁ-(tl)—o, d—tl;fi(tl)—(), k=234

has in the intervalt,,, ¢ ;] the same solutions,, ,, r, s, t; given by(@.20)and (2.21)

Thus, the graph of the functiofi(t,) = Y7, f¥(t,) is like the graph of the functior(t,)
shown in Figure 2.5.
If f(¢t;) andg(t;) are polynomials which respectively correspond to the equations given by

(2:37), thenf (t1)g(t1).
Remark 2.19. We conjecture that Corollafy 2.[18 is valid for every real numbex 0.

Corollary 2.20. 3°7_, 22 | is minimum wher}__, ¢, is maximum and vice versa. In other
words, the following holds

4r2(R? — 2 + d?) <th 2 <AR? - - d?)?,

where
2?4+ 57 i = 4r?(R? — 1 + dP),
B8 + 155 + 13 + 158 = 4R = — d*)".

Proof. From [2.36), sinc& ", t;t;11 = 2(R? — d?), it follows that

4
4(R* - — 47! —Ztl 7+ 20 (Zt?) :
i=1

In this connection let us remark that from
4r3(R? — 1 + d*) < A(R? —r* — d?)%,
using Fuss’ relatior] (1I}1), we get the following inequality
(2.38) R* < 2r% + 3d*.
(Cf. with (2.14). The equality holds only if = 0.)
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Remark 2.21. W. J. Blundon and R. H. Eddy in [2] have proved that for semiperimetar
bicentric polygons, the following inequalities hold

s<r+4+vVr24+4R2, s> 8r <\/T2—|—4R2—7’)7

and two other inequalities in (Both inequalities are based upén (2.16) stated in Renark 2.6.)
Inequalities[(2.38), using (2.115) stated in Renjark 2.6, can also be proved.

3. CERTAIN INEQUALITIES CONCERNING BICENTRIC HEXAGONS

Let now, in this section(; andC;, be given circles such that there is a bicentric hexagon
whose incircle i”; and circumcircle’, and let

r = radius ofC;, R = radius ofC5,
d = distance between centers@f and(Cs,

(3.1) tw=(R—d? 12, ty=+(R+d?—r12

We shall use the following results given in [9, Theorem 1-2].
Let A = A, --- Ag be any given bicentric hexagon whose incircl€isand circumcircle’s
and let

(3.2) ti+tivr = |AiAa|, i=1,...,6.

Then

(3.3) titg + tgts + tsty = 12,

(3.4) toty + tatg + toto = 12

and

(3.5) tity = tots = tstg = h,

where

(3.6) h = tmta.

If t; is given, then,, ..., ts are given by

(3.7) t3:%+ (3)2—6, tg,:%,

(3.8) b=t LT, =g

where

(3.9) . (r‘; 2— h2)t1’ _ h%(r? + t%)
r2t? + h? r2t? + h?

Thus, for every; such that,, < t; < t,, there is a bicentric hexagon whose tangent lengths
arety, ts, ..., ts, Wherety, ... ts are given by[(3]7) and (3.8).
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Theorem 3.1. The following results hold

(3.10) IWh <ti+tivg <tm—+tyu, i=1,23
6
(3.11) 6Vh <> "t < B(tm + )
=1
and
6
(3.12) 6h <) 17 <6(R*+d* — 1"+ ).

=1
Proof. Analogous to the proof of Theorem 2.1. (Here verticksand A, ; are opposite and
instead ofr? we haveh.) O

Theorem 3.2. The following result holds
(3.13) r? > 3h,
wherer? = 3h only ifd = 0.

Proof. Since from[(3.b) we have

h h h
3.14 to=—, ty=—, teg=—
( ) 2 t5 ) 4 tl ) 6 t3’
the relation[(3.4) can be written as
2
(315) tl + t3 + t5 - (%) t1t3t5.

Using this relation and relatiof (2.4) we can write

2
t3 + 15 = (E) titsts — ty,

ti(ts +ts5) + tats = r°,
from which follows that
(3.16) ts +t5 =a, tsts =0,
wherea andb are given by[(39). Thus, we have the equation
t3+£:a or t3—atz+b=0.
Let the discriminant of the above square equatiofy ine denoted by). Then we can write
(3.17) D = —4h*r?] + [(r* — h*)?* — 4h* — 4R*r*t; — 4h*r* > 0.
Now, the discriminant of the corresponding quadratic equatidgh isgiven by
Dy = [(r* — h?)* — 4h* — 4h*r"® — 64h°r".
SinceD; > 0 must hold, we have the following inequality
(r* — B2 — 4h* — 4R*r* — 8h%r? > 0,
which can be written as
(r* — 3n)(r* + h) > 0.
Thus,r? — 3h > 0.
If d =0, thenr = Rcos30° = %3, tm =ty = Rsin30° = % andr? = t,,ta.
Theorenj 3.2 is proved. O
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In proving this theorem we also have proved that for eversuch that,, < ¢t; < t,, the
inequality [3.1F) holds.

It may be of some interest to note that Theofem 3.2 can be readily proved using a connection
between arithmetic and harmonic means. Namely, starting from

A(ty,ts,ts) > H(ty,ts,t5),

we can write
t1tg + tats + tst
(t1—|—t3—|—t5)-13 35 5129
t1tsts

or, SiNCetts + tsts + tsty = 12,

titst
(3.18) >0, 195
ty +1t3+ 15
Also we have that the relatioh (3]15) can be written as
t t t
(3.19) p2opr Bt
tytsts

Now, using relationd (3.18) and (3]19) we can write

litsts o(n2. 1 +1t3+ 15 litsts
latsts

= 9h*

rt > 9r? =
1 +1t3+1ts5

=t 4ty it

or
r2 > 3h.

Corollary 3.3. The following result holds
tits 4 tats + tsty > 3h,  toty + tatg + teta > 3h.

Proof. Follows from [3.8),[(3.4) and (3.13). O
Corollary 3.4. It holds

t1tsts
Tttty tts

Proof. Since(5)? > 2, the relation follows from[(3.19). O

(3.20)

Corollary 3.5. The following holds

totyt
(3.21) h>3. —220
to +t4 + tg
Proof. From (3.3), using (3]5), we get

t t ts
r2:h2-—2+ ot 6

totyts
O
Corollary 3.6. The following result holds
6
(3.22) > titiy1 > Gh.
=1
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Proof. Starting fromr? > 3h, we can write
rt > 9h2,
rt — 3h%* > 6h%,
r* — 3h?
h
In [9, Theorem 3] itis proved that?_, tit1,, = "5, O

> Gh.

The following theorem is analogous to Theofenj 2.7 but with much more involved calculation.
Before its statement we have the following preliminary work.

In Figure 3.1a we have drawn an axially symmetric bicentric hexdgon- Fs. The marked
tangent lengths, andt; are given by

(3.23) ty=—ty +R+d
and
(3.24) ty = —t, + R—d.

The proof is as follows.
Sincet, = tg andt, = t,;, the relation[(3]4) can be written as

(%2)2 + 2tM%2 - 7"2 == 0,

from which follows [3.2B8).
Sincets = ts5, t; = t,,, the relation[(3]3) can be written as

(zg)z + ZthQ, — 7“2 = O,
from which follows [3.24).

Figure 3.1a Figure 3.1b

In Figure 3.1b we have drawn an axially symmetric bicentric hexa@gon - ()s. The marked
tangent lengths,, ., £; are given by

(3.25) b= VR (rtdp

(3.26) ty=/R2— (r —d)p?,
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. 2_ it
(3.27) A
t1 + 13

For ¢, andts it is obvious from Figure 3.1b. Also, from Figure 3.1b we see that t;, so

relation [3.8) can be written as
tits + tats + tsty = 12,
from which follows
7’2 — tAltAg
t +tg

Now, let A, - - - Ag be a bicentric hexagon whose incircle(is and circumcircleC; and let
its area be denoted bj(t,), that is
(3.28) J(t) =ty +ty + -+ tg),

wheret; + t;11 = |A;Aiq], i =1,...,6,andts, . .. tg are given by[(3]7) andl (3.8).
According to Theorem 2 i [9], we have

ts =

(3.29) J(tm) = J(t2) = J(t3) = J(tar)
and
(3.30) J(fl) = J(f2) = J(fs)-

Theorem 3.7. Let the perimeter of the hexagdh - - - P; shown in Figure 3.1a be denoted by
2p, and let the perimeter of the hexag@h . . . Qs shown in Figure 3.1b be denoted by,,,.
Then

(3.31) rpom < J(t1) < rpu,
that is
J(t1) = maximumitt; € {t,,, 1o, %3, ta}
J(t1) = minimum ift, € {£;, 45,15} .
Proof. The relation[(3.28), using relations given by (3.7) gnd]|(3.8), can be written as
r? (h* + 202023 + rt] + ht2(r? + £2)?)
ht1(r? + t3)(h? + r2t?) '
From %J(tl) = 0, we obtain the equation
r2(h — t2)[h(h? + ht? + t1) + 2hr?2 — r4t3][3R%E2 + (h? + t])r? — rit]]
ht3(r? 4+ t3)2(h? + r2t3)?

J(t1) =

=0,

from which follow

(3.32) (t)1 = h,
r? — h)2 +/(r?2 — h)* — 4h*
(333) (123 = ( \/Qh :
and
(3.34) (), = TS £ /(= SR — 4R
) 1)4,5 = '

212
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SinceR, r, d satisfy Fuss’ relatior (1} 2), it can be shown, using this relation, that
(t)= to, (t1)a=13, (t)3=1
(t1)a = ts, (t1)s = ts.
So, for example, it can be found thigt= (¢, ), is equivalent to
64r (R — d +7)(—R+d +r)[3(R? — d)* — 4r*(R* 4+ d*)(R* — d*)* — 16R*r*d?] = 0,

where only the last factor is equal to zero since Fuss’ reldfiof (1.2) holds, which can be written
as
3(R* — d*)' — 4r*(R? + d*)(R® — d*)* — 16R*"d* = 0.
In the same way as in Theor¢m|[2.7, only with somewhat more involved calculation, it can be
shown that the graph af(¢,) is like that shown in Figure 3.2.

J(t)
N
Jit)---rc-——omg—————— o= ————
Jm) -~ T
| | |
| | | | |
| 1 | | I
| | | | |
+— 3 - + >t
O L.t t, t, Lol
Figure 3.2
Theorenj 3.7 is proved. O
Corollary 3.8. Each of the following three sums
6 6 1 6 1
SDSANTD SERICD 9E
i=1 i=1 i=1 %

has maximum if, = t,,, and minimum it, = ¢,.
Proof. a) We have

(ti+...+te)> =t]+ ... +to + 2(tita +tots + ... + tsts + tet1)
-+ 2(t1t3 + t3ts + t5t1) + 2(t2t4 + tatg + t6t2)

0 r* — 3h?
::E:t?+-2-——7;———+4r?(See[Q,TheomwnSL)

b) We have

Rty + ... +1ts) ti+...+1

Corollary 3.9. Lett; be given such that,, < ¢; < t,,. Then the equation
J(t1)J (x) = J(tm)J (f1)
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has six positive roots,, ..., s and we obtain
rt — 3h2 4 9 3
Z Tiliy1 = Z TiTip1TipoTiy3 = 170 — 307, x1wox3T4T5T6 = A

The proof is analogous to the proof of Corollary 2.12.

4. CERTAIN INEQUALITIES CONCERNING BICENTRIC OCTAGONS

In this section, leC’; andC5 be given circles such that there is a bicentric octagon whose
incircle isC; and circumcircle’y and let

r = radius ofC;, R = radius ofCs,
d = distance between centers@f and(s,

(4.1) tm =V (R—=d)? =712 ty =+ (R+d)?—r2

We shall use some results givenlin [9, Theorem 4-5].
Let A = A, --- Ag be any given bicentric octagon whose incircle€isand circumcircle’y
and let

(4.2) ti+tip = |[AAia], i=1,....8.

Then

(43) T - T (tltg + t3t5 + t5t7 + t7t1 + t1t5 + t3t7) + t1t3t5t7 = 0
(44) 7’4 — 7’2 (t2t4 + t4t6 -+ tﬁtg -+ tgtz + t2t6 + t4t8) -+ t2t4t6t8 = 0,
(4.5) ity = totg = tst; = tats = h,

A bicentric octagon may be convex or non-convex, but the relatjons (4[3) }- (4.6) have the
same form.
The theorem below will now be proved.

Theorem 4.1.Let A, - - - Ag be a bicentric octagon. Then

4.7) (r - ﬁ) > 4h,

r

where equality holds only if = 0.

Proof. The relation[(4.B), using relationsts = ¢st; = h, can be written as
A 2

(4.8) (h+ )t — (r — ;> tits + h(h +t7) = 0.

The discriminant of the above quadratic equatioriis

h 4
D= (r——) t] —4h(h + 7).

r
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SinceD > 0, we obtain

—4ht} +

h 4
(r——) —8h2] t1 —4h* > 0.
r

We shall use the discriminant
2

h 4
D, = [<r——) —8h2] — 64h*
T

of the corresponding quadratic equatiortjmgiven by

B 4
(7’——) —8h2] 7 —4h* = 0.
r
h 4
(r——) — 8h? > 8h?,
r
2
(r—ﬁ) > 4h.
r

It remains to prove thatr — 2)* = 4h only if d = 0. Since
r = Rcos22.5°, h =r%sin®22.5° and

2+ /2 2 -2
1 4

—4ht? +

FromD; > 0 it follows that

cos?22.5° =

, sin?22.5° =
we have

(T _ ﬁ)z —2(2-V2), 4h=122-V2).

-
Theorenj 4.1 is proved. O

Corollary 4.2. The following inequalities hold

(4.9) tits + tsts + tstr + trt; > Attu

and

(4.10) toty + tatg + tets + tsto > At tar.

Proof. The relations[(4]3) andl (4.4), using relations|(4.5), can be written as

B 2
tits + t3ls + sty + t7t1 = (7" - ;) ;

h 2
t2t4 + t4t6 + t6t8 + tgtz = (T’ - ;) .

O

Remark 4.3. It can be shown that for almost every property considered for bicentric quadrilat-
erals there are analogous properties for bicentric hexagons and octagons. But, since the number
of the pages in the paper is limited, we omit some analogous theorems for bicentric hexagons
and octagons. So that all we have stated about bicentric hexagons and octagons can be consid-
ered as some steps or an insight into possibilities for further research.
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