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ABSTRACT. In this paper we restrict ourselves to the case when conics are circles one com-
pletely inside of the other. Certain inequalities concerning bicentric quadrilaterals, hexagons and
octagons in connection with Poncelet’s closure theorem are established.

Key words and phrases:Bicentric Polygon, Inequality.

2000Mathematics Subject Classification.51E12.

1. I NTRODUCTION

A polygon which is both chordal and tangential is briefly called a bicentric polygon. The
following notation will be used.

If A1 · · ·An is considered to be a bicentricn-gon, then its incircle is denoted byC1, circum-
circle byC2, radius ofC1 by r, radius ofC2 by R, center ofC1 by I, center ofC2 by O, distance
betweenI andO by d.

The first person who was concerned with bicentric polygons was the German mathematician
Nicolaus Fuss (1755-1826). He found thatC1 is the incircle andC2 the circumcircle of a
bicentric quadrilateralA1A2A3A4 iff

(1.1) (R2 − d2)2 = 2r2(R2 + d2),

(see [4]). The problem of finding this relation has been mentioned in [3] as one of 100 great
problems of elementary mathematics.

Fuss also found the corresponding relations (conditions) for bicentric pentagon, hexagon,
heptagon and octagon [5]. For bicentric hexagons and octagons these relations are

(1.2) 3p4q4 − 2p2q2r2(p2 + q2) = r4(p2 − q2)2
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and

(1.3) [r2(p2 + q2)− p2q2]4 = 16p4q4r4(p2 − r2)(q2 − r2),

wherep = R + d, q = R− d.
The very remarkable theorem concerning bicentric polygons was given by the French math-

ematician Poncelet (1788-1867). This theorem is known asPoncelet’s closure theorem. For the
case when conics are circles, one inside the other, this theorem can be stated as follows:

If there is one bicentricn-gon whose incircle isC1 and circumcircleC2, then there are infin-
itely many bicentricn-gons whose incircle isC1 and circumcircle isC2. For every pointP1 on
C2 there are pointsP2, . . . , Pn on C2 such thatP1 · · ·Pn are bicentricn-gons whose incircle is
C1 and circumcircle isC2.

Although the famous Poncelet’s closure theorem dates from the nineteenth century, many
mathematicians have been working on a number of problems in connection with it. Many
contributions have been made, and much interesting information can be found concerning it in
the references [1] and [6].

An important role in the following will have the least and the largest tangent that can be
drawn fromC2 to C1. As can be seen from Figure 1.2, the following holds

(1.4) tm =
√

(R− d)2 − r2, tM =
√

(R + d)2 − r2.

2. CERTAIN I NEQUALITIES CONCERNING BICENTRIC QUADRILATERALS

Let A1A2A3A4 be any given bicentric quadrilateral whose incircle isC1 and circumcircleC2

and let

(2.1) ti + ti+1 = |AiAi+1|, i = 1, 2, 3, 4.

(Indices are calculated modulo 4.) In [8, Theorem 3.1 and Theorem 3.2] it is proven that the
following hold

(2.2) t1t3 = t2t4 = r2,

and

(2.3) t1t2 + t2t3 + t3t4 + t4t1 = 2(R2 − d2).
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Reversely, ift1, t2, t3, t4 are such that (2.2) and (2.3) hold, then there is a bicentric quadrilateral
such that (2.1) holds.

Theorem 2.1.The tangent-lengthst1, t2, t3, t4 given by(2.1)satisfy the following inequalities

(2.4) 2r ≤ t1 + t3 ≤ tm + tM ,

(2.5) 2r ≤ t2 + t4 ≤ tm + tM ,

(2.6) 4r ≤ t1 + t2 + t3 + t4 ≤ 4r · R2 + d2

R2 − d2
,

(2.7) 4r2 ≤ t21 + t22 + t23 + t24 ≤ 4(R2 + d2 − r2),

and

(2.8) t2k
1 + t2k

2 + t2k
3 + t2k

4 ≥ 4r2k, k ∈ N.

The equalities hold only ifd = 0.

Proof. First let us remark thattmtM = r2 since there is a bicentric quadrilateral as shown in
Figure 2.1. Now, letC denote a circle whose diameter istm + tM (Figure 2.2). Then for each
ti, i = 1, 2, 3, 4, sincetm ≤ ti ≤ tM , there are pointsQ andR onC such that

(2.9) ti = |PQ|, ti+2 = |PR|,

where|PQ| + |PR| = |QR|. In this connection let us remark that the power of the circleC at
P is tmtM . Therefore|PQ||PR| = tmtM .

C2

C1

O I

r tm

tM

tM tm

ti

ti+2

r

r

C

Q

R

P

Figure 2.1 Figure 2.2

Obviously ti + ti+2 ≤ tm + tM sincetm + tM is a diameter ofC. Also it is clear that
ti + ti+2 ≥ 2r sincer2 = tmtM .

This proves (2.4) and (2.5).
In the proof that (2.6) holds we shall use the relations

(2.10) tm = r · R− d

R + d
, tM = r · R + d

R− d
.
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It is easy to show that each of the above relations is equivalent to the Fuss relation (1.1). So, for
the first of them we can write

(R− d)2 − r2 = r2

(
R− d

R + d

)2

(R2 − d2)2 − r2(R + d)2 = r2(R− d)2

(R2 − d2)2 = 2r2(R2 + d2).

The proof that (2.6) holds can be written as

2r + 2r ≤ t1 + t3 + t2 + t4,

t1 + t3 + t2 + t4 ≤ 2(tm + tM) = 2r
(

R−d
R+d

+ R+d
R−d

)
= 4r · R2+d2

R2−d2 .

The proof that (2.7) holds is as follows.
Since2r ≤ t1 + t3, 2r ≤ t2 + t4, we have

4r2 ≤ t21 + t23 + 2t1t3, 4r2 ≤ t22 + t24 + 2t2t4

or, since2t1t3 = 2t2t4 = 2r2,

2r2 ≤ t21 + t23, 2r2 ≤ t22 + t24.

Thus,4r2 ≤ t21 + t22 + t23 + t24.
Fromt1 + t3 ≤ tm + tM , t2 + t4 ≤ tm + tM it follows that

t21 + t23 ≤ t2m + t2M , t22 + t24 ≤ t2m + t2M

since2t1t3 = 2t2t4 = 2tmtM . Thus, we obtain

t21 + t22 + t23 + t24 ≤ 2(t2m + t2M),

wheret2m + t2M = (R− d)2 − r2 + (R + d)2 − r2 = 2(R2 + d2 − r2).
In the same way it can be proved that (2.8) holds. So, starting from2r ≤ t1 + t3, since

2tk1t
k
3 = 2r2k, we can write

2r2 ≤ t21 + t23,

4r4 ≤ t41 + t43 + 2t21t
2
3 or 2r4 ≤ t41 + t43

and so on.
Starting fromt1 + t3 ≤ tm + tM it can be written

t21 + t23 ≤ t2m + t2M ,

t41 + t43 ≤ t4m + t4M ,

and so on.
Sincetm = tM only if d = 0, it is clear that the relations (2.4) – (2.8) become equalities only

if d = 0. Thus, ifd 6= 0, then in the above relations instead of≤ we may put<.
Theorem 2.1 is thus proved. �

Corollary 2.2. The following holds

(2.11)
4

r
≤

4∑
i=1

1

ti
≤ 4

r
· R2 + d2

R2 − d2
.

Proof. From2r ≤ t1 + t3 it follows that 2
r
≤ 1

t1
+ 1

t3
, since

1

t1
+

1

t3
=

t1 + t3
t1t3

=
t1 + t3

r2
≥ 2r

r2
=

2

r
.
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Fromt1 + t3 ≤ tm + tM it follows that 1
t1

+ 1
t3
≤ 1

tm
+ 1

tM
, since

1

t1
+

1

t3
=

t1 + t3
r2

,
1

tm
+

1

tM
=

tm + tM
r2

.

�

Corollary 2.3. Leta = t1 + t2, b = t2 + t3, c = t3 + t4, d = t4 + t1.Then

(2.12) 8r ≤ a + b + c + d ≤ 8r · R2 − d2

R2 + d2
.

Corollary 2.4. Leta, b, c, d be as in Corollary 2.3. Then

(2.13) 4(R2 − d2 + 2r2) ≤ a2 + b2 + c2 + d2 ≤ 4(3R2 − 2r2).

Proof. Using relation (2.3) we can write

a2 + b2 + c2 + d2 = 2(t21 + t22 + t23 + t24) + 4(R2 − d2).

Now, using relations (2.7) we can write relations (2.13). �

Corollary 2.5. The following holds

(2.14) 2r2 + d2 ≤ R2 ≤ 2r2 + d2 + 2rd.

Proof. Sincet1 + t3 ≥ 2r, t2 + t4 ≥ 2r, we can write

(t1 + t3)(t2 + t4) ≥ 4r2,

t1t2 + t2t3 + t3t4 + t4t1 ≥ 4r2,

2(R2 − d2) ≥ 4r2,

R2 − d2 ≥ 2r2.

The fact thatR2 ≤ 2r2 + d2 + 2rd is clear from the quadratic function

f(d) = d2 + 2rd + R2 − 2r2.

If d = 0, thenf(d) = 0, but if d > 0, thenf(d) > 0. �

Remark 2.6. It may be interesting that relations (2.14) can be obtained directly from Fuss’
relation (1.1). It was done by L. Fejes Toth in [11]. Namely, relation (1.1) implies

(2.15) d2 = r2 + R2 − r
√

r2 + 4R2,

so the left side inequality of (2.14) becomes equivalent to2r2 ≤ R2 or

(2.16) r
√

2 ≤ R.

The right side of (2.14) is equivalent to (quadratic polynomial inequality ind)

d ≥ −r +
√

R2 − r2

or by using (2.15), after some simple computations, to (2.16), again.

Concerning the sign≤ in the relations (2.11) – (2.14), it is clear that in the case whend 6= 0,
that is, whentm 6= tM , then instead of≤ may be put<.

In connection with Theorem 2.1, the following theorem is of some interest.
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Theorem 2.7.LetP = P1P2P3P4 andQ = Q1Q2Q3Q4 be axially symmetric bicentric quadri-
laterals whose incircle isC1 and circumcircleC2 (Figure 2.3). Denote by2pM and2pm respec-
tively the perimeters ofP andQ. Then for every bicentric quadrilateralA = A1A2A3A4 whose
incircle isC1 and circumcircleC2 it holds that

(2.17) pm ≤
4∑

i=1

ti ≤ pM ,

whereti + ti+1 = |AiAi+1|, i = 1, 2, 3, 4. Also, ifd 6= 0, thenpm < pM and

(2.18)
4∑

i=1

ti = pM iff A = P ,

4∑
i=1

ti = pm iff A = Q.

Proof. First we see that

(2.19) pM = tm + 2r + tM , pm = 2(t̂1 + t̂3),

wherer = |P2H| and

(2.20) tm = |P1G| =
√

(R− d)2 − r2, tM = |P3H| =
√

(R + d)2 − r2,

(2.21) t̂1 = |EQ1| =
√

R2 − (r + d)2, t̂3 = |FQ3| =
√

R2 − (r − d)2.

A1

A2

A3

A4

C2

C1

O I

t1

P1

P2

P3

Q4

Q1

Q2

Q3
P4

O I

R
H

F

G

E
r

Figure 2.3 Figure 2.4

According to Theorem 3.3 in [8], the tangent lengthst2, t3, t4 can be expressed byt1 as
follows:

(2.22) t2 =
(R2 − d2)t1 +

√
D

r2 + t21
, t3 =

r2

t1
, t4 =

r2

t2
,

where

(2.23) D = (R2 − d2)2t21 + r2(r2 + t21)
2.

In this connection let us remark that for every pointA1 onC2 there is a tangentt1 drawn from
C2 to C1 (Figure 2.4). Ift1 is given, then quadrilateralA1A2A3A4 is completely determined by
t1, andt2, t3, t4 can be calculated using expressions (2.22).
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Let the sum
∑4

i=1 ti, wheret2, t3, t4 are expressed byt1, be denoted bys(t1). It can be easily
found that d

dt1
s(t1) = 0 can be written as

(t21 − r2)[t41 − 2(R2 − d2 − r2)t21 + r4] = 0,

from which it follows that

(t21)1 = r2, (t21)2 = t̂21, (t21)3 = t̂23,

wheret̂1 andt̂3 are given by (2.21). In this connection let us remark that

±
√

(R2 − d2 − r2)2 − r4 = ±2dr

since, using Fuss’ relation (1.1), we can write

(R2 − d2 − r2)2 − r4 = (R2 − d2)2 − 2(R2 − d2)r2

= 2r2(R2 + d2)− 2(R2 − d2)r2 = 4d2r2.

The part of the expressiond
2

dt21
s(t1) important for discussion can be expressed as

t41 − 2(R2 − d2 − r2)t21 + r4 + 2(t21 − r2)[t21 − (R2 − d2 − r2)].

For brevity, let the above expression be denoted byS(t1). It is easy to find that

(2.24) S(r) = −R2 + 2r2 + d2 < 0,

(2.25) S(t̂1) = 2dr > 0,

(2.26) S(t̂3) = (R2 − 2r2 − d2 − 2rd)(−2dr) > 0,

where the relations (2.14) are used.
In this connection let us remark that by Theorem 3.3 in [8] the following holds:

if t1 = r andt2, t3, t4 are given by (2.22), then
4∑

i=1

ti = pM ,

if t1 = t̂1 andt2, t3, t4 are given by (2.22), then
4∑

i=1

ti = pm,

if t1 = t̂3 andt2, t3, t4 are given by (2.22), then
4∑

i=1

ti = pm.

Theorem 2.7 is thus proved. �

Corollary 2.8. LetA be as in Theorem 2.7, that is,A is any given bicentric quadrilateral whose
incircle isC1 and circumcircleC2. Then

area ofQ ≤ area ofA ≤ area ofP .

Proof. From (2.17) it follows that

(2.27) rpm ≤ r(t1 + t2 + t3 + t4) ≤ rpM .

Using relations (2.22) and denoting the area ofA by J(t1), the inequalities (2.27) can be
written as

J(t̂1) ≤ J(t1) ≤ J(tm),
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where

J(t1) = r

(
t1 +

r2

t1
+

(R2 − d2)t1 +
√

D

r2 + t21
+

r2(r2 + t21)

(R2 − d2)t1 +
√

D

)
.

�

Since, according to Theorem 3.3 in [8], we have

J(tm) = J(r) = J(tM),

J(t̂1) = J(t̂3),

the graph ofJ(t1) is like that shown in Figure 2.5.

J(t )1

J(t )1

J(t )m

tm t1
r t2

tM

t1O

Figure 2.5

Of course,J(tm) = r(tm + 2r + tM), J(t̂2) = 2r(t̂1 + t̂2). Let us remark that̂t2 = t̂3. (See
Figure 2.3.)

Corollary 2.9. The following holds

pm

r2
≤

4∑
i=1

1

ti
≤ pM

r2
.

Proof. Sincet1t3 = t2t4 = r2, we have

(2.28)
4∑

i=1

1

ti
=

t1t2t3 + t2t3t4 + t3t4t1 + t4t1t2
t1t2t3t4

=
t1 + t2 + t3 + t4

r2
.

�

From the proof it is clear that

4∑
i=1

1

ti
= maximum (minimum) iff

4∑
i=1

ti = maximum (minimum).

Corollary 2.10. The following holds

p2
m − 4(R2 − d2) ≤

4∑
i=1

t2i ≤ p2
M − 4(R2 − d2).
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Proof. Since(t1 + t2 + t3 + t4)
2 =

∑4
i=1 t2i + 4(R2 − d2), we have

p2
m ≤

4∑
i=1

t2i + 4(R2 − d2) ≤ p2
M .

�

From the proof it is clear that
4∑

i=1

t2i = maximum (minimum) iff
4∑

i=1

ti = maximum (minimum).

Corollary 2.11. When the arithmetic meanA(t1, t2, t3, t4) is maximum, then the harmonic mean
H(t1, t2, t3, t4) is minimum and vice versa.

Proof. From (2.28) it follows that

A(t1, t2, t3, t4) ·H(t1, t2, t3, t4) = r2.

�

Corollary 2.12. Let t1 be given such thattm ≤ t1 ≤ tM . Then the equation

J(t1)J(x) = J(tm)J(t̂1)

has four positive rootsx1, x2, x3, x4 and we have

x1x2 + x2x3 + x3x4 + x4x1 = 2(R2 − d2), x1x2x3x4 = r4.

Proof. There is a bicentric quadrilateralX1X2X3X4 whose incircle isC1 and circumcircleC2

such that

area ofA1A2A3A4 · area ofX1X2X3X4 = J(tm)J(t̂1),

xi + xi+1 = |XiXi+1|, i = 1, 2, 3, 4.

�

In connection with the sumtv1 + tv2 + tv3 + tv4, wherev is a real number, the following theorem
will be proved.

Theorem 2.13.If there is a bicentric quadrilateral whose tangent lengths aret1, t2, t3, t4, then
there is a bicentric quadrilateral whose tangent lengths aretv1, t

v
2, t

v
3, t

v
4, wherev may be any

given real number.

Proof. Let A = A1A2A3A4 be a bicentric quadrilateral whose incircle isC1 and circumcircle
C2 and let|AiAi+1| = ti + ti+1, i = 1, 2, 3, 4. Then

(2.29) tv1t
v
3 = tv2t

v
4 = (rv)2.

According to what we said in connection with the relations (2.2) and (2.3) there is a bicentric
quadrilateralA(v) = A

(v)
1 A

(v)
2 A

(v)
3 A

(v)
4 such that

A
(v)
i A

(v)
i+1 = tvi + tvi+1, i = 1, 2, 3, 4.

Let its incircle and circumcircle be denoted respectively byC
(v)
1 andC

(v)
2 and let

rv = radius ofC(v)
1 ,

Rv = radius ofC(v)
2 ,

dv = distance between the centers ofC
(v)
1 andC

(v)
2 .
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From (2.29) we see that

(2.30) rv = rv.

In order to obtainRv anddv we shall use relations

(2.31) tv1t
v
2 + tv2t

v
3 + tv3t

v
4 + tv4t

v
1 = 2(R2

v − d2
v),

(2.32) (R2
v − d2

v)
2 = 2r2

v(R
2
v + d2

v),

where the second is Fuss’ relation. If, for brevity, the left-hand side of (2.31) is denoted bys,
we can write

s

2
= R2

v − d2
v,

s2

4
= 2r2

v(R
2
v + d2

v)

from which follows that

(2.33) Rv =

√
s2 + 4sr2

v

4rv

, dv =

√
s2 − 4sr2

v

4rv

.

Theorem 2.13 is thus proved. �

Before we state some of its corollaries here are some examples.

Example 2.1. If v = 0, thens = 4, rv = 1, Rv =
√

2, dv = 0.

Example 2.2. If v = −1, thens = 2(R2−d2)
r4 , rv = 1

r
, Rv = R

r2 , dv = d
r2 .

Corollary 2.14. The following holds

2(t1,v + t3,v) ≤
4∑

i=1

tvi ≤ tm,v + tM,v + 2rv,

where

t2m,v = (Rv − dv)
2 − r2

v, t2M,v = (Rv + dv)
2 − r2

v,

t21,v = R2
v − (dv + rv)

2, t23,v = R2
v − (dv − rv)

2.

This corollary is analogous to Theorem 2.7. (See (2.17).)

Corollary 2.15. The following holds

2rv ≤ tv1 + tv3 ≤ tm,v + tM,v

2rv ≤ tv2 + tv4 ≤ tm,v + tM,v

4rv ≤ tv1 + tv2 + tv3 + tv4 ≤ 4rv ·
R2

v + d2
v

R2
v − d2

v

.

The proof is analogous to the proof that (2.4) – (2.6) hold. We can imagine that in Figure 2.2
instead ofti, ti+2, tm, tM , r there aretvi , t

v
i+2, tm,v, tM,v, rv.

Corollary 2.16. The following holds

(2.34) A(tv1, t
v
2, t

v
3, t

v
4) ·H(tv1, t

v
2, t

v
3, t

v
4) = r2

v.

This corollary is analogous to Corollary 2.11.

J. Inequal. Pure and Appl. Math., 6(1) Art. 1, 2005 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


BICENTRIC QUADRILATERALS , HEXAGONS AND OCTAGONS 11

Theorem 2.17.Each of the following six sums is maximum (minimum) iff the sum
∑4

i=1 ti is
maximum (minimum).

a)
4∑

i=1

t2i , b)
4∑

i=1

t−2
i , c)

4∑
i=1

t3i , d)
4∑

i=1

t−3
i , e)

4∑
i=1

t4i , f)
4∑

i=1

t−4
i .

In other words,

(2.35) 2(t̂v1 + t̂v3) ≤
4∑

i=1

tvi ≤ tvm + 2rv + tvM , v = 2,−2, 3,−3, 4,−4,

wheretm, tM , t̂1, t̂3 are given by(2.20)and (2.21).

Proof. a) It holds

(t1 + t2 + t3 + t4)
2 =

4∑
i=1

t2i + 4(R2 − d2).

b) Sincet1t3 = t2t4 = r2, we can write
4∑

i=1

t−2
i =

r4(t21 + t22 + t23 + t24)

r8
=

t21 + t22 + t23 + t24
r4

.

c) From
(t1 + t2 + t3 + t4)

3 = (t1 + t2 + t3 + t4)
2(t1 + t2 + t3 + t4)

or (
4∑

i=1

ti

)3

= [t21 + t22 + t23 + t24 + 4(R2 − d2 + r2)](t1 + t2 + t3 + t4)

follows

(t1 + t2 + t3 + t4)[(t1 + t2 + t3 + t4)
2 − 6(R2 − d2)− 3r2] =

4∑
i=1

t3i .

d) It holds
4∑

i=1

t−3
i =

t31 + t32 + t33 + t34
r6

.

e) From (
4∑

i=1

t2i

)2

=
4∑

i=1

t4i + 2

(
4∑

i=1

t2i t
2
i+1 + 2r4

)
,

since

(2.36)

(
4∑

i=1

titi+1

)2

=
4∑

i=1

t2i t
2
i+1 + 2r2

(
4∑

i=1

t2i

)
+ 4r4,

we get
4∑

i=1

t4i =

(
4∑

i=1

t2i

)2

+ 4r2

(
4∑

i=1

t2i

)
− 8(R2 − d2)2 + 4r4.

f) It holds
4∑

i=1

t−4
i =

t41 + t42 + t43 + t44
r8

.

Theorem 2.17 is proved. �
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In connection with b), d), f) in this theorem let us remark that

4∑
i=1

1

tki
=

4∑
i=1

(
ti
r2

)k

.

It is easy to see that this is equivalent to

A(tk1, t
k
2, t

k
3, t

k
4) ·H(tk1, t

k
2, t

k
3, t

k
4) = r2k.

Corollary 2.18. Letfi(t1), i = 1, 2, 3, 4, be the functions given by

f1(t1) = t1, f2(t1) = t2, f3(t1) =
r2

t1
, f4(t1) =

r2

t2

wheret2 is expressed in(2.22). Then each of the following two equations

(2.37)
d

dt1

4∑
i=1

fi(t1) = 0,
d

dt1

4∑
i=1

fk
i (t1) = 0, k = 2, 3, 4

has in the interval[tm, tM ] the same solutionstm, t̂1, r, t̂3, tM given by(2.20)and (2.21).

Thus, the graph of the functionF (t1) =
∑4

i=1 fk
i (t1) is like the graph of the functionJ(t1)

shown in Figure 2.5.
If f(t1) andg(t1) are polynomials which respectively correspond to the equations given by

(2.37), thenf(t1)|g(t1).

Remark 2.19. We conjecture that Corollary 2.18 is valid for every real numberk 6= 0.

Corollary 2.20.
∑4

i=1 t2i t
2
i+1 is minimum when

∑4
i=1 ti is maximum and vice versa. In other

words, the following holds

4r2(R2 − r2 + d2) ≤
4∑

i=1

t2i t
2
i+1 ≤ 4(R2 − r2 − d2)2,

where

t2mr2 + r2t2M + t2Mr2 + r2t2m = 4r2(R2 − r2 + d2),

t̂21t̂
2
2 + t̂22t̂

2
3 + t̂23t̂

2
4 + t̂24t̂

2
1 = 4(R2 − r2 − d2)2.

Proof. From (2.36), since
∑4

i=1 titi+1 = 2(R2 − d2), it follows that

4(R2 − d2)2 − 4r4 =
4∑

i=1

t2i t
2
i+1 + 2r2

(
4∑

i=1

t2i

)
.

�

In this connection let us remark that from

4r2(R2 − r2 + d2) ≤ 4(R2 − r2 − d2)2,

using Fuss’ relation (1.1), we get the following inequality

(2.38) R2 ≤ 2r2 + 3d2.

(Cf. with (2.14). The equality holds only ifd = 0.)
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Remark 2.21. W. J. Blundon and R. H. Eddy in [2] have proved that for semiperimeters of
bicentric polygons, the following inequalities hold

s ≤ r +
√

r2 + 4R2, s2 ≥ 8r
(√

r2 + 4R2 − r
)

,

and two other inequalities ins. (Both inequalities are based upon (2.16) stated in Remark 2.6.)
Inequalities (2.38), using (2.15) stated in Remark 2.6, can also be proved.

3. CERTAIN I NEQUALITIES CONCERNING BICENTRIC HEXAGONS

Let now, in this section,C1 andC2 be given circles such that there is a bicentric hexagon
whose incircle isC1 and circumcircleC2 and let

r = radius ofC1, R = radius ofC2,

d = distance between centers ofC1 andC2,

(3.1) tm =
√

(R− d)2 − r2, tM =
√

(R + d)2 − r2.

We shall use the following results given in [9, Theorem 1-2].
Let A = A1 · · ·A6 be any given bicentric hexagon whose incircle isC1 and circumcircleC2

and let

(3.2) ti + ti+1 = |AiAi+1|, i = 1, . . . , 6.

Then

(3.3) t1t3 + t3t5 + t5t1 = r2,

(3.4) t2t4 + t4t6 + t6t2 = r2

and

(3.5) t1t4 = t2t5 = t3t6 = h,

where

(3.6) h = tmtM .

If t1 is given, thent2, . . . , t6 are given by

(3.7) t3 =
a

2
+
(a

2

)2

− b, t5 =
b

t3
,

(3.8) t2 =
h

t5
, t4 =

h

t1
, t6 =

h

t3

where

(3.9) a =
(r4 − h2)t1
r2t21 + h2

, b =
h2(r2 + t21)

r2t21 + h2
.

Thus, for everyt1 such thattm ≤ t1 ≤ tM there is a bicentric hexagon whose tangent lengths
aret1, t2, . . . , t6, wheret2, . . . , t6 are given by (3.7) and (3.8).
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Theorem 3.1.The following results hold

(3.10) 2
√

h ≤ ti + ti+3 ≤ tm + tM , i = 1, 2, 3

(3.11) 6
√

h ≤
6∑

i=1

ti ≤ 3(tm + tM)

and

(3.12) 6h ≤
6∑

i=1

t2i ≤ 6(R2 + d2 − r2 + h).

Proof. Analogous to the proof of Theorem 2.1. (Here verticesAi andAi+3 are opposite and
instead ofr2 we haveh.) �

Theorem 3.2.The following result holds

(3.13) r2 ≥ 3h,

wherer2 = 3h only if d = 0.

Proof. Since from (3.5) we have

(3.14) t2 =
h

t5
, t4 =

h

t1
, t6 =

h

t3
,

the relation (3.4) can be written as

(3.15) t1 + t3 + t5 =
( r

h

)2

t1t3t5.

Using this relation and relation (2.4) we can write

t3 + t5 =
( r

h

)2

t1t3t5 − t1,

t1(t3 + t5) + t3t5 = r2,

from which follows that

(3.16) t3 + t5 = a, t3t5 = b,

wherea andb are given by (3.9). Thus, we have the equation

t3 +
b

t3
= a or t23 − at3 + b = 0.

Let the discriminant of the above square equation int3 be denoted byD. Then we can write

(3.17) D = −4h2r2t41 + [(r4 − h2)2 − 4h4 − 4h2r4]t21 − 4h4r2 ≥ 0.

Now, the discriminant of the corresponding quadratic equation int21 is given by

D1 = [(r4 − h2)2 − 4h4 − 4h2r4]2 − 64h6r4.

SinceD1 ≥ 0 must hold, we have the following inequality

(r4 − h2)2 − 4h4 − 4h2r4 − 8h3r2 ≥ 0,

which can be written as
(r2 − 3h)(r2 + h) ≥ 0.

Thus,r2 − 3h ≥ 0.
If d = 0, thenr = R cos 30◦ = R

√
3

2
, tm = tM = R sin 30◦ = R

2
andr2 = tmtM .

Theorem 3.2 is proved. �
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In proving this theorem we also have proved that for everyt1 such thattm ≤ t1 ≤ tM the
inequality (3.17) holds.

It may be of some interest to note that Theorem 3.2 can be readily proved using a connection
between arithmetic and harmonic means. Namely, starting from

A(t1, t3, t5) ≥ H(t1, t3, t5),

we can write

(t1 + t3 + t5) ·
t1t3 + t3t5 + t5t1

t1t3t5
≥ 9

or, sincet1t3 + t3t5 + t5t1 = r2,

(3.18) r2 ≥ 9 · t1t3t5
t1 + t3 + t5

.

Also we have that the relation (3.15) can be written as

(3.19) r2 = h2 · t1 + t3 + t5
t1t3t5

.

Now, using relations (3.18) and (3.19) we can write

r4 ≥ 9r2 t1t3t5
t1 + t3 + t5

= 9

(
h2 · t1 + t3 + t5

t1t3t5

)
t1t3t5

t1 + t3 + t5
= 9h2

or

r2 ≥ 3h.

Corollary 3.3. The following result holds

t1t3 + t3t5 + t5t1 ≥ 3h, t2t4 + t4t6 + t6t2 ≥ 3h.

Proof. Follows from (3.3), (3.4) and (3.13). �

Corollary 3.4. It holds

(3.20) h ≥ 3 · t1t3t5
t1 + t3 + t5

.

Proof. Since( r
h
)2 ≥ 3

h
, the relation follows from (3.19). �

Corollary 3.5. The following holds

(3.21) h ≥ 3 · t2t4t6
t2 + t4 + t6

.

Proof. From (3.3), using (3.5), we get

r2 = h2 · t2 + t4 + t6
t2t4t6

.

�

Corollary 3.6. The following result holds

(3.22)
6∑

i=1

titi+1 ≥ 6h.
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Proof. Starting fromr2 ≥ 3h, we can write

r4 ≥ 9h2,

r4 − 3h2 ≥ 6h2,

r4 − 3h2

h
≥ 6h.

In [9, Theorem 3] it is proved that
∑6

i=1 tit1+1 = r4−3h2

h
. �

The following theorem is analogous to Theorem 2.7 but with much more involved calculation.
Before its statement we have the following preliminary work.

In Figure 3.1a we have drawn an axially symmetric bicentric hexagonP1 · · ·P6. The marked
tangent lengthst2 andt3 are given by

(3.23) t2 = −tM + R + d

and

(3.24) t3 = −tm + R− d.

The proof is as follows.
Sincet2 = t6 andt4 = tM , the relation (3.4) can be written as

(t2)
2 + 2tM t2 − r2 = 0,

from which follows (3.23).
Sincet3 = t5, t1 = tm, the relation (3.3) can be written as

(t3)
2 + 2tmt3 − r2 = 0,

from which follows (3.24).

P1

P2

P3

P4

P5

P6

C2

C1

O I

r tm

t2

t3

d

tM

Q1

Q2

Q3

Q4

Q5

Q6

O I
t1

t2

t3

t3

C1

C2

Figure 3.1a Figure 3.1b

In Figure 3.1b we have drawn an axially symmetric bicentric hexagonQ1 · · ·Q6. The marked
tangent lengthŝt1, t̂2, t̂3 are given by

(3.25) t̂1 =
√

R2 − (r + d)2,

(3.26) t̂3 =
√

R2 − (r − d)2,
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(3.27) t̂2 =
r2 − t̂1t̂3

t̂1 + t̂3
.

For t̂1 and t̂3 it is obvious from Figure 3.1b. Also, from Figure 3.1b we see thatt̂2 = t5, so
relation (3.3) can be written as

t1t3 + t3t5 + t5t1 = r2,

from which follows

t5 =
r2 − t̂1t̂3

t̂1 + t̂3
.

Now, let A1 · · ·A6 be a bicentric hexagon whose incircle isC1 and circumcircleC2 and let
its area be denoted byJ(t1), that is

(3.28) J(t1) = r(t1 + t2 + · · ·+ t6),

whereti + ti+1 = |AiAi+1|, i = 1, . . . , 6, andt2, . . . , t6 are given by (3.7) and (3.8).
According to Theorem 2 in [9], we have

(3.29) J(tm) = J(t2) = J(t3) = J(tM)

and

(3.30) J(t̂1) = J(t̂2) = J(t̂3).

Theorem 3.7. Let the perimeter of the hexagonP1 · · ·P6 shown in Figure 3.1a be denoted by
2pM , and let the perimeter of the hexagonQ1 . . . Q6 shown in Figure 3.1b be denoted by2pm.
Then

(3.31) rpm ≤ J(t1) ≤ rpM ,

that is

J(t1) = maximum ift1 ∈
{
tm, t2, t3, tM

}
,

J(t1) = minimum ift1 ∈
{
t̂1, t̂2, t̂3

}
.

Proof. The relation (3.28), using relations given by (3.7) and (3.8), can be written as

J(t1) =
r2 (h4 + 2h2r2t21 + r4t41 + ht21(r

2 + t21)
2)

ht1(r2 + t21)(h
2 + r2t21)

.

From d
dt1

J(t1) = 0, we obtain the equation

r2(h− t21)[h(h2 + ht21 + t41) + 2hr2t21 − r4t21][3h
2t21 + (h2 + t41)r

2 − r4t21]

ht21(r
2 + t21)

2(h2 + r2t21)
2

= 0,

from which follow

(3.32) (t21)1 = h,

(3.33) (t21)2,3 =
(r2 − h)2 ±

√
(r2 − h)4 − 4h4

2h
,

and

(3.34) (t21)4,5 =
r4 − 3h2 ±

√
(r4 − 3h2)2 − 4r4h2

2r2
.
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SinceR, r, d satisfy Fuss’ relation (1.2), it can be shown, using this relation, that

(t1)1 = t̂2, (t1)2 = t̂3, (t1)3 = t̂1

(t1)4 = t3, (t1)5 = t2.

So, for example, it can be found thatt3 = (t1)4 is equivalent to

64r4(R− d + r)(−R + d + r)[3(R2 − d2)4 − 4r2(R2 + d2)(R2 − d2)2 − 16R2r4d2] = 0,

where only the last factor is equal to zero since Fuss’ relation (1.2) holds, which can be written
as

3(R2 − d2)4 − 4r2(R2 + d2)(R2 − d2)2 − 16R2r4d2 = 0.

In the same way as in Theorem 2.7, only with somewhat more involved calculation, it can be
shown that the graph ofJ(t1) is like that shown in Figure 3.2.

J(t )1

J(t )1

J(t )m

tm t1 t2
tM

t1O t3t2 t3

Figure 3.2

Theorem 3.7 is proved. �

Corollary 3.8. Each of the following three sums

a)
6∑

i=1

t2i , b)
6∑

i=1

1

ti
, c)

6∑
i=1

1

t2i

has maximum ift1 = tm and minimum ift1 = t̂1.

Proof. a) We have

(t1 + . . . + t6)
2 = t21 + . . . + t26 + 2(t1t2 + t2t3 + . . . + t5t6 + t6t1)

+ 2(t1t3 + t3t5 + t5t1) + 2(t2t4 + t4t6 + t6t2)

=
6∑

i=1

t2i + 2 · r4 − 3h2

h
+ 4r2. (See [9, Theorem 3].)

b) We have
6∑

i=1

1

ti
=

h2(t1 + . . . + t6)

h3
=

t1 + . . . + t6
h

.

�

Corollary 3.9. Let t1 be given such thattm ≤ t1 ≤ tM . Then the equation

J(t1)J(x) = J(tm)J(t̂1)
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has six positive rootsx1, . . . , x6 and we obtain
6∑

i=1

xixi+1 =
r4 − 3h2

h
,

6∑
i=1

xixi+1xi+2xi+3 = r4 − 3h2, x1x2x3x4x5x6 = h3.

The proof is analogous to the proof of Corollary 2.12.

4. CERTAIN I NEQUALITIES CONCERNING BICENTRIC OCTAGONS

In this section, letC1 andC2 be given circles such that there is a bicentric octagon whose
incircle isC1 and circumcircleC2 and let

r = radius ofC1, R = radius ofC2,

d = distance between centers ofC1 andC2,

(4.1) tm =
√

(R− d)2 − r2, tM =
√

(R + d)2 − r2.

We shall use some results given in [9, Theorem 4-5].
Let A = A1 · · ·A8 be any given bicentric octagon whose incircle isC1 and circumcircleC2

and let

(4.2) ti + ti+1 = |AiAi+1|, i = 1, . . . , 8.

Then

(4.3) r4 − r2(t1t3 + t3t5 + t5t7 + t7t1 + t1t5 + t3t7) + t1t3t5t7 = 0,

(4.4) r4 − r2(t2t4 + t4t6 + t6t8 + t8t2 + t2t6 + t4t8) + t2t4t6t8 = 0,

(4.5) t1t5 = t2t6 = t3t7 = t4t8 = h,

(4.6) h = tmtM .

A bicentric octagon may be convex or non-convex, but the relations (4.3) – (4.6) have the
same form.

The theorem below will now be proved.

Theorem 4.1.LetA1 · · ·A8 be a bicentric octagon. Then

(4.7)

(
r − h

r

)2

≥ 4h,

where equality holds only ifd = 0.

Proof. The relation (4.3), using relationst1t5 = t3t7 = h, can be written as

(4.8) (h + t21)t
2
3 −

(
r − h

r

)2

t1t3 + h(h + t21) = 0.

The discriminant of the above quadratic equation int3 is

D =

(
r − h

r

)4

t21 − 4h(h + t21)
2.
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SinceD ≥ 0, we obtain

−4ht41 +

[(
r − h

r

)4

− 8h2

]
t21 − 4h3 ≥ 0.

We shall use the discriminant

D1 =

[(
r − h

r

)4

− 8h2

]2

− 64h4

of the corresponding quadratic equation int21 given by

−4ht41 +

[(
r − h

r

)4

− 8h2

]
t21 − 4h3 = 0.

FromD1 ≥ 0 it follows that (
r − h

r

)4

− 8h2 ≥ 8h2,

i.e. (
r − h

r

)2

≥ 4h.

It remains to prove that(r − h
r
)2 = 4h only if d = 0. Since

r = R cos 22.5◦, h = r2 sin2 22.5◦ and

cos2 22.5◦ =
2 +

√
2

4
, sin2 22.5◦ =

2−
√

2

4
we have (

r − h

r

)2

= r2(2−
√

2), 4h = r2(2−
√

2).

Theorem 4.1 is proved. �

Corollary 4.2. The following inequalities hold

(4.9) t1t3 + t3t5 + t5t7 + t7t1 ≥ 4tmtM

and

(4.10) t2t4 + t4t6 + t6t8 + t8t2 ≥ 4tmtM .

Proof. The relations (4.3) and (4.4), using relations (4.5), can be written as

t1t3 + t3t5 + t5t7 + t7t1 =

(
r − h

r

)2

,

t2t4 + t4t6 + t6t8 + t8t2 =

(
r − h

r

)2

.

�

Remark 4.3. It can be shown that for almost every property considered for bicentric quadrilat-
erals there are analogous properties for bicentric hexagons and octagons. But, since the number
of the pages in the paper is limited, we omit some analogous theorems for bicentric hexagons
and octagons. So that all we have stated about bicentric hexagons and octagons can be consid-
ered as some steps or an insight into possibilities for further research.
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