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1. Introduction

Three pointsD, E, F , one on each of the sides of a triangleABC, form a triangle
DEF that partitions the original one into four sub-triangles. The Erdös-Debrunner
inequality says that

min{A1, A2, A3} ≤ A4,

whereA1, A2, A3 are the areas of the corner triangles, andA4 is the area of the
central triangle. In [3], Janous conjectured that the optimal improvement would be
given by

M−q(A1, A2, A3) ≤ A4

whereM−q denotes the(−q)-power mean with

q =
ln(3/2)

ln 2

(Janous proved the above inequality withq = 1. See the classical reference [5] for
more on power means). In our paper [4] we confirmed Janous’ conjecture. In the
course of our proof we revealed some equivalent formulations of this optimal result,
one of which is:

Theorem 1.1 ([4, Cor. 6]). Letp ≥ ln(3/2)/ ln(2). Then for all triangles with sides
a, b andc and semi-perimeters, the inequality(

s− a

a

)p

+

(
s− b

b

)p

+

(
s− c

c

)p

≥ 3

2p

is valid. In terms of power means,

(1.1) M−p

(
a

s− a
,

b

s− b
,

c

s− c

)
≤ 2.
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Our aim here is to gain a better understanding of where the numberln(3/2)/ ln 2
in Theorem1.1 comes from. To do so, we first apply a change of variables to the
inequality (1.1). After definingx1 := s

s−a
, x2 := s

s−b
, x3 := s

s−c
, (1.1) takes on a

form which for clarity we state as a new theorem (for simplicity of notation, we will
denote thep-power mean of the numbersx1, x2, x3 simply byMp(x)).

Theorem 1.2.For all xi > 1 (i = 1, 2, 3) such that

(1.2) M−1(x) = 3,

we have

(1.3) M−q (x− 1) ≤ 2,

whereq = ln(3/2)/ ln(2).

It is now very easy to check thatq is optimal in these results: letε > 0 and
consider the special case

x1 = x2 = 2 + ε, x3 =
2 + ε

ε
.

(1.2) is obviously satisfied, and (by lettingε → 0)

M−p (x− 1) ≤ 2

can only hold ifp ≥ q = ln(3/2)/ ln(2).
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2. Main Results

In the light of the formulation of Theorem1.2 we see that the new problem is:
Given three numbers with a certain harmonic average, predict the best exponent
for a power mean estimate of these numbers after they have been all reduced (or
augmented) by a fixed amount.This point of view leads us to the following general-
ization (note that Theorem1.2 is a special case of this after settingµ = 3, t = 1/3,
where the value oft matches the requirement thatxi > 1 for i = 1, 2, 3).

Theorem 2.1.Letxi > 0 (i = 1, 2, 3) be such that

(2.1) M−1(x) = µ,

and fixt ∈ (0, min{x1, x2, x3}/µ}). Then we have

M0(x− tµ) ≤ (1− t)µ ≤ Mq2(x− tµ) if 2/3 ≤ t < 1,(2.2)

M−q1 (x− tµ) ≤ (1− t)µ ≤ Mq2 (x− tµ) if 1/3 ≤ t < 2/3,(2.3)

M−q1 (x− tµ) ≤ (1− t)µ ≤ M0 (x− tµ) if 0 < t < 1/3,(2.4)

where

q1 =
ln(3/2)

ln
(

1−t
2
3
−t

) , q2 =
ln(3/2)

ln
(

t
t− 1

3

) .

It is understood thatq1 = 0 whent = 2/3, andq2 = 0 whent = 1/3.

The proof of Theorem2.1 will be rather technical, and accordingly we thought
it wise not to pursue further generalizations in this paper, although we are certainly
working on it. Similar statements are possible when estimating the means of more
than three numbers, and it should also be possible to prove extensions to the case
when the hypothesis is not just knowledge of the harmonic mean, but any given
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mean. Again, we decided not to pursue these more general directions right now as
the technicalities would have easily overshadowed the main purpose of this note,
even in the simplest next case, that is,n = 4.

If one addstµ to thexi, instead of subtracting, we have a result whose proof
shows non-linear intricacies even harder than the ones offered by Theorem2.1:

Theorem 2.2.Letxi > 0 (i = 1, 2, 3) be such that

M−1(x) = µ,

and fixt > 0. Then we have

M−q (x + tµ) ≤ (1 + t)µ ≤ M0 (x + tµ) ,

where

q =

√
1 +

9t(1 + t)

2
.

Whetherq is best possible is open. However, numerical evidence shows that at least

for somep with p ∈
(
1 + 3√

2
t, q
)

and for somexi, M−p(x + tµ) ≤ (1 + t)µ may be

false.

The proofs of Theorems2.1and2.2will be found in Section4.
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3. Applications

As an application of Theorem2.1we have the following refinement of the casen = 3
of the famous Shapiro cyclic inequality. See [1] for a survey of the topic, and [2] for
a recent related result.

Theorem 3.1. Let a1, a2, a3 ≥ 0, with at most one of theai being zero. Then, with
the indexi cycling through1, 2, 3,

(3.1) M0

(
ai

ai+1 + ai+2

)
≤ 1

2
≤ Mq

(
ai

ai+1 + ai+2

)
,

whereq = ln(3/2)/ ln(2) ∼ 0.58496.

Proof. Definingxi := (a1 + a2 + a3)/(ai+1 + ai+2) we see that the harmonic mean
M−1(x) equals3/2. We apply then Theorem2.1 (specifically, (2.2)) in the case
µ = 3/2, t = 2/3 to immediately obtain (3.1).

For comparison, note that the casen = 3 of the original problem posed by
Shapiro [6] was stating the simpler inequality

1

2
≤ M1

(
ai

ai+1 + ai+2

)
.

Before we embark on the proofs of Theorems2.1 and2.2, we want to show a
possible use of Theorem2.2 in a special situation. It is a trivial fact that, given any
positivea1, a2, a3, the arithmetic mean of the sumsa1 +a2, a2 +a3, a3 +a1 is simply
twice the arithmetic mean of theai. But what about other power means of the sums
ai +ai+1? The next result shows that the power means ofai +ai+1 seem to be related
to the classical problem of estimating the difference between the arithmetic and the
harmonic mean of theai (see [5, 2.14.3] for more on the topic).

http://jipam.vu.edu.au
mailto:vmascioni@bsu.edu
http://jipam.vu.edu.au


Extension of the Erdös-Debrunner
Inequality

Vania Mascioni

vol. 9, iss. 3, art. 67, 2008

Title Page

Contents

JJ II

J I

Page 8 of 22

Go Back

Full Screen

Close

Theorem 3.2. Let a1, a2, a3 > 0 and, for simplicity, denote their harmonic and
arithmetic means byµ−1 := M−1(a) andµ1 := M1(a), respectively. We then have

M0(ai + ai+1) ≤ 3µ1 − µ−1 ≤ Mq(ai + ai+1),

where

q =
1

µ−1

√
(9µ1 − 2µ−1)(9µ1 − µ−1)

2
.

Proof. This follows from Theorem2.2after first observing that, withσ := a1 +a2 +
a3,

M−1

(
ai

σ − ai

)
=

µ−1

3µ1 − µ−1

=: µ.

If we now chooset to satisfytµ = 1 (i.e., t = 3 µ1

µ−1
− 1), Theorem2.2yields (since

ai

σ−a1
+ 1 = σ

σ−ai
)

M−q

(
σ

σ − ai

)
≤ 3µ1

3µ1 − µ−1

≤ M0

(
σ

σ − ai

)
,

and the result follows from simple algebra, the fact thatσ = 3µ1, and after finding
what the formula forq in Theorem2.2translates into in the current case.

Corollary 3.3. Leta1, a2, a3 > 0, and define

C := (max
i

ai)/(min
i

ai).

Then
M1(a)−M−1(a) ≤ Mq(ai + ai+1)− 2M1(a),

where

q =
1

4C

√
(9C2 + 10C + 9)(9C2 + 14C + 9)

2
.
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Proof. This follows from Theorem3.2 and the following classical result of Specht
giving the upper bound of the ratioM1/M−1 in terms ofC (see [5, 2.14.3, Theorem
1])

µ1

µ−1

≤ (C + 1)2

4C
.

Finally, before we get started with the proofs of the main theorems, we present
a couple of simpler observations, given here purely for illustrative purposes. First,
let us state the trivial (though natural) version of Theorem1.2 in the case of two
variables.

Theorem 3.4.For all xi > 1 ( i = 1, 2) such that

(3.2) M−1(x1, x2) = 2

we have

(3.3) Mp (x1 − 1, x2 − 1) ≤ 1 = M0 (x1 − 1, x2 − 1)

for p < 0.

Proof. This follows from the the obvious fact that (3.2) impliesx2 − 1 = 1/(x1 −
1).

Also as a curiosity and as an example of the multi-variable statements that are
possible (in the vein of Theorem2.1), we have the following

Theorem 3.5.Letxi > 1 ( i = 1, . . . , n) be such that

(3.4) M−1(x) = n.
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Then
M−1(x− 1) ≤ n− 1 ≤ M1(x− 1).

Note that the first inequality can be rewritten as

1

n

(
n∑

i=1

1

xi

)(
n∑

i=1

1

xi − 1

)
≤

n∑
i=1

1

(xi − 1)xi

.

Proof. Let f(h) be the function

M−1(x1 + h, . . . , xn + h).

A calculation gives that

f ′(h) =

(
M−1(x1 + h, . . . , xn + h)

M−2(x1 + h, . . . , xn + h)

)2

and this shows thatf ′(h) ≥ 1 for all h ≥ −1. In particular,

f(0)− f(−1) ≥ 1

by the mean value theorem, and this is the first inequality.
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4. Proofs of Theorems2.1and 2.2

Proof of Theorem2.1. Without loss of generality we will prove Theorem2.1 in the
caseµ = 1. In the first part of the proof we will verify the first inequalities in (2.2),
(2.3) and (2.4). To do so, we will apply the method of Lagrange multipliers on the
domain{(x1, x2, x3) ∈ R3 | xi > t, i = 1, 2, 3} to find the minima of

f(x1, x2, x3) :=
1

(x1 − t)p
+

1

(x2 − t)p
+

1

(x3 − t)p

under the condition
1

x1

+
1

x2

+
1

x3

= 3.

Clearly, this investigation is only of interest for0 < p < 1. The Lagrange equations
simplify to

(4.1)
xi − t

x
2/(1+p)
i

= c

for some constantc and i = 1, 2, 3. The derivative of the functionh(x) := (x −
t)/x2/(1+p) (for x > t) has the same sign as2t−(1−p)x and soh(x) has precisely one
critical point (a maximum) atx = 2t/(1 − p). This means that the only possibility
we need to study is when, say,x1 = x2, which can only happen if

(4.2) x1 = x2 =
2 + ε

3
, x3 =

2 + ε

3ε
,

for someε > 0 such thatxi − t > 0 for i = 1, 2, 3 (recall that we are handling the
caseµ = 1 here, meaning that

∑
i 1/xi = 3). ε must therefore satisfy the inequalities

(4.3) 3t− 2 < ε and (3t− 1)ε < 2.
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These conditions will force us to distinguish between three cases because of the
different possible ranges forε:

Case I: 2/3 ≤ t < 1. Here3t− 2 < ε < 2/(3t− 1).
Case II: 1/3 < t < 2/3. In this case0 < ε < 2/(3t− 1).
Case III: 0 < t ≤ 1/3. Now ε can be any positive number.

With values as in (4.2),

(4.4) f(x1, x2, x3) = f(ε) = 2
3p

(2 + ε− 3t)p
+

3pεp

(2 + (1− 3t)ε)p ,

and the cases we just described specify the domain off(ε) for any givent. The
derivative off with respect toε is

f ′ (ε) = 2 · 3pp
(
ε−1+p(2 + ε− 3εt)−1−p − (2 + ε− 3t)−1−p

)
and so its critical points must satisfy the equation

(4.5) g1(ε) := 2 + ε− 3t = (2 + ε− 3εt)ε
1−p
1+p =: g2(ε).

ε = 1 is always a critical point off(ε). After inspectingf ′′(1) we also see thatε = 1
can only be a minimum ifp > 1− 2t, which we will assume from now on. In Cases
I and II (ε > 1/3), g2(ε) is always concave on its domain, and so (4.5) can have at
most two solutions sinceg1(ε) is linear. And since one of these critical points is the
local minimum atε = 1, the other one (if any) cannot be a local minimum, too. In
Case III (if0 < t < 1/3), g2(ε) is increasing for allε > 0 and, since

g′′2 (ε) = 2ε−3+2/(1+p)(1 + p)−2(1− p)
(
(1− 3t)ε− 2p

)
,

we see thatg2(ε) is concave ifε < 2p/(1− 3t) and convex ifε > 2p/(1− 3t). Since
g1(0) = 2 − 3t > 0 = g2(0), we conclude that (4.5) has at most three solutions
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and thus thatf(ε) has at most three critical points. It actually happens that there are
exactly three critical points in Case III. In fact, the inequality

g′2(1) =
2

1 + p

(
2− 3t− p

)
< 1

is equivalent top > 1− 2t, and so it holds by our assumption. Because of this,g2(ε)
must crossg1(ε) at ε = 1 with a slope smaller than1, and thusε = 1 is the middle
of the three critical points off(ε). We therefore know thatε = 1 is the only local
minimum off in all cases.

Summarizing, we have shown that in all possible cases the minima off(ε) will
result from comparingf(1) with the values (or limits) off(ε) at the endpoints of
the allowable intervals forε. We proceed now to do so, while still distinguishing
between the same three cases for separate ranges fort.

Case I: 2/3 ≤ t < 1. Here3t − 2 < ε < 2/(3t − 1), and the values off close
to the endpoints are seen to tend to infinity. Consequently,f(1) yields the absolute
minimum off . We conclude that for these values oft we will haveM−p(x − t) ≤
1 − t for all p ∈ (0, 1) and, passing to the limitp → 0, the same applies to the
geometric average

M0(x− t) = ((x1 − t)(x2 − t)(x3 − t))1/3 ≤ 1− t.

That no higher power mean (that is, of the typeMr(x) with r > 0) would work
follows from the fact that for our choice ofx1, x2, x3 the expressionxr

1 + xr
2 + x3

3

grows out of bounds for small enoughε.
Case II: 1/3 < t < 2/3. In this case0 < ε < 2/(3t − 1). Values ofε

tending to the right endpoint will causef to grow arbitrarily, whilelimε→0 f(ε) =
2 · 3p/(2− 3t)p. The latter is never smaller than3/(1− t)p if and only if

(4.6) p ≥ ln(3/2)

ln
(

3−3t
2−3t

) .
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We must now measure this condition forp against the one we had obtained at the
beginning,p > 1− 2t. We claim that (4.6) is stronger, that is,

(4.7)
ln(3/2)

ln
(

3−3t
2−3t

) > 1− 2t

when0 < t < 2/3. With

s(t) := ln

(
3− 3t

2− 3t

)
(1− 2t),

we have

s′(t) =
1

1− t
− 1

2− 3t
− 2 ln

(
1 +

1

2− 3t

)
.

Since for allx > 0 the classical inequalityln(1 + 1/x) > 2/(2x + 1) holds (see [5,
3.6.18]), a little algebra shows that

s′(t) < − 3− 4t

(1− t)(2− 3t)(5− 6t)
< 0.

Therefore,s(t) is decreasing ont ∈ (0, 2/3) and is thus always less thans(0) =
ln(3/2) there, proving (4.7). (4.7) being true, to complete the discussion of Case II
we may now state thatM−q(x− t) ≤ 1− t, where

q :=
ln(3/2)

ln
(

2−3t
3−3t

) ,
and this choice ofq is optimal.

Case III: 0 < t ≤ 1/3. In this caseε can be any positive number, and the limits
of f(ε) for ε → 0 andε → ∞ are given by2 · 3p/(2 − 3t)p and3p/(1 − 3t)p. By
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our discussion of the critical points off(ε) the absolute minimum off(ε) is either
one of these two values, orf(1). For 3p/(1 − 3t)p to always be greater or equal to
3/(1− t)p we need to have

p ≥ ln 3

ln
(

3−3t
1−3t

) .
This condition is actually weaker than (4.6), that is, we always have

(4.8)
ln(3/2)

ln
(

3−3t
2−3t

) >
ln 3

ln
(

3−3t
1−3t

)
when0 < t < 1/3. A way to convince ourselves of this is to consider the function

(4.9) h(t) :=
ln
(

3−3t
1−3t

)
ln
(

3−3t
2−3t

) .
Notice that its derivative fort ∈ (0, 1/3) has the same sign as

(4.10) 2(a + 1) ln

(
1 +

1

a + 1

)
− a ln

(
1 +

2

a

)
,

where for convenience we wrotea := 1−3t (and thusa ∈ (0, 1)). The latter function
of a has the derivative

ln

(
a2 + 2a

(a + 1)2

)
,

which is always negative fora ∈ (0, 1). This implies that the expression in (4.10)
is decreasing on(0, 1) and hence it is always greater than its value ata = 1, which
is 4 ln(3/2) − ln 3 = ln(27/16) > 0. This means that the function ofa in (4.10) is
always positive fora ∈ (0, 1), and in turn this implies thath(t) as defined in (4.9) is
increasing fort ∈ (0, 1/3). Finally, sinceh(0) = ln(3)/ ln(3/2) > 0, h(t) is always
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greater thanh(0), and the inequality (4.8) is established. To wrap up the first part
of the proof, we can now state that the first inequalities in (2.2), (2.3) and (2.4) are
proved.

Let us now check the second inequalities in (2.2), (2.3) and (2.4), still assuming,
for simplicity, thatM−1(x) = 1. To see for whichp > 0 we haveMp(x− t) ≥ 1− t,
we need to minimize

g(x1, x2.x3) = (x1 − t)p + (x2 − t)p + (x3 − t)p,

and thus the Lagrange equations are now

x2
i (xi − t)p−1 = c

for some constantc andi = 1, 2, 3. Certainly, sinceM1(x− 1) ≥ 1− t is trivial, we
can restrict our attention top ∈ (0, 1). Since the functionx2(x− 1)p−1 decreases for
x < 2t/(1 + p) and increases forx > 2t/(1 + p), we are in a situation similar to the
first part of the proof, with only the need to consider the same special situation as in
(4.2). In this case,g as a function ofε becomes

g(ε) = 3−p

(
2(2 + ε− 3t)p +

(2 + (1− 3t)ε)p

εp

)
.

Similarly to the way we handledf in the first part of the proof, we see now that the
critical points ofg(ε) must satisfy the equation

(4.11)
2 + ε− 3t

2 + ε− 3εt
= ε

1+p
1−p .

If 0 < t < 1/3, the left hand side is concave, the right hand side is convex, and so
(because of their initial values atε = 0) ε = 1 must be the only critical point ofg(ε).
Sinceg(ε) is unbounded forε close to0 or when tending to∞, we conclude that
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ε = 1 yields the absolute minimum ofg(ε) in this case, and thusMp(x− t) ≥ x− t.
Lettingp → 0 shows that if0 < t ≤ 1/3 we havex− t ≤ M0(x− t), as claimed in
(2.4) (the statement fort = 1/3 follows by continuity).

Whent ∈ (1/3, 2/3) we rewrite (4.11) in the form

(4.12) 2 + ε− 3t = ε
1+p
1−p (2 + ε− 3εt) =: g3(ε).

g3(ε) is increasing forε < 2/(3t − 1) and decreasing forε > 2/(3t − 1). From its
second derivative we also see that it is convex forε < (1 + p)/(3t− 1), and concave
for ε > (1 + p)/(3t− 1). For t ∈ (1/3, 2/3) we have1 < (1 + p)/(3t− 1). Hence,
g3(ε) meets the left hand side of (4.12) at ε = 1 for the first time, and thus there is
exactly one other critical point ofg(ε) (at the right ofε = 1), and there we must have
a local minimum. For smallε, g(ε) is arbitrarily large and thus, as we are looking for
a minimum, we only need to consider the possibility offered by the right endpoint of
the admissible interval (see Case II above), i.e.,

g

(
2

3t− 1

)
= 2 · 3−p

(
2− 3t +

2

3t− 1

)p

.

In order to haveMp(x− t) ≥ 1− t we must have that this value be greater or equal
to 3(1− t)p, which leads to the condition

(4.13) p ≥ ln(3/2)

ln
(

3t
3t−1

) ,
as stated in (2.3). Finally, we consider the case2/3 < t < 1, where (as in Case I
in the first half of the proof)3t − 2 < ε < 2/(3t − 1). First we observe that since
the valueg(3t − 2) at the left endpoint must be at least3(1 − t)p in order to have
Mp(x− t) ≥ 1− t, we must have

g(3t− 2) =

(
3(1− t)t

3t− 2

)p

≥ 3(1− t)p,
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that is,

(4.14) p ≥ ln 3

ln
(

3t
3t−2

) .
In complete analogy with (4.8), for t ∈ (2/3, 1) we have the inequality

ln(3/2)

ln
(

3t
3t−1

) >
ln 3

ln
(

3t
3t−2

) ,
meaning that the condition in (4.13) trumps the one in (4.14) (we leave the details
to the reader). Since convexity and concavity ofg3(ε) (as in (4.12)) are the same as
in the previous case, we still have thatg(ε) admits at most two critical points inside
the admissible interval forε. By inspecting the second derivative ofg(ε) at ε = 1,
we see that its sign is the same as the sign of1 + p − 2t. We will therefore have a
minimum atε = 1 if and only if p > 2t − 1, and this latter condition will certainly
hold if

(4.15) p ≥ ln(3/2)

ln
(

3t
3t−1

) > 2t− 1.

Once again, in complete analogy with (4.7) (and again using the inequality [5,
3.6.18] to simplify the estimate) we can prove that the function

(2t− 1) ln

(
3t

3t− 1

)
is strictly increasing in the interval(2/3, 1), and thus (4.15) readily follows. To
conclude, sinceε = 1 is the only minimum ofg(ε) in the interval(3t−2, 2/(3t−1),
and since we already discussed the conditions (4.13) and (4.14) resulting from the
values ofg(ε) at the endpoints, our work is done and Theorem2.1is now proved.
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Proof of Theorem2.2. Assume thatx1, x2, x3 > 0 are given such thatM−1(x) = 1,
and fix t > 0. The search forp that satisfyM−p(x + t) ≤ 1 + t starts out as in the
proof of Theorem2.1. Assume thatp > 1, since this is the only range that could
yield possible non-trivial values ofp. We need to find the minima of

f(x1, x2, x3) :=
1

(x1 + t)p
+

1

(x2 + t)p
+

1

(x3 + t)p

under the condition
1

x1

+
1

x2

+
1

x3

= 3

and over the domain{(x1, x2, x3) ∈ R3 | xi > 0, i = 1, 2, 3}. The Lagrange
equations simplify to

(4.16)
xi + t

x
2/(1+p)
i

= c

for some constantc andi = 1, 2, 3, so here, too, we only need to focus on the case
when, say,x1 = x2, which can only happen if

(4.17) x1 = x2 =
2 + ε

3
, x3 =

2 + ε

3ε
,

whereε > 0 is arbitrary. With these values,f = f(ε) takes on the form

(4.18) f(x1, x2, x3) = f(ε) = 2
3p

(2 + ε + 3t)p
+

3pεp

(2 + (1 + 3t)ε)p .

ε is a critical point off(ε) if and only if it satisfies the equation

(4.19) h1(ε) := (2 + ε + 3t)ε
p−1
p+1 = 2 + (1 + 3t)ε =: h2(ε).
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Also, f ′′(ε) > 0 if and only if

(4.20) (p + 1)(2 + ε + 3t)−2−p > 2ε−2+p(2 + ε + 3εt)−2−p(1 + ε− p + 3εt).

ε = 1 is always a critical point, and is a minimum (as it must be, ifM−p(x + t) ≤
x + t) is to hold) exactly iff ′′(1) > 0, that is, ifp > 1 + 2t. From now on, then, we
will assume thatp > 1 + 2t.

Define

q :=

√
1 +

9t(1 + t)

2
,

and note that for allt > 0 we have1 + 2t < q < 1 + 3t. If we substitute the identity
(4.19) in (4.20) we obtain the condition

(4.21) p(ε) := (p− 1)(3t + 1)ε2 − 4(q2 − p)ε + 2(p− 1)(2 + 3t) > 0.

p(ε) is quadratic inε, and has discriminant∆ equal to

∆ := 72t(1 + t)(q2 − p2).

If p ≥ q then∆ ≤ 0, and this means (since thenp(ε) ≥ 0 always) that every critical
point of f(ε) is a local minimum: therefore,ε = 1 must be the only local minimum
in (0,∞). What is now left to do (in the casep ≥ q) is to examine the values of
f(ε) for ε → 0 andε → ∞. At both ends of the domainf(ε) must still be greater
or equal to3/(1 + t)p for the desired inequality to hold. These two conditions yield,
respectively, the inequalities

p > q1 :=
ln(3/2)

ln
(

3+3t
2+3t

) , p > q2 :=
ln(3)

ln
(

3+3t
1+3t

) .
Not to overburden the reader, let us just state that an analysis similar to the one we
carried out when proving (4.8) will be just as effective in showing that, for allt > 0,

q1 < q2 < 1 + 2t.
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Now, since we already saw that1 + 2t < q, we conclude that whenp ≥ q the
inequalityM−p(x + t) ≤ x + t will be true. The first inequality in Theorem2.2 is
thus proved.

As an aside, the case1 + 2t < p < q seems much harder to handle. Numerical
evidence points in the direction that for any such choice ofp there are counterex-
amples whereM−p(x + t) ≤ x + t fails, but we could not prove it. We could
understand why this might happen by noticing that ifp < q thenf(ε) definitely has
a chance to have a second local minimum at some locationε0 > 1. To see this, we
first observe thatf(ε) cannot have more than three critical points: this is because
(cf. (4.19)) h1(ε) is increasing for allε > 0, concave forε < (2 + 3t)/p and convex
for ε > (2 + 3t)/p. Sinceh2(ε) is linear, no more than three solutions of (4.19) are
possible. So, if1 + 2t < p < q then the discriminant ofp(ε) is positive, and thus
p(ε) has two distinct real roots. Since

p(1) = 9(1 + t) (p− (1 + 2t)) > 0, p′(1) = 6(1 + t) (p− (1 + 3t)) < 0,

both roots are greater than1. Thus, in this case, iff(ε) should have one more local
minimum, then it would have to be greater than1, and, in fact, greater than the
larger of the two roots ofp(ε), since no two local minima can be consecutive critical
points. The situation is technically murky here, however, and we will not pursue the
question further.

Proving the second inequality in Theorem2.2 is, in comparison, a breeze. First
notice thatMp(x + t) ≥ x + t will not possibly hold in general for any negativep.
On the other hand, if we focus on the geometric mean of the numbersxi + t, the
Lagrange method (under the conditionM−1(x) = 1) will very easily yield the only
solutionx1 = x2 = x3, and hence a quick path to the second inequality in Theorem
2.2. We leave the details to the reader.
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