

Journal of Inequalities in Pure and Applied Mathematics

http://jipam.vu.edu.au/

Volume 7, Issue 2, Article 68, 2006

A NOTE ON COMMUTATIVE BANACH ALGEBRAS

TAKASHI SANO

DEPARTMENT OF MATHEMATICAL SCIENCES FACULTY OF SCIENCE YAMAGATA UNIVERSITY YAMAGATA 990-8560, JAPAN. sano@sci.kj.yamagata-u.ac.jp

Received 09 March, 2006; accepted 06 April, 2006 Communicated by C.-K. Li

ABSTRACT. Let \mathcal{A} be a unital Banach algebra over \mathbb{C} with norm $\|\cdot\|$. In this note, several characterizations of commutativity of \mathcal{A} are given. For instance, it is shown that \mathcal{A} is commutative if

$$\|AB\| = \|BA\|$$

for all $A, B \in \mathcal{A}$, or if the spectral radius on \mathcal{A} is a norm.

Key words and phrases: Commutative Banach algebra; Norm; Similarity transformation; Spectral radius.

2000 Mathematics Subject Classification. 46J99, 47A30.

Let \mathcal{A} be a unital Banach algebra over \mathbb{C} with norm $\|\cdot\|$. In this note, several characterizations of the commutativity of \mathcal{A} are studied.

The following theorem is a simple characterization of commutativity in terms of norm inequalities, whose proof depends on complex analysis as the well-known one for the Fuglede-Putnum theorem, for instance, see [2, p. 278].

Theorem 1. Let \mathcal{A} be a unital Banach algebra over \mathbb{C} with norm $\|\cdot\|_0$. If there is a norm $\|\cdot\|$ on \mathcal{A} and positive constants γ, κ such that

$$||A|| \leq \gamma ||A||_0, \quad ||AB|| \leq \kappa ||BA||$$

for all $A, B \in A$, then A is commutative, that is, AB = BA for all $A, B \in A$.

Before giving a proof, we recall the definition of e^A for $A \in \mathcal{A}$:

$$e^A := \sum_{n=0}^{\infty} \frac{1}{n!} A^n \in \mathcal{A}.$$

ISSN (electronic): 1443-5756

^{© 2006} Victoria University. All rights reserved.

The author is grateful to the referee for careful reading of the manuscript and for helpful comments. 104-06

The assumption that \mathcal{A} is a complete, unital normed algebra with a submultiplicative norm guarantees the convergence of this infinite series in \mathcal{A} and implies

$$\frac{d}{dz}e^{zA} = Ae^{zA} \quad (z \in \mathbb{C}).$$

Proof. Let $A, B \in \mathcal{A}$. Let us consider the normed space $(\mathcal{A}, \|\cdot\|)$. For each bounded linear functional φ on this normed space, we define a complex-valued function f on \mathbb{C} by

$$f(z) := \varphi(e^{zA}Be^{-zA}) \quad (z \in \mathbb{C}).$$

Then the first assumption of $\|\cdot\|$ guarantees that f is an entire analytic function. f is also bounded: in fact, by the second assumption

$$\begin{aligned} |f(z)| &\leq \|\varphi\| \|e^{zA}Be^{-zA}\| \\ &\leq \kappa \|\varphi\| \|Be^{-zA} \cdot e^{zA}\| \\ &= \kappa \|\varphi\| \|B\| < \infty \qquad (z \in \mathbb{C}) \end{aligned}$$

Thus, by the Liouville theorem, f is constant. Hence,

$$0 = f'(z) = \varphi\left((Ae^{zA})Be^{-zA} + e^{zA}B(-Ae^{-zA})\right).$$

Putting z = 0 yields

$$\varphi(AB - BA) = 0$$

for each bounded linear functional φ on A. By the Hahn-Banach theorem, AB = BA and the proof is completed.

Remark 2.

- (1) By considering completion, we find it sufficient to assume in Theorem 1 that \mathcal{A} is a unital normed algebra over \mathbb{C} with submultiplicative norm $\|\cdot\|_0$.
- (2) The assumption that

$$|AB|| \leq \kappa ||BA||$$

for all $A, B \in \mathcal{A}$ can be replaced with a weaker one

$$|SAS^{-1}|| \leq \kappa ||A||$$

for all $A \in \mathcal{A}$ and all invertible $S \in \mathcal{A}$, or even further

$$\|e^{zA}Be^{-zA}\| \leq \kappa \|B\|$$

for all $A, B \in A$ and all $z \in \mathbb{C}$. In fact, it is essential to the proof of Theorem 1 that for given A, B

$$\sup\{\|e^{zA}Be^{-zA}\|: z \in \mathbb{C}\} < \infty.$$

Theorem 1 and Remark 1 (2) yield:

Corollary 3. Let \mathcal{A} be a unital Banach algebra over \mathbb{C} with norm $\|\cdot\|$. Suppose that there is a positive constant γ such that

$$\|AB\| \leqq \gamma \|BA\|$$

for all $A, B \in A$. Then A is commutative. In particular, if ||AB|| = ||BA|| for all $A, B \in A$, then A is commutative.

Corollary 4 ([1, Exercise IV 4.1]). On the set of all complex *n*-square matrices for $n \ge 2$ no norm is invariant under all similarity transformations.

See [1, p.102] for similarity transformations.

Corollary 5. Let \mathcal{A} be a unital Banach algebra over \mathbb{C} with norm $\|\cdot\|$. If the spectral radius is a norm on \mathcal{A} , then \mathcal{A} is commutative.

This follows from Theorem 1 and the properties of the spectral radius r(A) that r(AB) = r(BA) and $r(A) \leq ||A||$ for $A, B \in A$.

Remark 6. There is a unital Banach algebra whose spectral radius is not a norm but a seminorm. This semi-norm condition is not sufficient for commutativity.

In fact, let $\mathcal{A} \subseteq M_n(\mathbb{C})$ be the set of upper triangular matrices whose diagonal entries are identical; \mathcal{A} consists of $A := (a_{ij}) \in M_n(\mathbb{C})$ such that $a_{11} = a_{22} = \cdots = a_{nn}(=: \alpha)$ and $a_{ij} = 0$ (i > j). For this A, $r(A) = |\alpha|$ and the spectral radius on \mathcal{A} is a semi-norm. Therefore, the unital Banach algebra \mathcal{A} is a non-commutative example.

REFERENCES

- [1] R. BHATIA, Matrix Analysis, Springer-Verlag (1996).
- [2] J.B. CONWAY, A Course in Functional Analysis, 2nd Ed., Springer-Verlag, (1990).