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ABSTRACT. In this paper, we study the Hyers-Ulam stability problem for the following func-
tional equation

(E(K)) > / Flakp(y)k ) dwi (k) = |9| f(2)g(y), =,y € G,

peo K
whereG is a locally compact grougy is a compact subgroup ¢f, wy is the normalized Haar
measure ofi(, ® is a finite group ofK-invariant morphisms otz and f,g : G — C are
continuous complex-valued functions such tfiaatisfies the Kannappan type condition, for all
z,y,z € G

*) /K /K F(ehak="hyh=)dwe (k) dwpe (h)
_ / / F(zhyk—hah=Y)dwg (k) dwre ().
KJK

Our results generalize and extend the Hyers-Ulam stability obtained for the Wilson’s functional
equation.
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1. INTRODUCTION

Let G be alocally compact group. Léf be a compact subgroup 6f Letwy be the normal-
ized Haar measure df. A mappingy : G — G is a morphism of~ if ¢ is a homeomorphism
of G onto itself which is either a group-homomorphism, ie(«y) = ¢(x)e(y), z,y € G), or
a group-antihomomorphism, i.ep(zy) = ¢(y)e(z), z,y € G). We denote by or(G) the
group of morphism of7 and® a finite subgroup of\/or(G) of a K-invariant morphisms ofz
(i.e. o(K) C K). The number of elements of a finite gro®pwill be designated by®|. The
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2 BELAID BOUIKHALENE

Banach algebra of bounded measures-owith complex values is denoted by (G) and the
Banach space of all complex measurable and essentially bounded functiéhbyh..(G).
C(G) designates the Banach space of all continuous complex valued functighs on

In this paper we are going to generalize the results obtained in [1], [4] and [6] for the integral
equation

(L.1) 3 /fwlw i (k) = |01f(@)gly),  zyE G

ped

This equation may be considered as a common generalization of functional equations of Cauchy
and Wilson type

(1.2) flzy) = f(x)9ly),  xy€G,
(1.3) f(zy) + flzo(y) = 2f(2)g(y),  =y€QG,
whereos is an involution ofG. It is also a generalization of the equations
(1.4) | fakgk o) = f@g(w). wyeG.

K

(1.5) /Kf(:tk:yk: Ydwik (k / f(zko(y)k N dwk (k) = 2f(x)g(y), x,y € G,

(1.6) /K Faky)X(B)dwr (k) = f(@)g(y),  z.y€ G,

a.7) /Kf(xky k)dwg (k / flzko(y))x(k)dwk (k) = 2f(z)g(y), x,y € G,
(1.8) /K f(aky)dwr (k) = f(2)g(y), 7.y €G,

and

@9) [ skydont) + [ Skol)don) = 2f@aly), vy

If G is a compact group, the equati¢n (1.1) may be considered as a generalization of the equa-
tions

(1.10) /G flatyt )t = f(2)gy),  wy€G,

(L.11) /G F oty + /G Floto(y)t )t = 2f()gly), o,y € G,

and

(112) > [ tateti) it = ol ayeC
ped
Furthermore the following equations are also a particular cage ¢f (1.1).
(1.13) > flwey) = [@f(x)g(y),  w,y€EG,
ped
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(1.14) > [ fako@)den(t) = olf@)gln). oy e G
ped

and

(1.15) > [ akp)RE (i) = Bl @als). .y € G,
ped

wherey is a unitary character of .
In the next section, we note some results for later use.

2. GENERAL PROPERTIES
In what follows, we study general properties. etk and® given as above
Proposition 2.1([4]). For an arbitrary fixedr € ®, the mapping
b — P
QO — gp oT
is a bijection and for allz, y € G, we have

(2.1) Z/ fzko(T Ydwg (k Z/ f(xk(y)k ) dwg (k).

ped Ped

Proposmon 2.2.Lety € P andf € C(G), then we have

/ F (k) duor (k) = /K f(ako(yh)k Ydw(k), x5 € G heK.

i) If f satisfies[(¥), then for alk, z, y, z € G, we have
/ / F(shop(yhak—h ) dwge (h)dwge (k)
KJK
_ / / F(shop(ahyk— D) dwge () dwore (k).
KJK

/K/K/Kf(ahQO(zklykllhlxhll)h1)dwK(h)dwK(k1)dwK(hl)
:/K/K/Kf(ahgp(zk‘lxkzl_lhlyhl_l)h_l)dwK(h)dwK(kl)dwK(hl)‘

Proof. By easy computations. O

3. THE MAIN RESULTS
The main result is the following theorem.

Theorem 3.1.Letd > 0 and let(f,g) €C(G) such thatf satisfies the conditiorj |*) and the
functional inequality

Z/ flako(y)k™ ) dwi (k) — |®[f(x)g(y)| <6, z,y €G.

ped

(3.1)

Then
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1) f, g are bounded or
i) fis unbounded ang satisfies the equation

(3:2) > [ slokplh dow(h) = (@lg(@)als). .y €.

iii) ¢ is unboundedf satisfies the equation (1.1). Furthermor¢ i~ 0, theng is a solution

of (3.3).

Proof. Let (f, g) be a solution of the inequality (3.1), such thfas unbounded and satisfies the
condition (), then for allz, y, = € G, we get by using Propositiofs 2.1 gnd]2.2

Bl £(2)] S / (wkep(y)k)dwrc (k) — | @lg(x)g(y)
- / B (2)g (ko) )dwor (k) — | F(2)g(x)g(y)

IN

S [ 50 [ rtehitakok e don () dese(1)

ped Ped

— 01 Y [ alkpkdon()

fzhp(zke(y ) )dwK(h)dwK(k:)
=2
~ |@lgly F (k@) ) dwrc (k)
29
1ol > / F(ehip()h ) dwge () — |@]F()g()
Ped
gz / 3 / F (ko (y)e™ ) h ) dwc(h) — 9] (2)g(ako(y)k ) | duore (k)
Ped
3 / 3 / F(ehb(2)h e (y)k~))dwrc (k) — |@]g(y) F(zhap(x)h™) | dwe (h)
PYed TED
19l > / F ekt () dwr (k) — 8] ()g(2)
PYeP

< 2|95 + [®[|g(y)lo.

Since f is unbounded it follows thag is a solution of the functional equation (B.2). For the
second case léff, g) be a solution of the inequality (3.1) such thfasatisfies the conditiof {*)
andg is unbounded then for all, y, z € GG, one has

|||g(2)

H / F(ekp(y)k ) dur () — |21 £ (2)a(y)

ped
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= |3 [ 1Bla(e) ko) o ()~ [9Pg()f(2)o(o)
< f(zho(y)h ki (2)k™ ) dwg (h)dwg (k)
ZIE
~19l9(2) S [ Flakeu)kdon()
/ /f:rhw h ko(y)k™ ) dwg (h)dwg (k)
ped VK pep /K
— |®|g(y [k (2)k™ ") dwi (k)
23
+19lla)| [ [ Fakp(@k dunc(k) — [0]f()g(2)
Ped
< [ 13 [ ek oo e ()~ 919() (ko)) dore (b
ped Ped
3 [ S [ kot et o) — folatu)s (o) o)
Ped ped
+19llg)| [ [ £ (ohoeh) delh) ~ 9] (2)g()
Ped

< 2|95 + [®[|g(y)lo.

Sinceg is unbounded it follows thaf is a solution of[(1.]l). Now lef # 0, then there exists
a € G such thatf(a) # 0. Letn = |f( 7 and let

- o7 |Z/ Flakplapk™)duon (k).

By using Propositiof 2|2 it follows thdf satisfies the conditiofi (*), and by using the inequal-
ity ) one hagF(x) — g(z)| < ‘q)' sinceg is unbounded it follows thaf’ is unbounded.
Furthermore for alke, y € G we have

> [ Flakp(h dunc(k) - [BIF (@)g(y)

ped

i Ypea i flahip(zkeo(y)k™")n™" ) dwi (h)dwc (k)

1
- [2[f(a) |4

|¢|f Z/ flakp(x)k™")dwi (k)g(y)
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|c1>|f Z/ Z/ flahyp(z)h kT (y)k ™) dwy (k)

TeD
— || f (ahep(z)h™")g(y) | dwic (k)
<7
From the first case it follows thatis a solution of[(3.R). O

Corollary 3.2. Letd > 0 and let(f,g) €C(G) such thatf satisfies the conditior [*) and the
functional inequality

/ f(zkyk ™) dwg (k / f(zko(y)k Hdwg (k) — 2f(x)g(y)| <0, x,y€ G,

whereo is an involution onZ. Then

i) f, g are bounded or
i) fis unbounded and satisfies the equation

@4 [ glakyk o) + [ glohol)h dow(k) = 29(e)gly). .y €G.
K K
iii) ¢ is unboundedf satisfies the equatiof (1.5). Furthermord i~ 0, theng is a solution

of (3.4).

Remark 3.3. In the case wher@ = {I}, it is not necessary to assume thfasatisfies the
condition [¥) (seel[1l] and [6]).

(3.3)

4. APPLICATIONS

The following theorems are a particular case of Thedrein 3.1.
If K C Z(G), then we have

Theorem 4.1.Letd > 0 and letf, g be a complex-valued functions 6hsuch thatf satisfies
the Kannappan conditiorf12])

*) fzzy) = f(zyz),  x,yed
and the functional inequality

(4.1) > flwey) — 1@ f(x)gy)| <6, wyeG.

ped

Then

1) f, g are bounded or
i) fis unbounded and is a solution of the functional equation

(4.2) > glze(y) = |®lg(x)g(y),  wyed,
ped
iii) ¢ is unbounded and is a solution of[(1.113). Furthermore jf # 0 theng is a solution
of (@2).

Corollary 4.2. Letd > 0 and letf, g be a complex-valued functions Ghsuch thatf satisfies
the Kannappan condition

*) flzay) = f(zyx),  zyed
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and the functional inequality

(4.3) |f(zy) + f(zo(y)) —2f(x)g(y)| <9, =x,y €,

wherec is an involution onZ. Then

1) f, g are bounded or
i) fis unbounded ang is a solution of the functional equation

(4.4) 9(zy) + g(zo(y)) = 29(x)g9(y), 2,y €QG,
iii) ¢ is unbounded and is a solution of[(1.B). Furthermore jf # 0 theng is a solution of

@.4.
Remark 4.3. If G is abelian, then the conditiop|(*) holds.

If f(kzh) = x(k)f(x)x(h), k,h € K andx € G, wherey is a character o ([13]), then
we have

Theorem 4.4.Let§ > 0 and let(f,g) €C(G) such thatf(kxh) = x(k)f(x)x(h), k,h € K,
x € G,

* //fzkxhy E)X(h)dwg (k)dwg (h //fzkyh:c IX(h)dwg (k)dwg (h)

(4.5) 3 / Flako(y) Tk dwrc (k) — |91 ()g(y)

<4, x,y € G.

Then

i) f, g are bounded or
i) fis unbounded and is a solution of the functional equation

(4.6) 3 / F(ehp(y))X(k)dor (k) = [9]f (@) f(y), @y € G,
ped
iii) ¢ is unbounded and is a solution of[(1.15). Furthermore jf # 0 theng is a solution
of (4.8).

Corollary 4.5. Leté > 0 and let(f, g) € C(G) such thatf(kzh) = x(k)f(x)x(h), k,h € K,
x € G,

) / / F (kb ()R () dwre (k) dooe / / F(shyha X (k)X () deorc (K)dorc ()

(4.7)

/K Fleky) R (k) dwx (k / F (ko ()R (k) dwr (k) — 2f(@)g()| <6, 2.y € G.

whereo is an involution ofG. Then

i) f, g are bounded or
i) fis unbounded and is a solution of the functional equation

(4.8) /K g(wky)X(k)dwi (k) + / g(wko(y))x(k)dwk (k) = 2g9(x)g(y), =,y €.

K
iii) ¢ is unbounded and is a solution of[(1.]7). Furthermore jf # 0 theng is a solution of

@.8).
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Remark 4.6. If the algebraywy x M(G) » xwr is commutative then the conditioh| (*) holds
[4].

In the next theorem we assume thfato be bi&-invariant (i.e. f(hzk) = f(z),h,k €
K, x € G ([7], [10]), then we have

Theorem 4.7.Leto > 0 and let(f, g) € C(G) such thatf(kzh) = f(z), k,h € K,z € G,

/ / f(zkxhy)dwg (k)dwg (h / / f(zkyhz)dwg (k)dwg (h), x,y,z €G

(4.9) <9, x,y € G.

> [ koo () - 9] (@)aly)

ped

Then

1) f, g are bounded or
i) fis unbounded ang is a solution of the functional equation

(4.10) 3 / [(ehp(y)dor (k) = [0 f(2)[(y), 2.y € G,
ped
iif) ¢ is unbounded and is a solution of[(1.14). Furthermore jf # 0 theng is a solution

of @10).

Corollary 4.8 ([6]). Leto > 0 and let(f,g) € C(G) such thatf(kxh) = f(x), k,h € K,
xr € G,

/ / f(zkxhy)dwg (k)dwg (h / / f(zkyhz)dwg (k)dwg (h), x,y,z € G

(4.11)

/K F(wky)dwr (k) + /K f(ako () dor (k) — 2f()g(y)| <6, zyeG.

whereo is an involution ofG. Then

i) f, g are bounded or
i) fis unbounded and is a solution of the functional equation

@12) [ glekpduv) + [ glokol)dun(t) =20(0)sw). .y €.
K K
iii) ¢ is unbounded and is a solution of[(1.9). Furthermore jf # 0 theng is a solution of
#.12).

Remark 4.9. If the algebravy « M (G) x wy is commutative then the condition| (*) holds [4].
In the next corollary, we assume th@t= K is a compact group

Theorem 4.10.Leto > 0 and let(f, g) be complex measurable and essentially bounded func-
tions onG such thatf is a central function andf, g) satisfy the inequality

(4.13) Z/f:vtso Yt - |olf(@)ely)| <6, wyed.

ped

Then
I) fandg are bounded or
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i) fis unbounded and is a solution of the functional equation

(4.14) Z/Gg(xtw(y)tl)dtz [®lg(z)g(y),  =yed.

ped
iif) ¢ is unbounded ang = 0.

Proof. Let (f,g) € L>(G). Sincef is central [5], then it satisfies the conditidr} (*)([4]). For

(iii), if f # 0theng is a solution of the functional equatidn (4]14). In view of the proposition

in [9] we get the fact thag is continuous. Sincé&' is compact them is bounded. 0J
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