

Journal of Inequalities in Pure and Applied Mathematics

http://jipam.vu.edu.au/

Volume 5, Issue 4, Article 100, 2004

ON HYERS-ULAM STABILITY OF GENERALIZED WILSON'S EQUATION

BELAID BOUIKHALENE

Département de Mathématiques et Informatique, Université Ibn Tofail Faculté des Sciences BP 133 14000 Kénitra, Morocco. bbouikhalene@yahoo.fr

Received 20 May, 2004; accepted 15 September, 2004 Communicated by L. Losonczi

ABSTRACT. In this paper, we study the Hyers-Ulam stability problem for the following functional equation

$$(E(K)) \qquad \sum_{\varphi \in \Phi} \int_{K} f(xk\varphi(y)k^{-1})d\omega_{K}(k) = |\Phi|f(x)g(y), \ x, y \in G,$$

where G is a locally compact group, K is a compact subgroup of G, ω_K is the normalized Haar measure of K, Φ is a finite group of K-invariant morphisms of G and $f,g:G\longrightarrow \mathbb{C}$ are continuous complex-valued functions such that f satisfies the Kannappan type condition, for all $x,y,z\in G$

(*)
$$\int_{K} \int_{K} f(zkxk^{-1}hyh^{-1})d\omega_{K}(k)d\omega_{K}(h)$$
$$= \int_{K} \int_{K} f(zkyk^{-1}hxh^{-1})d\omega_{K}(k)d\omega_{K}(h).$$

Our results generalize and extend the Hyers-Ulam stability obtained for the Wilson's functional equation.

Key words and phrases: Functional equations, Hyers-Ulam stability, Wilson equation, Gelfand pairs.

2000 Mathematics Subject Classification. 39B72.

1. Introduction

Let G be a locally compact group. Let K be a compact subgroup of G. Let ω_K be the normalized Haar measure of K. A mapping $\varphi:G\to G$ is a morphism of G if φ is a homeomorphism of G onto itself which is either a group-homomorphism, i.e. $(\varphi(xy)=\varphi(x)\varphi(y),x,y\in G)$, or a group-antihomomorphism, i.e. $(\varphi(xy)=\varphi(y)\varphi(x),x,y\in G)$. We denote by Mor(G) the group of morphism of G and Φ a finite subgroup of Mor(G) of a K-invariant morphisms of G (i.e. $\varphi(K)\subset K$). The number of elements of a finite group Φ will be designated by $|\Phi|$. The

ISSN (electronic): 1443-5756

© 2004 Victoria University. All rights reserved.

Banach algebra of bounded measures on G with complex values is denoted by M(G) and the Banach space of all complex measurable and essentially bounded functions on G by $L_{\infty}(G)$. $\mathcal{C}(G)$ designates the Banach space of all continuous complex valued functions on G.

In this paper we are going to generalize the results obtained in [1], [4] and [6] for the integral equation

(1.1)
$$\sum_{\varphi \in \Phi} \int_K f(xk\varphi(y)k^{-1})d\omega_K(k) = |\Phi|f(x)g(y), \qquad x, y \in G.$$

This equation may be considered as a common generalization of functional equations of Cauchy and Wilson type

$$(1.2) f(xy) = f(x)g(y), x, y \in G,$$

$$(1.3) f(xy) + f(x\sigma(y)) = 2f(x)g(y), x, y \in G$$

where σ is an involution of G. It is also a generalization of the equations

(1.4)
$$\int_{K} f(xkyk^{-1})d\omega_{K}(k) = f(x)g(y), \qquad x, y \in G,$$

$$(1.5) \qquad \int_{K} f(xkyk^{-1})d\omega_{K}(k) + \int_{K} f(xk\sigma(y)k^{-1})d\omega_{K}(k) = 2f(x)g(y), \qquad x, y \in G,$$

(1.6)
$$\int_{K} f(xky)\overline{\chi}(k)d\omega_{K}(k) = f(x)g(y), \qquad x, y \in G,$$

$$(1.7) \qquad \int_{K} f(xky)\overline{\chi}(k)d\omega_{K}(k) + \int_{K} f(xk\sigma(y))\overline{\chi}(k)d\omega_{K}(k) = 2f(x)g(y), \qquad x, y \in G,$$

(1.8)
$$\int_{K} f(xky)d\omega_{K}(k) = f(x)g(y), \qquad x, y \in G,$$

and

(1.9)
$$\int_{K} f(xky)d\omega_{K}(k) + \int_{K} f(xk\sigma(y))d\omega_{K}(k) = 2f(x)g(y), \qquad x, y \in G.$$

If G is a compact group, the equation (1.1) may be considered as a generalization of the equations

(1.10)
$$\int_{C} f(xtyt^{-1})dt = f(x)g(y), \qquad x, y \in G,$$

(1.11)
$$\int_{G} f(xtyt^{-1})dt + \int_{G} f(xt\sigma(y)t^{-1})dt = 2f(x)g(y), \qquad x, y \in G,$$

and

(1.12)
$$\sum_{\varphi \in \Phi} \int_{G} f(xt\varphi(y)t^{-1})dt = |\Phi|f(x)g(y), \qquad x, y \in G.$$

Furthermore the following equations are also a particular case of (1.1).

(1.13)
$$\sum_{\varphi \in \Phi} f(x\varphi(y)) = |\Phi| f(x) g(y), \qquad x, y \in G,$$

(1.14)
$$\sum_{\omega \in \Phi} \int_{K} f(xk\varphi(y)) d\omega_{K}(k) = |\Phi| f(x)g(y), \qquad x, y \in G,$$

and

(1.15)
$$\sum_{\varphi \in \Phi} \int_{K} f(xk\varphi(y))\overline{\chi}(k)d\omega_{K}(k) = |\Phi|f(x)g(y), \qquad x, y \in G,$$

where χ is a unitary character of K.

In the next section, we note some results for later use.

2. GENERAL PROPERTIES

In what follows, we study general properties. Let G, K and Φ given as above

Proposition 2.1 ([4]). For an arbitrary fixed $\tau \in \Phi$, the mapping

$$\begin{array}{l} \Phi \longrightarrow \Phi \\ \varphi \mapsto \varphi \circ \tau \end{array}$$

is a bijection and for all $x, y \in G$, we have

(2.1)
$$\sum_{\omega \in \Phi} \int_{K} f(xk\varphi(\tau(y))k^{-1})d\omega_{K}(k) = \sum_{\psi \in \Phi} \int_{K} f(xk\psi(y)k^{-1})d\omega_{K}(k).$$

Proposition 2.2. Let $\varphi \in \Phi$ and $f \in C(G)$, then we have

 $\int_{K} f(xk\varphi(hy)k^{-1})d\omega_{K}(k) = \int_{K} f(xk\varphi(yh)k^{-1})d\omega_{K}(k), \qquad x, y \in G, h \in K.$

ii) If f satisfies (*), then for all $a, z, y, x \in G$, we have

$$\begin{split} \int_K \int_K f(zh\varphi(ykxk^{-1})h^{-1})d\omega_K(h)d\omega_K(k) \\ &= \int_K \int_K f(zh\varphi(xkyk^{-1})h^{-1})d\omega_K(h)d\omega_K(k). \end{split}$$

and

$$\int_{K} \int_{K} \int_{K} f(ah\varphi(zk_{1}yk_{1}^{-1}h_{1}xh_{1}^{-1})h^{-1})d\omega_{K}(h)d\omega_{K}(k_{1})d\omega_{K}(h_{1})
= \int_{K} \int_{K} \int_{K} \int_{K} f(ah\varphi(zk_{1}xk_{1}^{-1}h_{1}yh_{1}^{-1})h^{-1})d\omega_{K}(h)d\omega_{K}(k_{1})d\omega_{K}(h_{1}).$$

Proof. By easy computations.

3. THE MAIN RESULTS

The main result is the following theorem.

Theorem 3.1. Let $\delta > 0$ and let $(f,g) \in C(G)$ such that f satisfies the condition (*) and the functional inequality

(3.1)
$$\left| \sum_{\varphi \in \Phi} \int_{K} f(xk\varphi(y)k^{-1}) d\omega_{K}(k) - |\Phi| f(x)g(y) \right| \leq \delta, \quad x, y \in G.$$

Then

- i) f, g are bounded or
- ii) f is unbounded and g satisfies the equation

(3.2)
$$\sum_{\varphi \in \Phi} \int_{K} g(xk\varphi(y)k^{-1})d\omega_{K}(k) = |\Phi|g(x)g(y), \qquad x, y \in G.$$

iii) g is unbounded, f satisfies the equation (1.1). Furthermore if $f \neq 0$, then g is a solution of (3.2).

Proof. Let (f, g) be a solution of the inequality (3.1), such that f is unbounded and satisfies the condition (*), then for all $x, y, z \in G$, we get by using Propositions 2.1 and 2.2

$$\begin{split} &|\Phi||f(z)|\left|\sum_{\varphi\in\Phi}\int_{K}g(xk\varphi(y)k^{-1})d\omega_{K}(k)-|\Phi|g(x)g(y)\right|\\ &=\left|\sum_{\varphi\in\Phi}\int_{K}|\Phi|f(z)g(xk\varphi(y)k^{-1})d\omega_{K}(k)-|\Phi|^{2}f(z)g(x)g(y)\right|\\ &\leq\left|\sum_{\varphi\in\Phi}\int_{K}\sum_{\psi\in\Phi}\int_{K}f(zh\psi(xk\varphi(y)k^{-1})h^{-1})d\omega_{K}(h)d\omega_{K}(k)\\ &-|\Phi|f(z)\sum_{\varphi\in\Phi}\int_{K}g(xk\varphi(y)k^{-1})d\omega_{K}(k)\right|\\ &+\left|\sum_{\psi\in\Phi}\int_{K}\sum_{\varphi\in\Phi}\int_{K}f(zh\psi(xk\varphi(y)k^{-1})h^{-1})d\omega_{K}(h)d\omega_{K}(k)\\ &-|\Phi|g(y)\sum_{\psi\in\Phi}\int_{K}f(zh\psi(x)k^{-1})d\omega_{K}(k)\right|\\ &+|\Phi||g(y)|\left|\sum_{\psi\in\Phi}\int_{K}f(zh\psi(x)h^{-1})d\omega_{K}(h)-|\Phi|f(z)g(x)\right|\\ &\leq\sum_{\varphi\in\Phi}\int_{K}\left|\sum_{\psi\in\Phi}\int_{K}f(zh\psi(xk\varphi(y)k^{-1})h^{-1})d\omega_{K}(h)-|\Phi|f(z)g(xk\varphi(y)k^{-1})\right|d\omega_{K}(k)\\ &+\sum_{\psi\in\Phi}\int_{K}\left|\sum_{\tau\in\Phi}\int_{K}f(zh\psi(x)h^{-1}k\tau(y)k^{-1}))d\omega_{K}(k)-|\Phi|g(y)f(zh\psi(x)h^{-1})\right|d\omega_{K}(h)\\ &+|\Phi||g(y)|\left|\sum_{\psi\in\Phi}\int_{K}f(zk\psi(x)k^{-1})d\omega_{K}(k)-|\Phi|f(z)g(x)\right|\\ &\leq2|\Phi|\delta+|\Phi||g(y)|\delta. \end{split}$$

Since f is unbounded it follows that g is a solution of the functional equation (3.2). For the second case let (f,g) be a solution of the inequality (3.1) such that f satisfies the condition (*) and g is unbounded then for all $x, y, z \in G$, one has

$$|\Phi||g(z)|\left|\sum_{\varphi\in\Phi}\int_K f(xk\varphi(y)k^{-1})d\omega_K(k) - |\Phi|f(x)g(y)\right|$$

$$\begin{split} &= \left| \sum_{\varphi \in \Phi} \int_{K} \left| \Phi|g(z) f(xk\varphi(y)k^{-1}) d\omega_{K}(k) - |\Phi|^{2}g(z) f(x)g(y) \right| \\ &\leq \left| \sum_{\psi \in \Phi} \int_{K} \sum_{\varphi \in \Phi} \int_{K} f(xh\varphi(y)h^{-1}k\psi(z)k^{-1}) d\omega_{K}(h) d\omega_{K}(k) \right| \\ &- |\Phi|g(z) \sum_{\varphi \in \Phi} \int_{K} f(xk\varphi(y)k^{-1}) d\omega_{K}(k) \right| \\ &+ \left| \sum_{\varphi \in \Phi} \int_{K} \sum_{\psi \in \Phi} \int_{K} f(xh\psi(z)h^{-1}k\varphi(y)k^{-1}) d\omega_{K}(h) d\omega_{K}(k) \right| \\ &- |\Phi|g(y) \sum_{\psi \in \Phi} \int_{K} f(xk\psi(z)k^{-1}) d\omega_{K}(k) \right| \\ &+ |\Phi||g(y) \left| \left| \sum_{\psi \in \Phi} \int_{K} f(xk\psi(z)k^{-1}) d\omega_{K}(k) - |\Phi|f(x)g(z) \right| \\ &\leq \sum_{\varphi \in \Phi} \int_{K} \left| \sum_{\psi \in \Phi} \int_{K} f(xk\varphi(y)k^{-1}h\psi(z)h^{-1}) d\omega_{K}(h) - |\Phi|g(z)f(xk\varphi(y)k^{-1}) \right| d\omega_{K}(k) \\ &+ \sum_{\psi \in \Phi} \int_{K} \left| \sum_{\varphi \in \Phi} \int_{K} f(xk\psi(z)k^{-1}h\varphi(y)h^{-1}) d\omega_{K}(h) - |\Phi|g(y)f(xk\psi(z)k^{-1}) \right| d\omega_{K}(k) \\ &+ |\Phi||g(y)| \left| \sum_{\psi \in \Phi} \int_{K} f\left(xk\psi(z)k^{-1}h\varphi(y)h^{-1}\right) d\omega_{K}(k) - |\Phi|f(x)g(z) \right| \\ &\leq 2|\Phi|\delta + |\Phi||g(y)|\delta. \end{split}$$

Since g is unbounded it follows that f is a solution of (1.1). Now let $f \neq 0$, then there exists $a \in G$ such that $f(a) \neq 0$. Let $\eta = \frac{\delta}{|f(a)|}$ and let

$$F(x) = \frac{1}{|\Phi||f(a)|} \sum_{\varphi \in \Phi} \int_K f(ak\varphi(x)k^{-1}) d\omega_K(k).$$

By using Proposition 2.2 it follows that F satisfies the condition (*), and by using the inequality (3.1) one has $|F(x) - g(x)| \le \frac{\eta}{|\Phi|}$, since g is unbounded it follows that F is unbounded. Furthermore for all $x, y \in G$ we have

$$\left| \sum_{\varphi \in \Phi} \int_{K} F(xk\varphi(y)k^{-1}) d\omega_{K}(k) - |\Phi|F(x)g(y) \right|$$

$$= \frac{1}{|\Phi|f(a)} \left| \sum_{\varphi \in \Phi} \int_{K} \sum_{\psi \in \Phi} \int_{K} f(ah\psi(xk\varphi(y)k^{-1})h^{-1}) d\omega_{K}(h) d\omega_{K}(k) \right|$$

$$- |\Phi| \frac{1}{|\Phi|f(a)} \sum_{\varphi \in \Phi} \int_{K} f(ak\varphi(x)k^{-1}) d\omega_{K}(k)g(y) \right|$$

$$\leq \frac{1}{|\Phi|f(a)} \sum_{\varphi \in \Phi} \int_{K} \left| \sum_{\tau \in \Phi} \int_{K} f(ah\psi(x)h^{-1}k\tau(y)k^{-1}) d\omega_{K}(k) - |\Phi|f(ah\varphi(x)h^{-1})g(y)| d\omega_{K}(k) \right| \leq \eta.$$

From the first case it follows that g is a solution of (3.2).

Corollary 3.2. Let $\delta > 0$ and let $(f,g) \in C(G)$ such that f satisfies the condition (*) and the functional inequality

(3.3)
$$\left| \int_K f(xkyk^{-1})d\omega_K(k) + \int_K f(xk\sigma(y)k^{-1})d\omega_K(k) - 2f(x)g(y) \right| \le \delta, \quad x, y \in G,$$

where σ is an involution on G. Then

- i) f, g are bounded or
- ii) f is unbounded and g satisfies the equation

$$(3.4) \qquad \int_K g(xkyk^{-1})d\omega_K(k) + \int_K g(xk\sigma(y)k^{-1})d\omega_K(k) = 2g(x)g(y), \qquad x, y \in G.$$

iii) g is unbounded, f satisfies the equation (1.5). Furthermore if $f \neq 0$, then g is a solution of (3.4).

Remark 3.3. In the case where $\Phi = \{I\}$, it is not necessary to assume that f satisfies the condition (*) (see [1] and [6]).

4. APPLICATIONS

The following theorems are a particular case of Theorem 3.1.

If $K \subset Z(G)$, then we have

Theorem 4.1. Let $\delta > 0$ and let f, g be a complex-valued functions on G such that f satisfies the Kannappan condition ([12])

$$f(zxy) = f(zyx), \qquad x, y \in G$$

and the functional inequality

(4.1)
$$\left| \sum_{x \in \Phi} f(x\varphi(y)) - |\Phi| f(x) g(y) \right| \le \delta, \qquad x, y \in G.$$

Then

- i) f, g are bounded or
- ii) f is unbounded and g is a solution of the functional equation

(4.2)
$$\sum_{\varphi \in \Phi} g(x\varphi(y)) = |\Phi|g(x)g(y), \qquad x, y \in G,$$

iii) g is unbounded and f is a solution of (1.13). Furthermore if $f \neq 0$ then g is a solution of (4.2).

Corollary 4.2. Let $\delta > 0$ and let f, g be a complex-valued functions on G such that f satisfies the Kannappan condition

$$(*) f(zxy) = f(zyx), x, y \in G$$

and the functional inequality

$$(4.3) |f(xy) + f(x\sigma(y)) - 2f(x)g(y)| \le \delta, \quad x, y \in G,$$

where σ is an involution on G. Then

- i) f, g are bounded or
- ii) f is unbounded and g is a solution of the functional equation

$$(4.4) g(xy) + g(x\sigma(y)) = 2g(x)g(y), x, y \in G,$$

iii) g is unbounded and f is a solution of (1.3). Furthermore if $f \neq 0$ then g is a solution of (4.4).

Remark 4.3. If G is abelian, then the condition (*) holds.

If $f(kxh) = \chi(k)f(x)\chi(h)$, $k, h \in K$ and $x \in G$, where χ is a character of K ([13]), then we have

Theorem 4.4. Let $\delta > 0$ and let $(f,g) \in \mathcal{C}(G)$ such that $f(kxh) = \chi(k)f(x)\chi(h)$, $k,h \in K$, $x \in G$,

$$(*) \quad \int_K \int_K f(zkxhy)\overline{\chi}(k)\overline{\chi}(h)d\omega_K(k)d\omega_K(h) = \int_K \int_K f(zkyhx)\overline{\chi}(k)\overline{\chi}(h)d\omega_K(k)d\omega_K(h)$$

and

(4.5)
$$\left| \sum_{\varphi \in \Phi} \int_{K} f(xk\varphi(y)) \overline{\chi}(k) d\omega_{K}(k) - |\Phi| f(x)g(y) \right| \leq \delta, \qquad x, y \in G.$$

Then

- i) f, q are bounded or
- ii) f is unbounded and g is a solution of the functional equation

(4.6)
$$\sum_{\varphi \in \Phi} \int_{K} f(xk\varphi(y))\overline{\chi}(k)d\omega_{K}(k) = |\Phi|f(x)f(y), \qquad x, y \in G,$$

iii) g is unbounded and f is a solution of (1.15). Furthermore if $f \neq 0$ then g is a solution of (4.6).

Corollary 4.5. Let $\delta > 0$ and let $(f,g) \in \mathcal{C}(G)$ such that $f(kxh) = \chi(k)f(x)\chi(h)$, $k,h \in K$, $x \in G$.

$$(*) \quad \int_K \int_K f(zkxhy)\overline{\chi}(k)\overline{\chi}(h)d\omega_K(k)d\omega_K(h) = \int_K \int_K f(zkyhx)\overline{\chi}(k)\overline{\chi}(h)d\omega_K(k)d\omega_K(h)$$

and

$$(4.7) \left| \int_{K} f(xky)\overline{\chi}(k)d\omega_{K}(k) + \int_{K} f(xk\sigma(y))\overline{\chi}(k)d\omega_{K}(k) - 2f(x)g(y) \right| \leq \delta, \quad x, y \in G.$$

where σ is an involution of G. Then

- i) f, q are bounded or
- ii) f is unbounded and g is a solution of the functional equation

$$(4.8) \qquad \int_{K} g(xky)\overline{\chi}(k)d\omega_{K}(k) + \int_{K} g(xk\sigma(y))\overline{\chi}(k)d\omega_{K}(k) = 2g(x)g(y), \qquad x, y \in G.$$

iii) g is unbounded and f is a solution of (1.7). Furthermore if $f \neq 0$ then g is a solution of (4.8).

Remark 4.6. If the algebra $\overline{\chi}\omega_K \star M(G) \star \overline{\chi}\omega_K$ is commutative then the condition (*) holds [4].

In the next theorem we assume that f to be bi-K-invariant (i.e. $f(hxk) = f(x), h, k \in K, x \in G$ ([7], [10]), then we have

Theorem 4.7. Let $\delta > 0$ and let $(f,g) \in \mathcal{C}(G)$ such that f(kxh) = f(x), $k,h \in K$, $x \in G$,

(*)
$$\int_K \int_K f(zkxhy)d\omega_K(k)d\omega_K(h) = \int_K \int_K f(zkyhx)d\omega_K(k)d\omega_K(h), \qquad x, y, z \in G$$

and

(4.9)
$$\left| \sum_{\varphi \in \Phi} \int_{K} f(xk\varphi(y)) d\omega_{K}(k) - |\Phi| f(x) g(y) \right| \leq \delta, \qquad x, y \in G.$$

Then

- i) f, g are bounded or
- ii) f is unbounded and g is a solution of the functional equation

(4.10)
$$\sum_{\omega \in \Phi} \int_{K} f(xk\varphi(y)) d\omega_{K}(k) = |\Phi| f(x) f(y), \qquad x, y \in G,$$

iii) g is unbounded and f is a solution of (1.14). Furthermore if $f \neq 0$ then g is a solution of (4.10).

Corollary 4.8 ([6]). Let $\delta > 0$ and let $(f,g) \in \mathcal{C}(G)$ such that f(kxh) = f(x), $k,h \in K$, $x \in G$,

(*)
$$\int_{K} \int_{K} f(zkxhy)d\omega_{K}(k)d\omega_{K}(k) = \int_{K} \int_{K} f(zkyhx)d\omega_{K}(k)d\omega_{K}(k), \qquad x, y, z \in G$$

and

$$\left| \int_{K} f(xky) d\omega_{K}(k) + \int_{K} f(xk\sigma(y)) d\omega_{K}(k) - 2f(x)g(y) \right| \leq \delta, \quad x, y \in G.$$

where σ is an involution of G. Then

- i) f, g are bounded or
- ii) f is unbounded and q is a solution of the functional equation

(4.12)
$$\int_{K} g(xky)d\omega_{K}(k) + \int_{K} g(xk\sigma(y))d\omega_{K}(k) = 2g(x)g(y), \qquad x, y \in G.$$

iii) g is unbounded and f is a solution of (1.9). Furthermore if $f \neq 0$ then g is a solution of (4.12).

Remark 4.9. If the algebra $\omega_K \star M(G) \star \omega_K$ is commutative then the condition (*) holds [4].

In the next corollary, we assume that G = K is a compact group

Theorem 4.10. Let $\delta > 0$ and let (f, g) be complex measurable and essentially bounded functions on G such that f is a central function and (f, g) satisfy the inequality

(4.13)
$$\left| \sum_{\varphi \in \Phi} \int_{G} f(xt\varphi(y)t^{-1})dt - |\Phi|f(x)g(y) \right| \leq \delta, \qquad x, y \in G.$$

Then

i) f and g are bounded or

ii) f is unbounded and g is a solution of the functional equation

(4.14)
$$\sum_{\varphi \in \Phi} \int_{G} g(xt\varphi(y)t^{-1})dt = |\Phi|g(x)g(y), \qquad x, y \in G.$$

iii) g is unbounded and $f \equiv 0$.

Proof. Let $(f,g) \in L^{\infty}(G)$. Since f is central [5], then it satisfies the condition (*) ([4]). For (iii), if $f \neq 0$ then g is a solution of the functional equation (4.14). In view of the proposition in [9] we get the fact that g is continuous. Since G is compact then g is bounded.

REFERENCES

- [1] R. BADORA, On Hyers-Ulam stability of Wilson's functional equation, *Aequations Math.*, **60** (2000), 211–218.
- [2] J. BAKER, J. LAWRENCE AND F. ZORZITTO, The stability of the equation f(x+y) = f(x)f(y), *Proc. Amer. Math. Soc.*, **74** (1979), 242–246.
- [3] J. BAKER, The stability of the cosine equation, *Proc. Amer. Math. Soc.*, **80**(3) (1980), 411–416.
- [4] B. BOUIKHALENE, On the stability of a class of functional equations, *J. Inequal. in Pure & Appl. Math.*, **4**(5) (2003), Article 104. [ONLINE http://jipam.vu.edu.au/article.php?sid=345]
- [5] J.L. CLERC, Les représentations des groupes compacts, *Analyse Harmoniques*, les Cours CIMPA, Université de Nancy I, 1980.
- [6] E. ELQORACHI AND M. AKKOUCHI, On Hyers-Ulam stability of Cauchy and Wilson equations, *Georgian Math. J.*, **11**(1) (2004), 69–82.
- [7] J. FARAUT, Analyse Harmonique sur les Paires de Guelfand et les Espaces Hyperboliques, les Cours CIMPA, Université de Nancy I, 1980.
- [8] W. FORG-ROB AND J. SCHWAIGER, The stability of some functional equations for generalized hyperbolic functions and for the generalized hyperbolic functions and for the generalized cosine equation, *Results in Math.*, **26** (1994), 247–280.
- [9] Z. GAJDA, On functional equations associated with characters of unitary representations of groups, *Aequationes Math.*, **44** (1992), 109–121.
- [10] S. HELGASON, Groups and Geometric Analysis, Academic Press, New York-London 1984.
- [11] E. HEWITT AND K.A. ROSS, *Abstract Harmonic Analysis*, Vol. I and II. Springer-Verlag, Berlin-Gottingen-Heidelberg, 1963.
- [12] Pl. KANNAPPAN, The functional equation $f(xy) + f(xy^{-1}) = 2f(x)f(y)$, for groups, *Proc. Amer. Math. Soc.*, **19** (1968), 69–74.
- [13] R. TAKAHASHI, $SL(2,\mathbb{R})$, Analyse Harmoniques, les Cours CIMPA, Université de Nancy I, 1980.