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2 S.S. IRAGOMIR, Y.J. CHO, S.S. KM, AND A. SOFO

1. INTRODUCTION

Let (H; (-, -)) be an inner product space over the real or complex numbeiielfi(e;), ..,
are orthonormal vectors in the inner product spHcee., (e;, ;) = d;; forall4,5 € {1,...,n}
wherey;; is the Kronecker delta, then the following inequality is well known in the literature as
Bessel's inequality (see for example [9, p. 391)):

n
Do lze)l” < )
i=1

forany z € H.
For other results related to Bessel's inequality, 5€e [5] — [7] and Chapter XV in the/book [9].
In 1941, R.P. Boas [2] and in 1944, independently, R. Bellman [1] proved the following
generalization of Bessel's inequality (see also [9, p. 392]).

Theorem 1.1.1f x, vy, ...,y, are elements of an inner product spadé; (-, -)) , then the fol-
lowing inequality:

1
n 3
2 2 2 2
> 1wl < el | s o +< > |<yz-,yj>\)

1<i#j<n

holds.

Itis the main aim of the present paper to point out the corresponding version of Boas-Bellman
inequality in 2-inner product spaces. Some natural generalizations and related results are also
pointed out. Applications for determinantal integral inequalities are provided.

For a comprehensive list of fundamental results on 2-inner product spaces and linear 2-
normed spaces, see the recent bobks [3]land [8] where further references are given.

2. BESSEL'SINEQUALITY IN 2-INNER PRODUCT SPACES

The concepts of-inner products and-inner product spaces have been intensively studied
by many authors in the last three decades. A systematic presentation of the recent results related
to the theory oR-inner product spaces as well as an extensive list of the related references can
be found in the booK [3]. Here we give the basic definitions and the elementary properties of
2-inner product spaces.

Let X be a linear space of dimension greater thayver the fieldK = R of real numbers
or the fieldK = C of complex numbers. Suppose that|-) is aK-valued function defined on
X x X x X satisfying the following conditions:

(211) (z,x|z) > 0and(z,z|z) = 0 if and only if z andz are linearly dependent;

(
(2L) (z,z[2) = (2, 2|2),
(2Ls) (y,72) = (2,9]2),
(21) (az,y|z) = a(z,y|z) for any scalar € K,
(2I5) (z+2',ylz) = (2,y[2) + (¢, y[2).

(+,+|-) is called a2-inner producton X and (X, (-,-|-)) is called a2-inner product space
(or 2-pre-Hilbert spacg Some basic properties @finner products-, -|-) can be immediately
obtained as follows |4]:

(1) If K =R, then(213) reduces to
(y, z[2) = (2,y]2).
(2) From(215) and(21,), we have
(0,yz) =0, (z,0]z) =0
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and
(2.1) (z, oy|z) = a(z,ylz).
(3) Using(215) — (21I5), we have
(z,zlz £ y) = (x £y, x L y|z) = (z,2[2) + (y,y]2) £ 2Re(z, y2)

and
1

(2.2) Re(z,yl2) = 7 [(z, 2]z +y) = (2, 2]z = y)].
In the real case| (2.2) reduces to

1
(23) (I,y|2) = Z[<Z7Z"r+y)_ (Z,Z‘I—y)]
and, using this formula, it is easy to see that, for any R,
(2.4) (2, ylaz) = a*(x,yl2).

In the complex case, using (2.1) and {2.2), we have

Im(z,y|2) = Re[—i(z, y|2)] = i[(za 2l +iy) = (2, z[x — iy)],

which, in combination with[(2]2), yields

25)  (yl2) = (s 2la +9) — (2 2le — )] + Sl 2o+ i) — (2,2l — i)
Using the above formula and (2.1), we have, for any C,
(2.6) (2, ylaz) = [af*(z,y|2).
However, fora € R, (2.6) reduces tq (2.4). Also, frorn (2.6) it follows that
(z,y[0) = 0.

(4) For any three given vectors y, z € X, consider the vectar = (y,y|z)z — (z,y|2)y. By
(21,), we know that(u, u|z) > 0 with the equality if and only if; andz are linearly dependent.
The inequality(u, u|z) > 0 can be rewritten as

(2.7) (y, yl2)[(z, 2]2)(y, yl2) = |(z, y]2)]] = 0.
Forx = z, (2.1) becomes
—(y, y12)|(z, yl2)* > 0,

which implies that
(2.8) (2,y[2) = (y, 2]2) = 0,
providedy and z are linearly independent. Obviously, whegrand > are linearly dependent,
(2.8) holds too. Thug (2.8) is true for any two vectgrs € X. Now, if y andz are linearly
independent, thefy, y|z) > 0 and, from[(2.F), it follows that
(2.9) (2, y12)|* < (2, 2]2) (g, yl2).
Using (2.8), it is easy to check that (R.9) is trivially fulfilled wheandz are linearly dependent.
Therefore, the inequality (2.9) holds for any three vectarg, = € X and is strict unless the
vectorsu = (y,y|z)z — (z,y|z)y andz are linearly dependent. In fact, we have the equality in
(2.9) if and only if the three vectors y andz are linearly dependent.

In any given2-inner product spaceX, (-, - | -)), we can define a functio- | - || on X x X
by

(2.10) ]zl = v/ (2, z]2)
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forall z,z € X.
It is easy to see that this function satisfies the following conditions:

(2Ny) ||z|z|| > 0 and||z|z|| = 0 if and only if z andz are linearly dependent,
(2N2) |zl = [l=]=],
(2N3) ||ax|z|| = |al||z|z|| for any scalan € K,
(2Na) [z + 2'[z]] < [lz|z]| + [[2"]=]]-

Any function|| - | - || defined onX x X and satisfying the condition@N;) — (21V,) is called
a2-normon X and (X, | - | - ||) is called alinear 2-normed spacg8]. Whenever a-inner
product spaceX, (-, -|-)) is given, we consider it as a lineamormed spacéX, || - | - ||) with

the2-norm defined by{ (2.10).

Let (X;(-,-|-)) be a 2-inner product space over the real or complex number eldf
(€i),<;<, are linearly independent vectors in the 2-inner product spacand, for a given
z € X, (e;,ej]z) = & foralli,j € {1,...,n} whered,; is the Kronecker delta (we say that the
family (e;),,.,, is z—orthonormal), then the following inequality is the corresponding Bessel’s
inequality (see for exampl&l[4]) for the-orthonormal family(e;),,,, in the 2-inner product

space(X; (-, -|-)):

(2.11) > (@ el2)” < 2]

=1

forany x € X. For more details about this inequality, see the recent paper [4] and the references
therein.

3. SOME |INEQUALITIES FOR 2-NORMS

We start with the following lemma which is also interesting in itself.

Lemma3.l.Letz,...,z,,2 € X anduy,...,u, € K. Then one has the inequality:

2

(3.1)

n
Z pizil2
i=1

) 2
lrglaglui\ > i lzilzl7

l l
< 9§ (™) (ZL ||ZZ-IZ||M)”@ , wherea >1,2+ 4 =1;
n 2 2
| 2in wil” max [lzif=]
Jnax {lrirssl} 2o cizjen (20 2512) )5
i 1 ;
2 2 1
Oyl )™ = (20 Ll 7)T( ) |(zi,zj|Z)|> :
+¢ L 1<ij<n

1 1 __ 1.
where v > 1, sts=1

[ n 2 n 2
(i el = i il e (s, 212)]

1<i£j<n
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Proof. We observe that

n
>l
i=1

(3.2)

2 n n
= (Z HiZis Z HjZj ’Z)
i=1 j=1
=D > i (i, 712)

i=1 j=1
= D> i (2, 2]2)
i=1 j=1
<O il 17511 (24, 2512))
i=1 j=1
2 2
= P Mzl + D lpal Il (i, 2512)]
i=1 1<i£j<n

Using Holder’s inequality, we may write that

n
2 2.
max il 2 il

n 1 1
n « n B
(3:3) Yl [zl < (z |M|2a) (z ||z,-|z||25) , wherea>1,2+2%=1;
i=1 i=1 =1

n 2 2
? s =P

|,Ui
1

\ =

By Hoélder’s inequality for double sums, we also have

B4) D lwl il (21, 212)]

1<ij<n
lglg?;n |2 f 19;@ | (21, 2]2) 5
: 3
)
< >l |l < > ‘(thj"z)‘) , Wherey > 1, >+ 5 =1;
1<iZj<n 1<iZj<n
; ; max Zis iR
PRI ]
¢ . . .
131?7?]‘};71 {|PJ1MJ|} 19%;91 (2, ZJ|Z)| ;

(Z wr) - (& '“@"2”)] % (; (= zjw) |

1 1 _ 1.
where v > 1, ;+3—1,

n 2 n
2
(z |uz-|) > Imll max (20 25]2)]

1<iZj<n

\ L
Utilizing (8.3) and [(3.%) in[(3]2), we may deduce the desired resulf (3.1).

Remark 3.2. Inequality [3.1) contains in fact 9 different inequalities which may be obtained

combining the first 3 ones with the last 3 ones.
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A patrticular result of interest is embodied in the following inequality.

Corollary 3.3. With the assumptions in Lemina]3.1, we have

2

(3.5)

; 1 )

(é'“i'z)g‘é'““r ( );

Y Gzl

n
<3l { max ]2l +

n
= > [l 1<izj<n
i=1
\ /
1
2
<3 { et s (3 (s
1<i#j<n

The first inequality follows by taking the third branch in the first curly bracket with the second
branch in the second curly bracket fpe= 6 = 2.
The second inequality if (3.5) follows by the fact that

1
(gm) S Sl
=1 =1 =1

Applying the following Cauchy-Bunyakovsky-Schwarz inequality

n 2 n
9) (z) <n3a weR, 1gisn

i=1 =1

we may write that

(3.7) (Z !ml”) D T <=1 |l (n>=1)

1=1 =1 =1

and

(3.8) (Z \m\) - Z il < (n—1) Z > (n>1).

Also, it is obvious that:

(3.9) max {|pp]} < max [

1<i£j<n 1<i<n

Consequently, we may state the following coarser upper boundfor, ,uizi|z||2 that may
be useful in applications.
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Corollary 3.4. With the assumptions in Lemina]3.1, we have the inequalities:

(
max ||’ Z [EAE

1<i<n

1

1
n @ n B
(;w ) (2 ||zi|z||2ﬁ) |

1 1 _
Wherea>1,a+5—1,

(3.10)

> pal? pua 111,

\ =1

( max |l Z (i, 2[2)] 5

(e W)i <1S#zjgnrz<i,zjrz>\5> ,

1 1 _ 1.
where v > 1, ;+3—1,

=

n
2
| (=D 2l max (i, 12)]

The proof is obvious by Lemmja 3.1 on applying the inequalifies (3.7) 3 (3.9).

Remark 3.5. The following inequalities which are incorporated|in (3.10) are of special interest:

2 .
(3.11) 2|2 <1f§85< Ik [ZH%\ZH + ) ](zi,zj|z)]],
i=1 1<i#j<n
(3.12) 2i|2
. 1 1 1
P n q 1 q
s(ZW’) (ZHW) +<n—1>p( 5 !(zi,zj|z>!q> ,
i=1 i=1 1<i#j<n

wherep > 1, . + ¢ = 1;and

<Zm@ L el 0= 1) 512

1<i< 1<i#j<n

(3.13)

2i|2

4. SOME INEQUALITIES FOR FOURIER COEFFICIENTS

The following results holds

J. Inequal. Pure and Appl. Math6(2) Art. 55, 2005 http://jipam.vu.edu.au/
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Theorem4.1.Letx, yy, ..., y,, 2 be vectors of a 2-inner product spac¥; (-, -|-)) andcy, ..., ¢, €
K (K = C,R). Then one has the inequalities:

(4.2)

Z ¢i (z,y32)
i=1

/

mase e[ 3 2]

2 L 2 s 283 5 1,1
< flzf= )" % > leil > llyil= , wherea > 1,2+ 5 =1,
; i=1

i=1

3

2 jeil” e Jyil= ]

.

\

[ max {lagl} 3 syl

1<i#j<n 1<iZj<n

+ =l [(":ilmp)z B (é Cilm)r <1<#Zj<n|(yi,yj2)6>é,

1 1 _ 1.
where v > 1, sts=1

n 2 n
2
[(; el) - £ ] [l

Proof. We note that

Zcz ,yil2) = ( Zczyzlz).

Using Schwarz’s inequality in 2-inner product spaces, we have

Y oclayla)| < lalzl®|D @il
i=1 1=1

Now using Lemma 3|1 withy; = &, 2z; = y; (i = 1,...,n), we deduce the desired inequality

@.1). O

The following particular inequalities that may be obtained by the Corollaries 313, 3.4, and
RemarK 3., hold.
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Corollary 4.2. With the assumptions in Theorém|4.1, one has the inequalities:

Z Ci (.I’, yZ’Z)
i=1

( 1

n 2
> el E%NMMV+< > u%%uw> ;

i=1 1<iZj<n

2

(4.2)

L 2
max il {EllinZII + > \(ymyjIZ)l};

lsis 1<i#j<n

1 1 1
A = 2¢ | * 1 a\"
> lail Do lwil=l™ ) + =17 > [(yi,y502)] ;
i=1 i=1 1<iZj<n

1 1 _ 1.
wherep>1,1—3+5—1,

o2
e { o 1P + 0= 1) s (35191}
\ =1

<l x o

1<izj<n

5. SOME BOAS-BELLMAN TYPE INEQUALITIES IN 2-INNER PRODUCT SPACES

If one chooses; = (z,y;|z) (i =1,...,n)in ), then it is possible to obtain 9 different
inequalities between the Fourier coefficiefisy;|z) and the 2-norms and 2-inner products
of the vectorsy; (i = 1,...,n). We restrict ourselves only to those inequalities that may be
obtained from[(4.]2).

From the first inequality |r.2) far; = (x, y:|2), we get

2 2 2 2 2
(;!(fﬂ,yz-IZ)!) < [|lzl=] ;\(:&yi\ZN max ||| +< > I(yi,yj!Z)\> :

1<i#j<n

NI

which is clearly equivalent to the followingoas-Bellman type inequalifgr 2-inner products:

2 2 2 2
(5.1) ;I(fv,inZ)\ < llfz]” | max [lyil=l +< > !(yi,yj\2)|>

1<i#j<n

(SIS

From the second inequality i.2) for= (z,y:|2) , we get

(ZI(%%IZ)IQ) < [l2]” max |(z, |z {ZIIWII + ) I(yuyj|2)|}-

1<i#j<n

Taking the square root in this inequality, we obtain

52) Y |(@wl2)* < |z max |(z, 4:]2) {ZH?MZH D I(yz-7yj|2)|}
1=1

1<i#j<n

foranyz,yi, ..., y,, z vectors in the 2-inner product spack; (-, -|-)) .
If we assume thate;), ., is an orthonormal family inX' with respect with the vector,
i.e.,(e;,e]z) = d; foralli,j € {1,...,n}, then by [5.) we deduce Bessel's inequality (2.11),
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while from (5.2) we have
(5.3) Z| z.el2)* < Vi |lzlz] max |(,elz)], @€ X.

From the third inequality irﬂZ) faf;, = (z,v:|2) , we deduce

(Zux,y@wz)ﬁ) < | (Zux,mz)ﬁp)p

x (Znyazn?q)qﬂn—l)i( > |<yi,yj|z>|Q)q

1<i£j<n

for p > 1 with % + % = 1. Taking the square root in this inequality, we get

G4 3 Il < o] (Z |<x,yi\z>|2p)
x (Znyzwzn?q) +<n—1>i< > |<yi,yj|z>|Q)

1<i#j<n

foranyz, y1,...,yn, 2 € X andp > 1with L +1 =1,
The above inequalit.4) becomes, for an orthornormal fafajly _, ., with respect of the
vectorz, S

3
(5.5) Z| (7, €]z 2 < na ||| 2| <Z| T, €|z p) , veX.

Finally, the choice;; = (z,v:|2) (i = 1,...,n) will produce in the last inequality i.2)

n 2 n
2 2 2 2
<§‘13|<x,yz\z>|> < el 3 ) {17 + 0= 1) s 0041201

which gives the following inequality

1<izj<n

66 S |l < ] {m Il + (n = 1) max \(yi,yﬂzﬂ}
=1

foranyz,yi,...,y,, 2 € X.
It is obvious that[(5.6) will give for—orthonormal families, the Bessel inequality mentioned
in (2.11]) from the Introduction.

Remark 5.1. Observe that, both the Boas-Bellman type inequality for 2-inner products incorpo-

rated in (5.11) and the inequality ($.6) become in the particular case ofthonormal families,

the regular Bessel's inequality. Consequently, a comparison of the upper bounds is necessary.
It suffices to consider the quantities

An :=< > |(yz,yj\2)|2>

1<i#j<n

N
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and

Bui= (0= 1), e (sl

wheren > 1, andyy, ..., y,, z € X.
If we choosen = 3, we have

As = V2 ((y1,1212)" + (2, 1312)° + (y3.112)%)

=

and
By = 2max {|(y1, v212)|, [(42, ys2)| , [ (w301 ]2)1}

wherey,, y2,y3, 2 € X.

If we considera := |(y1,v2|2)| > 0,0 := |(y2, y3]z)| > 0 andc := |(y3.y1|2)| > 0, then we
have to compare

Az = \/5(&2 + b2 +02)5
with
Bs = 2max{a,b,c}.

If we assume that = ¢ = 1, thenAs := /2 (a® + 2)% , B3 = 2max {a, 1} . Finally, fora = 1,
we getd; = /6, B; = 2 showing thatd; > Bs, while for a = 2 we haved; = /12, B; = 4
showing thatB; > As.

In conclusion, we may state that the bounds

2 2 2
My i= lal2I { ma [l +( > !<yiayj|2>|>

1<i#j<n

(SIS

and

ol { o 1P + 0= 1) s (1)1

for the Bessel's surd."_, |(,v:|2)|” cannot be compared in general, meaning that sometimes
one is better than the other.

6. APPLICATIONS FOR DETERMINANTAL INTEGRAL INEQUALITIES

Let (2,3, 1) be a measure space consisting of ket o —algebraX of subsets of2 and a
countably additive and positive measwyren X with values inR U {co}.

Denote bny, (©) the Hilbert space of all real-valued functiofisiefined orf2 that are2 —
p—integrable ort2, i.e., [, p(s)|f (s)]* du (s) < oo, wherep : Q — [0,00) is a measurable
function on(2.

We can introduce the following 2-inner product D@(Q) by the formula

6. ool // f(s) f(t)‘ g(s) g(t) ‘d (o) i (8
' I his) h(t) || h(s) h(t) PSR
where, by

fs) f(t)

h(s) h(t)

we denote the determinant of the matrix
f(s) f(1)
his) n(t) ]

J. Inequal. Pure and Appl. Math6(2) Art. 55, 2005 http://jipam.vu.edu.au/
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generating the 2-norm obﬁ (Q2) expressed by

N

2

©2 = (5 ) [ o0 A (5) dp (1)

A simple calculation with integrals reveals that

fs) f(t)
h(s) h(t)

Jorfadu  [opfhdp
(6.3) (fglh), =] " "

Japghdp  [o ph*dp
and

Jopf?du [y pfhdu |?
(6.4) Il =] o

Jopfhdu [, ph*du

where, for simplicity, instead of,, p (s) f (s) g (s) du (s) , we have written|,, pf gdy.

Using the representatiors (6.3), (6.4) and the inequalities for 2-inner products and 2-norms
established in the previous sections, one may state some interesting determinantal integral in-
equalities, as follows.

Proposition 6.1.Letf, g1,..., 9., h € Li (Q2), wherep : Q@ — [0, c0) is a measurable function
on 2. Then we have the inequality

Jopfodp [, pfhdp
Jo pgihdp  [o ph*dp

2
n

=1

2 2
Q ] 7
Jopf2du Jo pfhdp [ pg2du [, pgihdp
< X ¢ max
Jopfhdu  [o ph*dp tsise| [ pgihdp [, ph2dp
1
N _ Jargigidp [ pgihdp “\
1<izi<n | Jopgihdu  [o ph*dp

The proof follows by the inequalit5.1]) applied for the 2-inner product and 2-norm defined
in (6.1]) and(6.2)) , and utilizing the identitieg6.3) and (6.4)) .

If one uses the inequality (5.6), then the following result may also be stated.

Proposition6.2.Letf, g1,...,g,,h € Li (Q2), wherep : Q — [0, 00) is a measurable function
on 2. Then we have the inequality

Jopfodp [, pfhdp

Jo pgihdp [, ph*dp
Jop 2 Jopfhdp {

X ¢ max
fQ pfhdp fQ ph%du 1<i<n
Jo pgigidie [, pg;hdpu
fQ sz‘hd,u, fQ thd,u

2
n

i=1
Jargidu [ pgihdu

Jo pgihdp [, ph*dpu
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+(n—1)  Jnax
<iFj<n
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