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1. I NTRODUCTION

Let (H; (·, ·)) be an inner product space over the real or complex number fieldK. If (ei)1≤i≤n

are orthonormal vectors in the inner product spaceH, i.e.,(ei, ej) = δij for all i, j ∈ {1, . . . , n}
whereδij is the Kronecker delta, then the following inequality is well known in the literature as
Bessel’s inequality (see for example [9, p. 391]):

n∑
i=1

|(x, ei)|2 ≤ ‖x‖2

for any x ∈ H.
For other results related to Bessel’s inequality, see [5] – [7] and Chapter XV in the book [9].
In 1941, R.P. Boas [2] and in 1944, independently, R. Bellman [1] proved the following

generalization of Bessel’s inequality (see also [9, p. 392]).

Theorem 1.1. If x, y1, . . . , yn are elements of an inner product space(H; (·, ·)) , then the fol-
lowing inequality:

n∑
i=1

|(x, yi)|2 ≤ ‖x‖2

max
1≤i≤n

‖yi‖2 +

( ∑
1≤i6=j≤n

|(yi, yj)|2
) 1

2


holds.

It is the main aim of the present paper to point out the corresponding version of Boas-Bellman
inequality in 2-inner product spaces. Some natural generalizations and related results are also
pointed out. Applications for determinantal integral inequalities are provided.

For a comprehensive list of fundamental results on 2-inner product spaces and linear 2-
normed spaces, see the recent books [3] and [8] where further references are given.

2. BESSEL’ S I NEQUALITY IN 2-INNER PRODUCT SPACES

The concepts of2-inner products and2-inner product spaces have been intensively studied
by many authors in the last three decades. A systematic presentation of the recent results related
to the theory of2-inner product spaces as well as an extensive list of the related references can
be found in the book [3]. Here we give the basic definitions and the elementary properties of
2-inner product spaces.

Let X be a linear space of dimension greater than1 over the fieldK = R of real numbers
or the fieldK = C of complex numbers. Suppose that(·, ·|·) is aK-valued function defined on
X ×X ×X satisfying the following conditions:
(2I1) (x, x|z) ≥ 0 and(x, x|z) = 0 if and only if x andz are linearly dependent;
(2I2) (x, x|z) = (z, z|x),

(2I3) (y, x|z) = (x, y|z),
(2I4) (αx, y|z) = α(x, y|z) for any scalarα ∈ K,
(2I5) (x + x′, y|z) = (x, y|z) + (x′, y|z).

(·, ·|·) is called a2-inner producton X and (X, (·, ·|·)) is called a2-inner product space
(or 2-pre-Hilbert space). Some basic properties of2-inner products(·, ·|·) can be immediately
obtained as follows [4]:
(1) If K = R, then(2I3) reduces to

(y, x|z) = (x, y|z).

(2) From(2I3) and(2I4), we have

(0, y|z) = 0, (x, 0|z) = 0
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and

(2.1) (x, αy|z) = ᾱ(x, y|z).

(3) Using(2I2) – (2I5), we have

(z, z|x± y) = (x± y, x± y|z) = (x, x|z) + (y, y|z)± 2 Re(x, y|z)

and

(2.2) Re(x, y|z) =
1

4
[(z, z|x + y)− (z, z|x− y)].

In the real case, (2.2) reduces to

(2.3) (x, y|z) =
1

4
[(z, z|x + y)− (z, z|x− y)]

and, using this formula, it is easy to see that, for anyα ∈ R,

(2.4) (x, y|αz) = α2(x, y|z).

In the complex case, using (2.1) and (2.2), we have

Im(x, y|z) = Re[−i(x, y|z)] =
1

4
[(z, z|x + iy)− (z, z|x− iy)],

which, in combination with (2.2), yields

(2.5) (x, y|z) =
1

4
[(z, z|x + y)− (z, z|x− y)] +

i

4
[(z, z|x + iy)− (z, z|x− iy)].

Using the above formula and (2.1), we have, for anyα ∈ C,

(2.6) (x, y|αz) = |α|2(x, y|z).

However, forα ∈ R, (2.6) reduces to (2.4). Also, from (2.6) it follows that

(x, y|0) = 0.

(4) For any three given vectorsx, y, z ∈ X, consider the vectoru = (y, y|z)x − (x, y|z)y. By
(2I1), we know that(u, u|z) ≥ 0 with the equality if and only ifu andz are linearly dependent.
The inequality(u, u|z) ≥ 0 can be rewritten as

(2.7) (y, y|z)[(x, x|z)(y, y|z)− |(x, y|z)|2] ≥ 0.

Forx = z, (2.7) becomes
−(y, y|z)|(z, y|z)|2 ≥ 0,

which implies that

(2.8) (z, y|z) = (y, z|z) = 0,

providedy andz are linearly independent. Obviously, wheny andz are linearly dependent,
(2.8) holds too. Thus (2.8) is true for any two vectorsy, z ∈ X. Now, if y andz are linearly
independent, then(y, y|z) > 0 and, from (2.7), it follows that

(2.9) |(x, y|z)|2 ≤ (x, x|z)(y, y|z).

Using (2.8), it is easy to check that (2.9) is trivially fulfilled wheny andz are linearly dependent.
Therefore, the inequality (2.9) holds for any three vectorsx, y, z ∈ X and is strict unless the
vectorsu = (y, y|z)x− (x, y|z)y andz are linearly dependent. In fact, we have the equality in
(2.9) if and only if the three vectorsx, y andz are linearly dependent.

In any given2-inner product space(X, (·, · | ·)), we can define a function‖ · | · ‖ on X ×X
by

(2.10) ‖x|z‖ =
√

(x, x|z)
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for all x, z ∈ X.
It is easy to see that this function satisfies the following conditions:

(2N1) ‖x|z‖ ≥ 0 and‖x|z‖ = 0 if and only if x andz are linearly dependent,
(2N2) ‖z|x‖ = ‖x|z‖,
(2N3) ‖αx|z‖ = |α|‖x|z‖ for any scalarα ∈ K,
(2N4) ‖x + x′|z‖ ≤ ‖x|z‖+ ‖x′|z‖.

Any function‖ · | · ‖ defined onX ×X and satisfying the conditions(2N1) – (2N4) is called
a 2-norm on X and (X, ‖ · | · ‖) is called alinear 2-normed space[8]. Whenever a2-inner
product space(X, (·, ·|·)) is given, we consider it as a linear2-normed space(X, ‖ · | · ‖) with
the2-norm defined by (2.10).

Let (X; (·, ·|·)) be a 2-inner product space over the real or complex number fieldK. If
(ei)1≤i≤n are linearly independent vectors in the 2-inner product spaceX, and, for a given
z ∈ X, (ei, ej|z) = δij for all i, j ∈ {1, . . . , n} whereδij is the Kronecker delta (we say that the
family (ei)1≤i≤n is z−orthonormal), then the following inequality is the corresponding Bessel’s
inequality (see for example [4]) for thez−orthonormal family(ei)1≤i≤n in the 2-inner product
space(X; (·, ·|·)):

(2.11)
n∑

i=1

|(x, ei|z)|2 ≤ ‖x|z‖2

for any x ∈ X. For more details about this inequality, see the recent paper [4] and the references
therein.

3. SOME I NEQUALITIES FOR 2-NORMS

We start with the following lemma which is also interesting in itself.

Lemma 3.1. Let z1, . . . , zn, z ∈ X andµ1, . . . , µn ∈ K. Then one has the inequality:∥∥∥∥∥
n∑

i=1

µizi|z

∥∥∥∥∥
2

(3.1)

≤


max
1≤i≤n

|µi|2
∑n

i=1 ‖zi|z‖2 ;(∑n
i=1 |µi|2α) 1

α

(∑n
i=1 ‖zi|z‖2β

) 1
β

, where α > 1, 1
α

+ 1
β

= 1;∑n
i=1 |µi|2 max

1≤i≤n
‖zi|z‖2 ,

+



max
1≤i6=j≤n

{|µiµj|}
∑

1≤i6=j≤n |(zi, zj|z)| ;

[
(
∑n

i=1 |µi|γ)2 −
(∑n

i=1 |µi|2γ)] 1
γ

( ∑
1≤i6=j≤n

|(zi, zj|z)|δ
) 1

δ

,

where γ > 1, 1
γ

+ 1
δ

= 1;[
(
∑n

i=1 |µi|)2 −
∑n

i=1 |µi|2
]

max
1≤i6=j≤n

|(zi, zj|z)| .
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Proof. We observe that∥∥∥∥∥
n∑

i=1

µizi|z

∥∥∥∥∥
2

=

(
n∑

i=1

µizi,
n∑

j=1

µjzj|z

)
(3.2)

=
n∑

i=1

n∑
j=1

µiµj (zi, zj|z)

=

∣∣∣∣∣
n∑

i=1

n∑
j=1

µiµj (zi, zj|z)

∣∣∣∣∣
≤

n∑
i=1

n∑
j=1

|µi| |µj| |(zi, zj|z)|

=
n∑

i=1

|µi|2 ‖zi|z‖2 +
∑

1≤i6=j≤n

|µi| |µj| |(zi, zj|z)| .

Using Hölder’s inequality, we may write that

(3.3)
n∑

i=1

|µi|2 ‖zi|z‖2 ≤



max
1≤i≤n

|µi|2
n∑

i=1

‖zi|z‖2 ;

(
n∑

i=1

|µi|2α

) 1
α
(

n∑
i=1

‖zi|z‖2β

) 1
β

, where α > 1, 1
α

+ 1
β

= 1;

n∑
i=1

|µi|2 max
1≤i≤n

‖zi|z‖2 .

By Hölder’s inequality for double sums, we also have∑
1≤i6=j≤n

|µi| |µj| |(zi, zj|z)|(3.4)

≤



max
1≤i6=j≤n

|µiµj|
∑

1≤i6=j≤n

|(zi, zj|z)| ;( ∑
1≤i6=j≤n

|µi|γ |µj|γ
) 1

γ
( ∑

1≤i6=j≤n

|(zi, zj|z)|δ
) 1

δ

, where γ > 1, 1
γ

+ 1
δ

= 1;∑
1≤i6=j≤n

|µi| |µj| max
1≤i6=j≤n

|(zi, zj|z)| ,

=



max
1≤i6=j≤n

{|µiµj|}
∑

1≤i6=j≤n

|(zi, zj|z)| ;[(
n∑

i=1

|µi|γ
)2

−
(

n∑
i=1

|µi|2γ

)] 1
γ
( ∑

1≤i6=j≤n

|(zi, zj|z)|δ
) 1

δ

,

where γ > 1, 1
γ

+ 1
δ

= 1;[(
n∑

i=1

|µi|
)2

−
n∑

i=1

|µi|2
]

max
1≤i6=j≤n

|(zi, zj|z)| .

Utilizing (3.3) and (3.4) in (3.2), we may deduce the desired result (3.1). �

Remark 3.2. Inequality (3.1) contains in fact 9 different inequalities which may be obtained
combining the first 3 ones with the last 3 ones.
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A particular result of interest is embodied in the following inequality.

Corollary 3.3. With the assumptions in Lemma 3.1, we have∥∥∥∥∥
n∑

i=1

µizi|z

∥∥∥∥∥
2

(3.5)

≤
n∑

i=1

|µi|2


max
1≤i≤n

‖zi|z‖2 +

[(
n∑

i=1

|µi|2
)2

−
n∑

i=1

|µi|4
] 1

2

n∑
i=1

|µi|2

( ∑
1≤i6=j≤n

|(zi, zj|z)|2
) 1

2


≤

n∑
i=1

|µi|2
max

1≤i≤n
‖zi|z‖2 +

( ∑
1≤i6=j≤n

|(zi, zj|z)|2
) 1

2

 .

The first inequality follows by taking the third branch in the first curly bracket with the second
branch in the second curly bracket forγ = δ = 2.

The second inequality in (3.5) follows by the fact that( n∑
i=1

|µi|2
)2

−
n∑

i=1

|µi|4
 1

2

≤
n∑

i=1

|µi|2 .

Applying the following Cauchy-Bunyakovsky-Schwarz inequality

(3.6)

(
n∑

i=1

ai

)2

≤ n
n∑

i=1

a2
i , ai ∈ R+, 1 ≤ i ≤ n,

we may write that

(3.7)

(
n∑

i=1

|µi|γ
)2

−
n∑

i=1

|µi|2γ ≤ (n− 1)
n∑

i=1

|µi|2γ (n ≥ 1)

and

(3.8)

(
n∑

i=1

|µi|

)2

−
n∑

i=1

|µi|2 ≤ (n− 1)
n∑

i=1

|µi|2 (n ≥ 1) .

Also, it is obvious that:

(3.9) max
1≤i6=j≤n

{|µiµj|} ≤ max
1≤i≤n

|µi|2 .

Consequently, we may state the following coarser upper bounds for‖
∑n

i=1 µizi|z‖2 that may
be useful in applications.
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Corollary 3.4. With the assumptions in Lemma 3.1, we have the inequalities:

∥∥∥∥∥
n∑

i=1

µizi|z

∥∥∥∥∥
2

≤



max
1≤i≤n

|µi|2
n∑

i=1

‖zi|z‖2 ;(
n∑

i=1

|µi|2α

) 1
α
(

n∑
i=1

‖zi|z‖2β

) 1
β

,

where α > 1, 1
α

+ 1
β

= 1,

n∑
i=1

|µi|2 max
1≤i≤n

‖zi|z‖2 ,

(3.10)

+



max
1≤i≤n

|µi|2
∑

1≤i6=j≤n

|(zi, zj|z)| ;

(n− 1)
1
γ

(
n∑

i=1

|µi|2γ

) 1
γ

( ∑
1≤i6=j≤n

|z (i, zj|z)|δ
) 1

δ

,

where γ > 1, 1
γ

+ 1
δ

= 1;

(n− 1)
n∑

i=1

|µi|2 max
1≤i6=j≤n

|(zi, zj|z)| .

The proof is obvious by Lemma 3.1 on applying the inequalities (3.7) – (3.9).

Remark 3.5. The following inequalities which are incorporated in (3.10) are of special interest:

(3.11)

∥∥∥∥∥
n∑

i=1

µizi|z

∥∥∥∥∥
2

≤ max
1≤i≤n

|µi|2
[

n∑
i=1

‖zi|z‖2 +
∑

1≤i6=j≤n

|(zi, zj|z)|

]
;

∥∥∥∥∥
n∑

i=1

µizi|z

∥∥∥∥∥
2

(3.12)

≤

(
n∑

i=1

|µi|2p

) 1
p

( n∑
i=1

‖zi|z‖2q

) 1
q

+ (n− 1)
1
p

( ∑
1≤i6=j≤n

|(zi, zj|z)|q
) 1

q

 ,

wherep > 1, 1
p

+ 1
q

= 1; and

(3.13)

∥∥∥∥∥
n∑

i=1

µizi|z

∥∥∥∥∥
2

≤
n∑

i=1

|µi|2
[

max
1≤i≤n

‖zi|z‖2 + (n− 1) max
1≤i6=j≤n

|(zi, zj|z)|
]

.

4. SOME I NEQUALITIES FOR FOURIER COEFFICIENTS

The following results holds
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Theorem 4.1.Letx, y1, . . . , yn, z be vectors of a 2-inner product space(X; (·, ·|·)) andc1, . . . , cn ∈
K (K = C, R) . Then one has the inequalities:

∣∣∣∣∣
n∑

i=1

ci (x, yi|z)

∣∣∣∣∣
2

(4.1)

≤ ‖x|z‖2 ×



max
1≤i≤n

|ci|2
n∑

i=1

‖yi|z‖2 ;

(
n∑

i=1

|ci|2α

) 1
α
(

n∑
i=1

‖yi|z‖2β

) 1
β

, where α > 1, 1
α

+ 1
β

= 1;

n∑
i=1

|ci|2 max
1≤i≤n

‖yi|z‖2 ;

+ ‖x|z‖2 ×



max
1≤i6=j≤n

{|cicj|}
∑

1≤i6=j≤n

|(yi, yj|z)| ;

[(
n∑

i=1

|ci|γ
)2

−
(

n∑
i=1

|ci|2γ

)] 1
γ
( ∑

1≤i6=j≤n

|(yi, yj|z)|δ
) 1

δ

,

where γ > 1, 1
γ

+ 1
δ

= 1;[(
n∑

i=1

|ci|
)2

−
n∑

i=1

|ci|2
]

max
1≤i6=j≤n

|(yi, yj|z)| .

Proof. We note that

n∑
i=1

ci (x, yi|z) =

(
x,

n∑
i=1

ciyi|z

)
.

Using Schwarz’s inequality in 2-inner product spaces, we have

∣∣∣∣∣
n∑

i=1

ci (x, yi|z)

∣∣∣∣∣
2

≤ ‖x|z‖2

∥∥∥∥∥
n∑

i=1

ciyi|z

∥∥∥∥∥
2

.

Now using Lemma 3.1 withµi = ci, zi = yi (i = 1, . . . , n) , we deduce the desired inequality
(4.1). �

The following particular inequalities that may be obtained by the Corollaries 3.3, 3.4, and
Remark 3.5, hold.
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Corollary 4.2. With the assumptions in Theorem 4.1, one has the inequalities:

(4.2)

∣∣∣∣∣
n∑

i=1

ci (x, yi|z)

∣∣∣∣∣
2

≤ ‖x|z‖2 ×



n∑
i=1

|ci|2
max

1≤i≤n
‖yi|z‖2 +

( ∑
1≤i6=j≤n

|(yi, yj|z)|2
) 1

2

 ;

max
1≤i≤n

|ci|2
{

n∑
i=1

‖yi|z‖2 +
∑

1≤i6=j≤n

|(yi, yj|z)|

}
;

(
n∑

i=1

|ci|2p

) 1
p


(

n∑
i=1

‖yi|z‖2q

) 1
q

+ (n− 1)
1
p

( ∑
1≤i6=j≤n

|(yi, yj|z)|q
) 1

q

 ,

where p > 1, 1
p

+ 1
q

= 1;
n∑

i=1

|ci|2
{

max
1≤i≤n

‖yi|z‖2 + (n− 1) max
1≤i6=j≤n

|(yi, yj|z)|
}

.

5. SOME BOAS-BELLMAN TYPE I NEQUALITIES IN 2-INNER PRODUCT SPACES

If one choosesci = (x, yi|z) (i = 1, . . . , n) in (4.1), then it is possible to obtain 9 different
inequalities between the Fourier coefficients(x, yi|z) and the 2-norms and 2-inner products
of the vectorsyi (i = 1, . . . , n) . We restrict ourselves only to those inequalities that may be
obtained from (4.2).

From the first inequality in (4.2) forci = (x, yi|z), we get(
n∑

i=1

|(x, yi|z)|2
)2

≤ ‖x|z‖2
n∑

i=1

|(x, yi|z)|2
max

1≤i≤n
‖yi|z‖2 +

( ∑
1≤i6=j≤n

|(yi, yj|z)|2
) 1

2

 ,

which is clearly equivalent to the followingBoas-Bellman type inequalityfor 2-inner products:

(5.1)
n∑

i=1

|(x, yi|z)|2 ≤ ‖x|z‖2

max
1≤i≤n

‖yi|z‖2 +

( ∑
1≤i6=j≤n

|(yi, yj|z)|2
) 1

2

 .

From the second inequality in (4.2) forci = (x, yi|z) , we get(
n∑

i=1

|(x, yi|z)|2
)2

≤ ‖x|z‖2 max
1≤i≤n

|(x, yi|z)|2
{

n∑
i=1

‖yi|z‖2 +
∑

1≤i6=j≤n

|(yi, yj|z)|

}
.

Taking the square root in this inequality, we obtain

(5.2)
n∑

i=1

|(x, yi|z)|2 ≤ ‖x|z‖ max
1≤i≤n

|(x, yi|z)|

{
n∑

i=1

‖yi|z‖2 +
∑

1≤i6=j≤n

|(yi, yj|z)|

} 1
2

for anyx, y1, . . . , yn, z vectors in the 2-inner product space(X; (·, ·|·)) .
If we assume that(ei)1≤i≤n is an orthonormal family inX with respect with the vectorz,

i.e.,(ei, ej|z) = δij for all i, j ∈ {1, . . . , n}, then by (5.1) we deduce Bessel’s inequality (2.11),
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while from (5.2) we have

(5.3)
n∑

i=1

|(x, ei|z)|2 ≤
√

n ‖x|z‖ max
1≤i≤n

|(x, ei|z)| , x ∈ X.

From the third inequality in (4.2) forci = (x, yi|z) , we deduce(
n∑

i=1

|(x, yi|z)|2
)2

≤ ‖x|z‖2

(
n∑

i=1

|(x, yi|z)|2p

) 1
p

×


(

n∑
i=1

‖yi|z‖2q

) 1
q

+ (n− 1)
1
p

( ∑
1≤i6=j≤n

|(yi, yj|z)|q
) 1

q


for p > 1 with 1

p
+ 1

q
= 1. Taking the square root in this inequality, we get

n∑
i=1

|(x, yi|z)|2 ≤ ‖x|z‖

(
n∑

i=1

|(x, yi|z)|2p

) 1
2p

(5.4)

×


(

n∑
i=1

‖yi|z‖2q

) 1
q

+ (n− 1)
1
p

( ∑
1≤i6=j≤n

|(yi, yj|z)|q
) 1

q


1
2

for anyx, y1, . . . , yn, z ∈ X andp > 1 with 1
p

+ 1
q

= 1.

The above inequality (5.4) becomes, for an orthornormal family(ei)1≤i≤n with respect of the
vectorz,

(5.5)
n∑

i=1

|(x, ei|z)|2 ≤ n
1
q ‖x|z‖

(
n∑

i=1

|(x, ei|z)|2p

) 1
2p

, x ∈ X.

Finally, the choiceci = (x, yi|z) (i = 1, . . . , n) will produce in the last inequality in (4.2)(
n∑

i=1

|(x, yi|z)|2
)2

≤ ‖x|z‖2
n∑

i=1

|(x, yi|z)|2
{

max
1≤i≤n

‖yi|z‖2 + (n− 1) max
1≤i6=j≤n

|(yi, yj|z)|
}

,

which gives the following inequality

(5.6)
n∑

i=1

|(x, yi|z)|2 ≤ ‖x|z‖2

{
max
1≤i≤n

‖yi|z‖2 + (n− 1) max
1≤i6=j≤n

|(yi, yj|z)|
}

for anyx, y1, . . . , yn, z ∈ X.
It is obvious that (5.6) will give forz−orthonormal families, the Bessel inequality mentioned

in (2.11) from the Introduction.

Remark 5.1. Observe that, both the Boas-Bellman type inequality for 2-inner products incorpo-
rated in (5.1) and the inequality (5.6) become in the particular case ofz−orthonormal families,
the regular Bessel’s inequality. Consequently, a comparison of the upper bounds is necessary.

It suffices to consider the quantities

An :=

( ∑
1≤i6=j≤n

|(yi, yj|z)|2
) 1

2
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and
Bn := (n− 1) max

1≤i6=j≤n
|(yi, yj|z)| ,

wheren ≥ 1, andy1, . . . , yn, z ∈ X.
If we choosen = 3, we have

A3 =
√

2
(
(y1, y2|z)2 + (y2, y3|z)2 + (y3,y1|z)2) 1

2

and
B3 = 2 max {|(y1, y2|z)| , |(y2, y3|z)| , |(y3,y1|z)|} ,

wherey1, y2, y3, z ∈ X.
If we considera := |(y1, y2|z)| ≥ 0, b := |(y2, y3|z)| ≥ 0 andc := |(y3,y1|z)| ≥ 0, then we

have to compare

A3 :=
√

2
(
a2 + b2 + c2

) 1
2

with
B3 = 2 max {a, b, c} .

If we assume thatb = c = 1, thenA3 :=
√

2 (a2 + 2)
1
2 , B3 = 2 max {a, 1} . Finally, for a = 1,

we getA3 =
√

6, B3 = 2 showing thatA3 > B3, while for a = 2 we haveA3 =
√

12, B3 = 4
showing thatB3 > A3.

In conclusion, we may state that the bounds

M1 := ‖x|z‖2

max
1≤i≤n

‖yi|z‖2 +

( ∑
1≤i6=j≤n

|(yi, yj|z)|2
) 1

2


and

M2 := ‖x|z‖2

{
max
1≤i≤n

‖yi|z‖2 + (n− 1) max
1≤i6=j≤n

|(yi, yj|z)|
}

for the Bessel’s sum
∑n

i=1 |(x, yi|z)|2 cannot be compared in general, meaning that sometimes
one is better than the other.

6. APPLICATIONS FOR DETERMINANTAL I NTEGRAL I NEQUALITIES

Let (Ω, Σ, µ) be a measure space consisting of a setΩ, aσ−algebraΣ of subsets ofΩ and a
countably additive and positive measureµ onΣ with values inR ∪ {∞}.

Denote byL2
ρ (Ω) the Hilbert space of all real-valued functionsf defined onΩ that are2 −

ρ−integrable onΩ, i.e.,
∫

Ω
ρ (s) |f (s)|2 dµ (s) < ∞, whereρ : Ω → [0,∞) is a measurable

function onΩ.
We can introduce the following 2-inner product onL2

ρ (Ω) by the formula

(6.1) (f, g|h)ρ :=
1

2

∫
Ω

∫
Ω

ρ (s) ρ (t)

∣∣∣∣∣ f (s) f (t)

h (s) h (t)

∣∣∣∣∣
∣∣∣∣∣ g (s) g (t)

h (s) h (t)

∣∣∣∣∣ dµ (s) dµ (t) ,

where, by ∣∣∣∣∣ f (s) f (t)

h (s) h (t)

∣∣∣∣∣ ,
we denote the determinant of the matrix[

f (s) f (t)

h (s) h (t)

]
,
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generating the 2-norm onL2
ρ (Ω) expressed by

(6.2) ‖f |h‖ρ :=

1

2

∫
Ω

∫
Ω

ρ (s) ρ (t)

∣∣∣∣∣ f (s) f (t)

h (s) h (t)

∣∣∣∣∣
2

dµ (s) dµ (t)

 1
2

.

A simple calculation with integrals reveals that

(6.3) (f, g|h)ρ =

∣∣∣∣∣
∫

Ω
ρfgdµ

∫
Ω

ρfhdµ∫
Ω

ρghdµ
∫

Ω
ρh2dµ

∣∣∣∣∣
and

(6.4) ‖f |h‖ρ =

∣∣∣∣∣
∫

Ω
ρf 2dµ

∫
Ω

ρfhdµ∫
Ω

ρfhdµ
∫

Ω
ρh2dµ

∣∣∣∣∣
1
2

,

where, for simplicity, instead of
∫

Ω
ρ (s) f (s) g (s) dµ (s) , we have written

∫
Ω

ρfgdµ.
Using the representations (6.3), (6.4) and the inequalities for 2-inner products and 2-norms

established in the previous sections, one may state some interesting determinantal integral in-
equalities, as follows.

Proposition 6.1. Letf, g1, . . . , gn, h ∈ L2
ρ (Ω) , whereρ : Ω → [0,∞) is a measurable function

onΩ. Then we have the inequality

n∑
i=1

∣∣∣∣∣
∫

Ω
ρfgidµ

∫
Ω

ρfhdµ∫
Ω

ρgihdµ
∫

Ω
ρh2dµ

∣∣∣∣∣
2

≤

∣∣∣∣∣
∫

Ω
ρf 2dµ

∫
Ω

ρfhdµ∫
Ω

ρfhdµ
∫

Ω
ρh2dµ

∣∣∣∣∣×
{

max
1≤i≤n

∣∣∣∣∣
∫

Ω
ρg2

i dµ
∫

Ω
ρgihdµ∫

Ω
ρgihdµ

∫
Ω

ρh2dµ

∣∣∣∣∣
+

 n∑
1≤i6=j≤n

∣∣∣∣∣
∫

Ω
ρgjgidµ

∫
Ω

ρgjhdµ∫
Ω

ρgihdµ
∫

Ω
ρh2dµ

∣∣∣∣∣
2
 1

2

 .

The proof follows by the inequality(5.1) applied for the 2-inner product and 2-norm defined
in (6.1) and(6.2) , and utilizing the identities(6.3) and(6.4) .

If one uses the inequality (5.6), then the following result may also be stated.

Proposition 6.2. Letf, g1, . . . , gn, h ∈ L2
ρ (Ω) , whereρ : Ω → [0,∞) is a measurable function

onΩ. Then we have the inequality

n∑
i=1

∣∣∣∣∣
∫

Ω
ρfgidµ

∫
Ω

ρfhdµ∫
Ω

ρgihdµ
∫

Ω
ρh2dµ

∣∣∣∣∣
2

≤

∣∣∣∣∣
∫

Ω
ρf 2dµ

∫
Ω

ρfhdµ∫
Ω

ρfhdµ
∫

Ω
ρh2dµ

∣∣∣∣∣×
{

max
1≤i≤n

∣∣∣∣∣
∫

Ω
ρg2

i dµ
∫

Ω
ρgihdµ∫

Ω
ρgihdµ

∫
Ω

ρh2dµ

∣∣∣∣∣
+ (n− 1) max

1≤i6=j≤n

∣∣∣∣∣
∫

Ω
ρgjgidµ

∫
Ω

ρgjhdµ∫
Ω

ρgihdµ
∫

Ω
ρh2dµ

∣∣∣∣∣
}

.
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product spaces,Studia Univ. Babeş-Bolyai, Mathematica,37(4) (1992), 77–86.

[8] R.W. FREESEAND Y.J. CHO,Geometry of Linear 2-Normed Spaces, Nova Science Publishers,
Inc., New York, 2001.
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