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ABSTRACT. An approximate procedure for solving equilibrium problems is proposed and its
convergence is established under natural conditions. The result obtained in this paper includes,
as a special case, some known results in convex minimization and monotone inclusion fields.
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1. I NTRODUCTION AND PRELIMINARIES

Equilibrium problems theory has emerged as an interesting branch of applicable mathemat-
ics. This theory has become a rich source of inspiration and motivation for the study of a
large number of problems arising in economics, optimization, and operations research in a gen-
eral and unified way. There are a substantial number of papers on existence results for solving
equilibrium problems based on different relaxed monotonicity notions and various compactness
assumptions. But up to now only few iterative methods to solve such problems have been done.
Inspired by numerical methods developed by A. S. Antipin for optimization and monotone in-
clusion, and motivated by its research in the continuous case, we consider a class of equilibrium
problems which includes variational inequalities as well as complementarity problems, convex
optimisation, saddle point-problems, problems of finding a zero of a maximal monotone oper-
ator and Nash equilibria problems as special cases. Then, we propose and investigate iterative
methods for solving such problems.

To begin with, letH be a real Hilbert space and| · | the norm generated by the scalar product
〈·, ·〉. We will focus our attention on the following problem

(EP ) find x ∈ C such that F (x, x) ≥ 0 ∀x ∈ C,

whereC is a nonempty, convex, and closed set ofH andF : C × C → R is a given bifunction
satisfyingF (x, x) = 0 for all x ∈ C.
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2 A. MOUDAFI

This problem has potential and useful applications in nonlinear analysis and mathematical
economics. For example, if we setF (x, y) = ϕ(y) − ϕ(x) ∀x, y ∈ C, ϕ : C → R a real-
valued function, then (EP ) reduces to the followingminimization problemsubject to implicit
constraints

(CO) find x ∈ C such that ϕ(x) ≤ ϕ(x) ∀x ∈ C.

The basic case ofmonotone inclusioncorresponds toF (x, y) = supζ∈Bx 〈ζ, y − x〉 with B :
C →
→ X a set-valued maximal monotone operator. Actually, the equilibrium problem (EP ) is

nothing but

(MI) find x ∈ C such that 0 ∈ B(x).

Moreover, ifB = T + NC , then inclusion (MI) reduces to the classicalvariational inequality

(VI) find x ∈ C such that〈T (x̄), x− x̄〉 ≥ 0 ∀x ∈ C,

T being a univoque operator andNC standing for the normal cone toC.
In particular ifC is a closed convex cone, then the inequality (VI) can be written as

(CP ) find x ∈ C T (x) ∈ C∗ and 〈T (x), x〉 = 0,

whereC∗ = {x ∈ X; 〈x, y〉 ≥ 0 ∀y ∈ C} is the polar cone toC.
The problem of finding such ax is an important instance of the well-knowncomplementarity

problemof mathematical programming.
Now, letP : C → C be a given mapping, if we setF (x, y) = 〈x − Px, y − x〉, then (EP )

is nothing but theproblem of finding fixed points ofP . On the other hand, monotonicity of
F is equivalent to saying〈Px − Py, x − y〉 ≤ |x − y| which is clearly satisfied whenP is
nonexpansive.

Another example corresponds toNash equilibriain noncooperative games. LetI (the set of
players) be a finite index set. For everyi ∈ I let Ci (the strategy set of thei-th player) be a given
set,fi (the loss function of thei-th player, depending on the strategies of all players) :C → R
a given function withC :=

∏
i∈I Ci. Forx = (xi)i∈I ∈ C, we definexi := (xj)j∈I, j 6=i. The

point x = (xi)i∈I ∈ C is called a Nash equilibrium if and only if for alli ∈ I the following
inequalities hold true:

(NE) fi(x) ≤ fi(x
i, yi) for all yi ∈ Ci,

(i.e. no player can reduce his loss by varying his strategy alone).
Let us defineF : C × C → R by

F (x, y) =
∑
i∈I

(
fi(x

i, yi)− fi(x)
)
.

Thenx ∈ C is a Nash equilibrium if, and only if,x solves (EP ).
Finally, the problem of finding thesaddle pointof a convex-concave function, namely, the

point (x̄, p̄) that satisfies the inequalities

(SP ) L(x̄, p) ≤ L(x̄, p̄) ≤ L(x, p̄),

for all x ∈ Q andp ∈ P , whereP andQ are two closed and convex sets, can also be stated
as (EP ). Indeed, let us introduce the normalized functionF (w, v) = L(z, p) − L(x, y), where
w = (z, y) andv = (x, p) and setC = Q × P , it follows that (SP ) is equivalent to (EP ) and
that their sets of solutions coincide.

It is worth mentioning that the propertyF (x, x) = 0 for all x ∈ C is trivially satisfied for all
the above examples. Furthermore, this reflects the name of the class of games ofn persons with
zero sum.

The following definitions will be needed in the sequel (see for example [5]).
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SECOND-ORDERDIFFERENTIAL PROXIMAL METHODS 3

Definition 1.1. Let F : C × C → R be a real valued bifunction.

(i) F is said to be monotone, if

F (x, y) + F (y, x) ≤ 0, for each x, y ∈ C.

(ii) F is said to be strictly monotone if

F (x, y) + F (y, x) < 0, for each x, y ∈ C, with x 6= y.

(iii) F is upper-hemicontinuous, if for allx, y, z ∈ C

lim sup
t→0+

F (tz + (1− t)x, y) ≤ F (x, y).

One approach to solving (EP ) is the proximal method (see [4] or [7]), which generates the
next iteratesxk+1 by solving the subproblem

(1.1) F (xk+1, x) + λ−1
k 〈xk+1 − xk, x− xk+1〉 ≥ 0 ∀x ∈ C.

In the light of Antipin’s research, we propose the following iterative method which works as
follows. Givenxk−1, xk ∈ C and two parametersαk ∈ [0, 1[ andλk > 0, find xk+1 ∈ C such
that

(1.2) F (xk+1, x) + λk
−1〈xk+1 − xk − αk(xk − xk−1), x− xk+1〉 ≥ 0 ∀x ∈ C.

It is well known that the proximal iteration may be interpreted as a first order implicit dis-
cretisation of differential inclusion

(1.3)
du

dt
(t) ∈ PTx(−∂F (u(t), ·)u(t),

whereTx = cR(C − x) is the tangent cone ofC at x ∈ C and the operatorPK stands for the
orthogonal projection onto a closed convex setK. While the inspiration for (1.2) comes from
the implicit discretization of the differential system of the second-order in time, namely

(1.4)
d2u

dt2
(t) + γ

du

dt
(t) ∈ PTx(−∂F (u(t), ·)u(t),

whereγ > 0 is a damping or a friction parameter.
Under appropriate conditions onαk andλk we prove that if the solution setS is nonempty,

then for every sequence{xk} generated by our algorithm, there exists anx̄ ∈ S such that{xk}
converges tōx weakly inH ask →∞.

Now, for developing implementable computational techniques, it is of particular importance
to treat the case when (1.2) is solved approximately. To this end, we propose an approximate
method based on a notion which is inspired by the approximate subdifferential and more gen-
erally by theε-enlargement of a monotone operator (see for example [10]). This allows an
extra degree of freedom, which is very useful in various applications. On the other hand, by
settingεk = 0, the exact method can also be treated. More precisely, we consider the following
scheme: find xk+1 ∈ C such that

(1.5) F (xk+1, x) + λk
−1〈xk+1 − yk, x− xk+1〉 ≥ −εk ∀x ∈ C,

whereyk := xk + αk(xk − xk−1), λk, αk, εk are nonnegative real numbers.
We will impose the following tolerance criteria on the termεk which is standard in the liter-

ature:

(1.6)
+∞∑
k=1

λkεk < +∞,

and which is typically needed to establish global convergence.
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4 A. MOUDAFI

The remainder of the paper is organized as follows: In Section 2, we present a weak conver-
gence result for the sequence generated by (1.5) under criterion (1.6). In Section 3, we present
an application to convex minimization and monotone inclusion cases.

2. THE M AIN RESULT

Theorem 2.1. Let {xk} ⊂ C be a sequence generated by (1.5) under criterion (1.6), whereF
is monotone, upper hemicontinuous such thatF (x, ·) is convex and lower semicontinuous for
eachx ∈ C. Assume that the solution set of (EP ) is nonempty and the parametersαk, λk and
εk satisfy:

(1) ∃λ > 0 such that∀k ∈ N∗, λk ≥ λ.
(2) ∃α ∈ [0, 1[ such that∀k ∈ N∗, 0 ≤ αk ≤ α.
(3)

∑+∞
k=1 λkεk < +∞.

If the following condition holds

(2.1)
+∞∑
k=1

αk|xk − xk−1|2 < +∞,

then, there exists̃x which solves (EP ) and such that{xk} weakly converges tõx ask → +∞.

Proof. Let x̄ be a solution of (EP ). By settingx = xk+1 in (EP ) and taking into account the
monotonicity ofF , we get−F (xk+1, x̄) ≥ 0. This combined with (1.5) gives

〈xk+1 − xk − αk(xk − xk−1), xk+1 − x̄〉 ≤ λkεk.

Define the auxiliary real sequenceϕk := 1
2
|xk − x̄|2. It is direct to check that

〈xk+1 − xk − αk(xk − xk−1), xk+1 − x̄〉 = ϕk+1 − ϕk +
1

2
|xk+1 − xk|2

− αk〈xk − xk−1, xk+1 − x̄〉,
and since

〈xk − xk−1, xk+1 − x̄〉 = 〈xk − xk−1, xk − x̄〉+ 〈xk − xk−1, xk+1 − xk〉

= ϕk − ϕk−1 +
1

2
|xk − xk−1|2 + 〈xk − xk−1, xk+1 − xk〉,

it follows that

ϕk+1 − ϕk − αk(ϕk − ϕk−1) ≤ −1

2
|xk+1 − xk|2 + αk〈xk − xk−1, xk+1 − xk〉

+
αk

2
|xk − xk−1|2 + λkεk

= −1

2
|xk+1 − yk|2 +

αk + α2
k

2
|xk − xk−1|2 + λkεk.

Hence

(2.2) ϕk+1 − ϕk − αk(ϕk − ϕk−1) ≤ −1

2
|xk+1 − yk|2 + αk|xk − xk−1|2 + λkεk.

Settingθk := ϕk − ϕk−1 andδk := αk|xk − xk−1|2 + λkεk, we obtain

θk+1 ≤ αkθk + δk ≤ αk[θk]+ + δk,

where[t]+ := max(t, 0), and consequently

[θk+1]+ ≤ α[θk]+ + δk,

with α ∈ [0, 1[ given by (2).
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The latter inequality yields

[θk+1]+ ≤ αk[θ1]+ +
k−1∑
i=0

αiδk−i,

and therefore
∞∑

k=1

[θk+1]≤
1

1− α
([θ1]+ +

∞∑
k=1

δk),

which is finite thanks to (3) and (2.1). Consider the sequence defined bytk := ϕk −
∑k

i=1[θi]+.
Sinceϕk ≥ 0 and

∑k
i=1[θi]+ < +∞, it follows thattk is bounded from below. But

tk+1 = ϕk+1 − [θk+1]+ −
k∑

i=1

[θi]+ ≤ ϕk+1 − ϕk+1 + ϕk −
k∑

i=1

[θi]+ = tk,

so that{tk} is nonincreasing. We thus deduce that{tk} is convergent and so is{ϕk}. On the
other hand, from (2.2) we obtain the estimate

1

2
|xk+1 − yk|2 ≤ ϕk − ϕk+1 + α[θk]+ + δk.

Passing to the limit in the latter inequality and taking into account that{ϕk} converges,[θk]+
andδk go to zero ask tends to+∞, we obtain

lim
k→+∞

(xk+1 − yk) = 0.

On the other hand, from (1.5) and monotonicity ofF we derive

〈xk+1 − yk, x− xk+1〉+ λkεk ≥ F (x, xk+1) ∀x ∈ C.

Now let x̃ be a weak cluster point of{xk}. There exists a subsequence{xν} which converges
weakly tox̃ and satisfies

〈xν+1 − yν , x− xν+1〉+ λνεν ≥ F (x, xν+1) ∀x ∈ C.

Passing to the limit, asν → +∞, taking into account the lower semicontinuity ofF , we obtain
0 ≥ F (x, x̃) ∀x ∈ C. Now, letxt = tx + (1 − t)x̃, 0 < t ≤ 1, from the properties ofF
follows then for allt

0 = F (xt, xt)

≤ tF (xt, x) + (1− t)F (xt, x̃)

≤ tF (xt, x).

Dividing by t and lettingt ↓ 0, we getxt → x̃ which together with the upper hemicontinuity of
F yields

F (x̃, x) ≥ 0 ∀x ∈ C,

that is, any weak limit point̃x is solution to the problem (EP ). The uniqueness of such a limit
point is standard (see for example [10, Theorem 1]). �

Remark 2.2. Under assumptions of Theorem 2.1 and in view of its proof, it is clear that{xk}
is bounded if, and only if, there exists at least one solution to (EP ).
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6 A. MOUDAFI

3. APPLICATIONS

To begin with, let us recall the following concept (see for example [10]): Theε-enlargement
of a monotone operatorT , sayT ε(x), is defined as

(3.1) T ε(x) := {v ∈ H; 〈u− v, y − x〉 ≥ −ε ∀y, u ∈ T (y)},
whereε ≥ 0. SinceT is assumed to be maximal monotone,T 0(x) = T (x), for anyx. Further-
more, directly from the definition it follows that

0 ≤ ε1 ≤ ε2 ⇒ T ε1(x) ⊂ T ε2(x).

ThusT ε is an enlargement ofT . The use of elements inT ε instead ofT allows an extra degree
of freedom, which is very useful in various applications.

3.1. Convex Optimization. An interesting case is obtained by takingF (x, y) = ϕ(y)−ϕ(x),
ϕ a proper convex lower-semicontinuous functionf : X → R. In this case (EP ) reduces to the
one of finding a minimizer of the functionf := ϕ + iC , iC denoting the indicator function ofC
and (1.5) takes the following form

(3.2) λk(∂f)εk(xk+1) + xk+1 − xk − αk(xk − xk−1) 3 0.

Since the enlargement of the subdifferential is larger than the approximate subdifferential, i.e.
∂εf ⊂ (∂f)ε, we can write∂εk

f(xk+1) ⊂ (∂f)εk(xk+1), which leads to the fact that the approx-
imate method

(3.3) λk∂εk
f(xk+1) + xk+1 − xk − αk(xk − xk−1) 3 0,

where∂εk
f is the approximate subdifferential off , is a special case of our algorithm. In the

further case whereαk = 0 for all k ∈ N, our method reduces to the proximal method by
Martinet and we recover the corresponding convergence result (see [6]).

3.2. Monotone Inclusion. First, let us recall that by takingF (x, y) = supξ∈Bx 〈ξ, y − x〉 ∀y, x ∈
C, whereB : C−→→H is a maximal monotone operator, (EP ) is nothing but the problem of
finding a zero of the operatorB. On the other handF is maximal monotone according to
Blum’s-Oetlli definition, namely, for every(ζ, x) ∈ H × C

F (y, x) ≤ 〈−ζ, y − x〉 ∀y ∈ C ⇒ 0 ≤ F (x, y) + 〈−ζ, y − x〉 ∀y ∈ C.

It should be noticed that a monotone function which is convex in the second argument and upper
hemi-continuous in the first one is maximal monotone.

Moreover, takingC = H, F (x, y) = supξ∈Bx 〈ξ, y − x〉, leads to

xk+1 ∈ (I + λkB
εk)−1(xk − αk(xk − xk−1)),

which reduces in turn, whenεk = 0 andαk = 0 for all k ∈ N, to the well-known Rockafellar’s
proximal point algorithm and we recover its convergence result ([9, Theorem 1]).

It is worth mentioning that the proposed algorithm leads to new methods for finding fixed-
points, Nash-equilibria as well as solving variational inequalities.
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