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ABSTRACT. The purpose of this paper is to introduce and study a new kind of generalized
strongly nonlinear operator inclusion problems involving generalizedm-accretive mapping in
Banach spaces. By using the resolvent operator technique for generalizedm-accretive map-
ping due to Huang and Fang, we also prove the existence theorem of the solution for this kind
of operator inclusion problems and construct a new class of perturbed iterative algorithm with
mixed errors for solving this kind of generalized strongly nonlinear operator inclusion problems
in Banach spaces. Further, we discuss the convergence and stability of the iterative sequence
generated by the perturbed algorithm. Our results improve and generalize the corresponding
results of [3, 6, 11, 12].
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1. I NTRODUCTION

Let X be a real Banach space andT : X → 2X is a multi-valued operator, where2X denotes
the family of all the nonempty subsets ofX. The following operator inclusion problem of
findingx ∈ X such that

(1.1) 0 ∈ T (u)

has been studied extensively because of its role in the modelization of unilateral problems, non-
linear dissipative systems, convex optimizations, equilibrium problems, knowledge engineer-
ing, etc. For details, we can refer to [1] – [6], [8] – [15] and the references therein. Concerning
the development of iterative algorithms for the problem (1.1) in the literature, a very common
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assumption is thatT is a maximal monotone operator orm-accretive operator. WhenT is max-
imal monotone orm-accretive, many iterative algorithms have been constructed to approximate
the solutions of the problem (1.1).

In many practical cases,T is split in the formT = F + M , whereF, M : X → 2X are two
multi-valued operators. So the problem (1.1) reduces to the following: Findx ∈ X such that

(1.2) 0 ∈ F (x) + M(x),

which is called the variational inclusion problem. When bothF andM are maximal monotone
or M is m-accretive, some approximate solutions for the problem (1.2) have been developed
(see [10, 13] and the references therein). IfM = ∂ϕ, where∂ϕ is the subdifferential of a proper
convex lower semi-continuous functionalϕ : X → R ∪ {+∞}, then the problem (1.2) reduces
to the variational inequality problem:

Findx ∈ X andu ∈ F (x) such that

(1.3) 〈u, y − x〉+ ϕ(y)− ϕ(x) ≥ 0, y ∈ X.

Many iterative algorithms have been established to approximate the solution of the problem
(1.3) whenF is strongly monotone. Recently, the problem (1.2) was studied by several authors
whenF andM need not to be maximal monotone orm-accretive. Further, Ding [3], Huang [6],
and Lan et al. [11] developed some iterative algorithms to solve the following quasi-variational
inequality problem of findingx ∈ X andu ∈ F (x), v ∈ V (x) such that

(1.4) 〈u, y − x)〉+ ϕ(y, v)− ϕ(x, v) ≥ 0, ∀y ∈ X

by introducing the concept of subdifferential∂ϕ(·, t) of a proper functionalϕ(·, ·) for t ∈ X,
which is defined by

∂ϕ(·, t) = {f ∈ X : ϕ(y, t)− ϕ(x, t) ≥ 〈f, y − x)〉, y ∈ X},
whereϕ(·, t) : X → R ∪ {+∞} is a proper convex lower semi-continuous functional for all
t ∈ X.

It is easy to see that the problem (1.4) is equivalent to the following:
Findx ∈ X such that

(1.5) 0 ∈ F (x) + ∂ϕ(x, V (x)).

Recently, Huang and Fang [7] first introduced the concept of a generalizedm-accretive map-
ping, which is a generalization of anm-accretive mapping, and gave the definition and prop-
erties of the resolvent operator for the generalizedm-accretive mapping in a Banach space.
Later, by using the resolvent operator technique, which is a very important method for find-
ing solutions of variational inequality and variational inclusion problems, a number of nonlin-
ear variational inclusions and many systems of variational inequalities, variational inclusions,
complementarity problems and equilibrium problems. Bi, Huang, Jin and other authors intro-
duced and studied some new classes of nonlinear variational inclusions involving generalized
m-accretive mappings in Banach spaces, they also obtained some new corresponding existence
and convergence results (see, [2, 5, 8] and the references therein). On the other hand, Huang,
Lan, Zeng, Wang et al. discussed the stability of the iterative sequence generated by the algo-
rithm for solving what they studied (see [6, 11, 15, 19]).

Motivated and inspired by the above works, in this paper, we introduce and study the follow-
ing new class of generalized strongly nonlinear operator inclusion problems involving general-
izedm-accretive mappings:

Findx ∈ X such that(p(x), g(x)) ∈ Dom M and

(1.6) f ∈ N(S(x), T (x), U(x)) + M(p(x), g(x)),
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wheref is an any given element onX, a real Banach space,S, T, U, p, g : X → X and
N : X ×X ×X → X are single-valued mappings andM : X ×X → 2X is a generalizedm-
accretive mapping with respect to the first argument,2X denotes the family of all the nonempty
subsets ofX. By using the resolvent operator technique for generalizedm-accretive mappings
due to Huang and Fang [7, 8], we prove the existence theorems of the solution for these types
of operator inclusion problems in Banach spaces, and discuss the convergence and stability of a
new perturbed iterative algorithm for solving this class of nonlinear operator inclusion problems
in Banach spaces. Our results improve and generalize the corresponding results of [3, 6, 11, 12].

We remark that for a suitable choice off , the mappingsN, η, S, T, U, M, p, g and the space
X, a number of known or new classes of variational inequalities, variational inclusions and
corresponding optimization problems can be obtained as special cases of the nonlinear quasi-
variational inclusion problem (1.6). Moreover, these classes of variational inclusions provide
us with a general and unified framework for studying a wide range of interesting and important
problems arising in mechanics, optimization and control, equilibrium theory of transportation
and economics, management sciences, and other branches of mathematical and engineering
sciences, etc. See for more details [1, 3, 4, 6, 9, 11, 15, 17, 18] and the references therein.

2. GENERALIZED m-ACCRETIVE M APPING

Throughout this paper, letX be a real Banach space with dual spaceX∗, 〈·, ·〉 the dual pair
betweenX andX∗, and2X denote the family of all the nonempty subsets ofX. The generalized
duality mappingJq : X → 2X∗

is defined by

Jq(x) = {x∗ ∈ X∗ : 〈x, x∗〉 = ‖x‖q, ‖x∗‖ = ‖x‖q−1}, ∀x ∈ X,

whereq > 1 is a constant. In particular,J2 is the usual normalized duality mapping. It is well
known that, in general,Jq(x) = ‖x‖q−2J2(x) for all x 6= 0 andJq is single-valued ifX∗ is
strictly convex (see, for example, [16]). IfX = H is a Hilbert space, thenJ2 becomes the
identity mapping ofH. In what follows we shall denote the single-valued generalized duality
mapping byjq.

Definition 2.1. The mappingg : X → X is said to be

(1) α-strongly accretive, if for anyx, y ∈ X, there existsjq(x− y) ∈ Jq(x− y) such that

〈g(x)− g(y), jq(x− y)〉 ≥ α‖x− y‖q,

whereα > 0 is a constant;
(2) β-Lipschitz continuous, if there exists a constantβ > 0 such that

‖g(x)− g(y)‖ ≤ β‖x− y‖, ∀x, y ∈ X.

Definition 2.2. Let h, g : X → X be two single-valued mappings. The mappingN : X×X×
X → X is said to be

(1) σ-strongly accretive with respect toh in the first argument, if for anyx, y ∈ X, there
existsjq(x− y) ∈ Jq(x− y) such that

〈N(h(x), ·, ·)−N(h(y), ·, ·), jq(x− y)〉 ≥ σ‖x− y‖q,

whereσ > 0 is a constant;
(2) ς-relaxed accretive with respect tog in the second argument, if for anyx, y ∈ X, there

existsjq(x− y) ∈ Jq(x− y) such that

〈N(·, g(x), ·)−N(·, g(y), ·), jq(x− y)〉 ≥ −ς‖x− y‖q

whereς > 0 is a constant;

J. Inequal. Pure and Appl. Math., 7(3) Art. 91, 2006 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


4 HENG-YOU LAN , HUANG-L IN ZENG, AND ZUO-AN L I

(3) ε-Lipschitz continuous with respect to the first argument, if there exists a constantε > 0
such that

‖N(x, ·, ·)−N(y, ·, ·)‖ ≤ ε‖x− y‖, ∀x, y ∈ X.

Similarly, we can define theξ, γ-Lipschitz continuity in the second and third argument
of N(·, ·, ·), respectively.

Definition 2.3 ([7]). Let η : X ×X → X∗ be a single-valued mapping andA : X → 2X be a
multi-valued mapping. ThenA is said to be

(1) η-accretive if

〈u− v, η(x, y)〉 ≥ 0, ∀x, y ∈ X, u ∈ A(x), v ∈ A(y);

(2) generalizedm-accretive ifA is η-accretive and(I + λA)(X) = X for all (equivalently,
for some)λ > 0.

Remark 2.1. Huang and Fang gave one example of the generalizedm-accretive mapping in
[7]. If X = X∗ = H is a Hilbert space, then (1), (2) of Definition 2.3 reduce to the definition
of η-monotonicity and maximalη-monotonicity respectively; ifX is uniformly smooth and
η(x, y) = J2(x − y), then (1) and (2) of Definition 2.3 reduce to the definitions of accretivity
andm-accretivity in uniformly smooth Banach spaces, respectively (see [7, 8]).

Definition 2.4. The mappingη : X ×X → X∗ is said to be

(1) δ-strongly monotone, if there exists a constantδ > 0 such that

〈x− y, η(x, y)〉 ≥ δ‖x− y‖2, ∀x, y ∈ X;

(2) τ -Lipschitz continuous, if there exists a constantτ > 0 such that

‖η(x, y)‖ ≤ τ‖x− y‖, ∀x, y ∈ X.

The modules of smoothness ofX is the functionρX : [0,∞) → [0,∞) defined by

ρX(t) = sup

{
1

2
‖x + y‖+ ‖x− y‖ − 1 : ‖x‖ ≤ 1, ‖y‖ ≤ t

}
.

A Banach spaceX is called uniformly smooth iflimt→0
ρX(t)

t
= 0 andX is calledq-

uniformly smooth if there exists a constantc > 0 such thatρX ≤ ctq, whereq > 1 is a
real number.

It is well known that Hilbert spaces,Lp (or lp) spaces,1 < p < ∞, and the Sobolev spaces
Wm,p, 1 < p < ∞, are allq-uniformly smooth. In the study of characteristic inequalities in
q-uniformly smooth Banach spaces, Xu [16] proved the following result:

Lemma 2.2. Let q > 1 be a given real number andX be a real uniformly smooth Banach
space. ThenX is q-uniformly smooth if and only if there exists a constantcq > 0 such that for
all x, y ∈ X, jq(x) ∈ Jq(x), there holds the following inequality

‖x + y‖q ≤ ‖x‖q + q〈y, jq(x)〉+ cq‖y‖q.

In [7], Huang and Fang show that for anyρ > 0, inverse mapping(I+ρA)−1 is single-valued,
if η : X×X → X∗ is strict monotone andA : X → 2X is a generalizedm-accretive mapping,
whereI is the identity mapping. Based on this fact, Huang and Fang [7] gave the following
definition:
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Definition 2.5. Let A : X → 2X be a generalizedm-accretive mapping. Then the resolvent
operatorJρ

A for A is defined as follows:

Jρ
A(z) = (I + ρA)−1(z), ∀z ∈ X,

whereρ > 0 is a constant andη : X ×X → X∗ is a strictly monotone mapping.

Lemma 2.3([7, 8]). Letη : X ×X → X∗ beτ -Lipschitz continuous andδ-strongly monotone.
Let A : X → 2X be a generalizedm-accretive mapping. Then the resolvent operatorJρ

A for
A is Lipschitz continuous with constantτ

δ
, i.e.,

‖Jρ
A(x)− Jρ

A(y)‖ ≤ τ

δ
‖x− y‖, ∀x, y ∈ X.

3. EXISTENCE THEOREMS

In this section, we shall give the existence theorem of problem (1.6). Firstly, from the defi-
nition of the resolvent operator for a generalizedm-accretive mapping, we have the following
lemma:

Lemma 3.1. x is the solution of problem (1.6) if and only if

(3.1) p(x) = Jρ
M(·,g(x))[p(x)− ρ(N(S(x), T (x), U(x))− f)],

whereJρ
M(·,g(x)) = (I + ρM(·, g(x)))−1 andρ > 0 is a constant.

Theorem 3.2.LetX be aq-uniformly smooth Banach space,η : X ×X → X∗ beτ -Lipschitz
continuous andδ-strongly monotone,M : X × X → 2X be a generalizedm-accretive map-
ping with respect to the first argument, and mappingsS, T, U : X → X beκ, µ, ν-Lipschitz
continuous, respectively. Letp : X → X beα-strongly accretive andβ-Lipschitz continuous,
g : X → X be ι-Lipschitz continuous,N : X × X × X → X beσ-strongly accretive with
respect toS in the first argument andς-relaxed accretive with respect toT in the second ar-
gument, andε, ξ, γ-Lipschitz continuous in the first, second and third argument, respectively.
Suppose that there exist constantsρ > 0 andζ > 0 such that for eachx, y, z ∈ X,

(3.2)
∥∥∥Jρ

M(·,x)(z)− Jρ
M(·,x)(z)

∥∥∥ ≤ ζ‖x− y‖

and

(3.3)


h = ζι +

(
1 + τ

δ

)
(1− qα + cqβ

q)
1
q < 1,

τ
[
(1− qρ(σ − ς) + cqρ

q(εκ + ξµ)q)
1
q + ργν

]
< δ(1− h),

wherecq is the same as in Lemma 2.2, then problem (1.6) has a unique solutionx∗.

Proof. From Lemma 3.1, problem (1.6) is equivalent to the fixed problem (3.1), equation (3.1)
can be rewritten as follows:

x = x− p(x)− Jρ
M(·,g(x))[p(x)− ρ(N(S(x), T (x), U(x))− f)].

For everyx ∈ X, take

(3.4) Q(x) = x− p(x)− Jρ
M(·,g(x))[p(x)− ρ(N(S(x), T (x), U(x))− f)].
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Thenx∗ is the unique solution of problem (1.6) if and only ifx∗ is the unique fixed point ofQ.
In fact, it follows from (3.2), (3.4) and Lemma 2.3 that

‖Q(x)−Q(y)‖

≤ ‖x− y − (p(x)− p(y))‖+
∥∥∥Jρ

M(·,g(x))[p(x)− ρ(N(S(x), T (x), U(x))− f)]

− Jρ
M(·,g(y))[p(y)− ρ(N(S(y), T (y), U(y))− f)]

∥∥∥
≤ ‖x− y − (p(x)− p(y))‖+

∥∥∥Jρ
M(·,g(x))[p(x)− ρ(N(S(x), T (x), U(x))− f)]

− Jρ
M(·,g(x))[p(y)− ρ(N(S(y), T (y), U(y))− f)]

∥∥∥
+

∥∥∥Jρ
M(·,g(x))[p(y)− ρ(N(S(y), T (y), U(y))− f)]

− Jρ
M(·,g(y))[p(y)− ρ(N(S(y), T (y), U(y))− f)]

∥∥∥
≤

(
1 +

τ

δ

)
‖x− y − (p(x)− p(y))‖

+
τ

δ
{‖x− y − ρ[(N(S(x), T (x), U(x))−N(S(y), T (x), U(x)))

+ (N(S(y), T (x), U(x))−N(S(y), T (y), U(x)))]‖
+ ρ‖N(S(y), T (y), U(x))−N(S(y), T (y), U(y))‖}(3.5)

+ ζ‖g(x)− g(y))‖.

By the hypothesis ofg, p, S, T, U , N and Lemma 2.2, now we know there existscq > 0 such
that

‖g(x)− g(y)‖ ≤ ι‖x− y‖,(3.6)

‖x− y − (p(x)− p(y))‖q ≤ (1− qα + cqβ
q)‖x− y‖q,(3.7)

‖N(S(y), T (y), U(x))−N(S(y), T (y), U(y))‖ ≤ γν‖x− y‖,(3.8)

‖x− y − ρ[(N(S(x), T (x), U(x))−N(S(y), T (x), U(x)))

+ (N(S(y), T (x), U(x))−N(S(y), T (y), U(x)))]‖q

≤ ‖x− y‖q − qρ〈(N(S(x), T (x), U(x))−N(S(y), T (x), U(x)))

+ (N(S(y), T (x), U(x))−N(S(y), T (y), U(x))), jq(x− y)〉
+ cqρ

q‖(N(S(x), T (x), U(x))−N(S(y), T (x), U(x)))

+ (N(S(y), T (x), U(x))−N(S(y), T (y), U(x)))‖q

≤ ‖x− y‖q − qρ[〈N(S(x), T (x), U(x))−N(S(y), T (x), U(x)), jq(x− y)〉
+ 〈N(S(y), T (x), U(x))−N(S(y), T (y), U(x)), jq(x− y)〉]
+ cqρ

q[‖N(S(x), T (x), U(x))−N(S(y), T (x), U(x))‖
+ ‖N(S(y), T (x), U(x))−N(S(y), T (y), U(x))‖]q

≤ [1− qρ(σ − ς) + cqρ
q(εκ + ξµ)q]‖x− y‖q.(3.9)

Combining (3.5) – (3.9), we get

(3.10) ‖Q(x)−Q(y)‖ ≤ θ‖x− y‖,
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where

θ = h +
τ

δ

[
(1− qρ(σ − ς) + cqρ

q(εκ + ξµ)q)
1
q + ργν

]
,(3.11)

h = ζι +
(
1 +

τ

δ

)
(1− qα + cqβ

q)
1
q .

It follows from (3.3) that0 < θ < 1 and soQ : X → X is a contractive mapping, i.e.,Q has a
unique fixed point inX. This completes the proof. �

Remark 3.3. If X is a 2-uniformly smooth Banach space and there existsρ > 0 such that

h = ζι +
(
1 + τ

δ

) √
1− 2α + c2β2 < 1,

0 < ρ < δ(1−h)
τγν

, γν <
√

c2(εκ + ξµ),

τ(σ − ς) > δγν(1− h) +
√

[c2(εκ + ξµ)2 − γ2ν2][τ 2 − δ2(1− h)2],∣∣∣ρ− τ(σ−ς)+δγν(h−1)
τ [c2(εκ+ξµ)2−γ2ν2]

∣∣∣ < [τ(σ−ς)−δγν(1−h)]2−[c2(εκ+ξµ)2−γ2ν2][τ2−δ2(1−h)2]
τ [c2(εκ+ξµ)2−γ2ν2]

,

then (3.3) holds. We note that the Hilbert space andLp (or lp) (2 ≤ p < ∞) spaces are
2-uniformly Banach spaces.

4. PERTURBED ALGORITHM AND STABILITY

In this section, by using the following definition and lemma, we construct a new perturbed
iterative algorithm with mixed errors for solving problem (1.6) and prove the convergence and
stability of the iterative sequence generated by the algorithm.

Definition 4.1. Let S be a selfmap ofX, x0 ∈ X, and letxn+1 = h(S, xn) define an iteration
procedure which yields a sequence of points{xn}∞n=0 in X. Suppose that{x ∈ X : Sx = x} 6=
∅ and{xn}∞n=0 converges to a fixed pointx∗ of S. Let{un} ⊂ X and letεn = ‖un+1−h(S, un)‖.
If lim εn = 0 implies thatun → x∗, then the iteration procedure defined byxn+1 = h(S, xn) is
said to beS-stable or stable with respect toS.

Lemma 4.1 ([12]). Let {an}, {bn}, {cn} be three nonnegative real sequences satisfying the
following condition:

there exists a natural numbern0 such that

an+1 ≤ (1− tn)an + bntn + cn, ∀n ≥ n0,

wheretn ∈ [0, 1],
∑∞

n=0 tn = ∞, limn→∞ bn = 0,
∑∞

n=0 cn < ∞. Thenan → 0(n →∞).

The relation (3.1) allows us to construct the following perturbed iterative algorithm with
mixed errors.

Algorithm 4.1. Step1. Choosex0 ∈ X.
Step2. Let

(4.1)



xn+1 = (1− αn)xn + αn[yn − p(yn)

+Jρ
M(·,g(yn))(p(yn)− ρ(N(S(yn), T (yn), U(yn))− f))] + αnun + ωn,

yn = (1− βn)xn + βn[xn − p(xn)

+Jρ
M(·,g(xn))(p(xn)− ρ(N(S(xn), T (xn), U(xn))− f))] + vn,

Step3. Choose sequences{αn}, {βn}, {un}, {vn} and{ωn} such that forn ≥ 0, {αn}, {βn}
are two sequences in[0, 1], {un}, {vn}, {ωn} are sequences inX satisfying the following con-
ditions:
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(i) un = u′n + u′′n;
(ii) limn→∞ ‖u′n‖ = limn→∞ ‖vn‖ = 0;

(iii)
∑∞

n=0 ‖u′′n‖ < ∞,
∑∞

n=0 ‖ωn‖ < ∞,

Step4. If xn+1, yn, αn, βn, un, vn andωn satisfy (4.1) to sufficient accuracy, go toStep5;
otherwise, setn := n + 1 and return toStep2.

Step5. Let{zn} be any sequence inX and define{εn} by

(4.2)



εn = ‖zn+1 − {(1− αn)zn + αn[tn − p(tn)

+Jρ
M(·,g(tn))(p(tn)− ρ(N(S(tn), T (tn), U(tn))− f))] + αnun + ωn}‖,

tn = (1− βn)zn + βn[zn − p(zn)

+Jρ
M(·,g(zn))(p(zn)− ρ(N(S(zn), T (zn), U(zn))− f))] + vn.

Step6. If εn, zn+1, tn, αn, βn, un, vn and ωn satisfy (4.2) to sufficient accuracy, stop;
otherwise, setn := n + 1 and return toStep3.

Theorem 4.2. Suppose thatX, S, T, U, p, g,N, η and M are the same as in Theorem 3.2,θ
is defined by (3.11). If

∑∞
n=0 αn = ∞ and conditions (3.2), (3.3) hold, then the perturbed

iterative sequence{xn} defined by (4.1) converges strongly to the unique solution of problem
(1.6). Moreover, if there existsa ∈ (0, αn] for all n ≥ 0, thenlimn→∞ zn = x∗ if and only if
limn→∞ εn = 0, whereεn is defined by (4.2).

Proof. From Theorem 3.2, we know that problem (1.6) has a unique solutionx∗ ∈ X. It follows
from (4.1), (3.11) and the proof of (3.10) in Theorem 3.2 that

‖xn+1 − x∗‖
≤ (1− αn)‖xn − x∗‖+ αnθ‖yn − x∗‖+ αn(‖u′n‖+ ‖u′′n‖) + ‖ωn‖
≤ (1− αn)‖xn − x∗‖+ αnθ‖yn − x∗‖+ αn‖u′n‖+ (‖u′′n‖+ ‖ωn‖).(4.3)

Similarly, we have

(4.4) ‖yn − x∗‖ ≤ (1− βn + βnθ)‖xn − x∗‖+ ‖vn‖.
Combining (4.3) – (4.4), we obtain

(4.5) ‖xn+1 − x∗‖ ≤ [1− αn(1− θ(1− βn + βnθ))]‖xn − x∗‖
+ αn(‖u′n‖+ θ‖vn‖) + (‖u′′n‖+ ‖ωn‖).

Sinceθ < 1, 0 < βn ≤ 1 (n ≥ 0), we have1−βn+βnθ < 1 and1−θ(1−βn+βnθ) > 1−θ > 0.
Therefore, (4.5) implies

(4.6) ‖xn+1 − x∗‖ ≤ [1− αn(1− θ)]‖xn − x∗‖

+ αn(1− θ) · 1

1− θ
(‖u′n‖+ θ‖vn‖) + (‖u′′n‖+ ‖ωn‖).

Since
∑∞

n=0 αn = ∞, it follows from Lemma 4.1 and (4.6) that‖xn − x∗‖ → 0(n →∞), i.e.,
{xn} converges strongly to the unique solutionx∗ of the problem (1.6).

Now we prove the second conclusion. By (4.2), we know

(4.7) ‖zn+1 − x∗‖ ≤ ‖(1− αn)zn + αn[tn − p(tn)

+ Jρ
M(·,g(tn))(p(tn)− ρ(N(S(tn), T (tn), U(tn))− f)))

+ αnun + ωn − x∗‖+ εn.
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As the proof of inequality (4.6), we have

(4.8) ‖(1− αn)zn + αn[tn − p(tn)

+ Jρ
M(·,g(tn))(p(tn)− ρ(N(S(tn), T (tn), U(tn))− f))) + αnun + ωn − x∗‖

≤ [1− αn(1− θ)]‖zn − x∗‖

+ αn(1− θ) · 1

1− θ
(‖u′n‖+ θ‖vn‖) + (‖u′′n‖+ ‖ωn‖).

Since0 < a ≤ αn, it follows from (4.7) and (4.8) that

‖zn+1 − x∗‖

≤ [1− αn(1− θ)]‖zn − x∗‖+ αn(1− θ) · 1

1− θ
(‖u′n‖+ θ‖vn‖) + (‖u′′n‖+ ‖ωn‖) + εn

≤ [1− αn(1− θ)]‖zn − x∗‖+ αn(1− θ) · 1

1− θ

(
‖u′n‖+ θ‖vn‖+

εn

a

)
+ (‖u′′n‖+ ‖ωn‖).

Suppose thatlim εn = 0. Then from
∑∞

n=0 αn = ∞ and Lemma 4.1, we havelim zn = x∗.
Conversely, iflim zn = x∗, then we get

εn = ‖zn+1 − {(1− αn)zn + αn[tn − p(tn)

+ Jρ
M(·,g(tn))(p(tn)− ρ(N(S(tn), T (tn), U(tn))− f))] + αnun + ωn}

∥∥∥
≤ ‖zn+1 − x∗‖+ ‖(1− αn)zn + αn[tn − p(tn)

+ Jρ
M(·,g(tn))(p(tn)− ρ(N(S(tn), T (tn), U(tn))− f))) + αnun + ωn − x∗

∥∥∥
≤ ‖zn+1 − x∗‖+ [1− αn(1− θ)]‖zn − x∗‖

+ αn(‖u′n‖+ θ‖vn‖) + (‖u′′n‖+ ‖ωn‖) → 0 (n →∞).

This completes the proof. �

Remark 4.3. If un = vn = ωn = 0 (n ≥ 0) in Algorithm 4.1, then the conclusions of Theorem
4.2 also hold. The results of Theorems 3.2 and 4.2 improve and generalize the corresponding
results of [3, 6, 11, 12].
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