
Journal of Inequalities in Pure and
Applied Mathematics

http://jipam.vu.edu.au/

Volume 7, Issue 4, Article 133, 2006

NOTE ON THE NORMAL FAMILY

JUNFENG XU AND ZHANLIANG ZHANG

DEPARTMENT OFMATHEMATICAL

SHANDONG UNIVERSITY, JINAN

250100 P.R. CHINA

xjf28@sohu.com

DEPARTMENT OFMATHEMATICAL

ZHAOQING UNIVERSITY, ZHAOQING

526061 P.R. CHINA

zlzhang@zqu.edu.cn

Received 26 March, 2006; accepted 19 June, 2006
Communicated by H.M. Srivastava
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1. I NTRODUCTION AND RESULTS

Let C be the open complex plane andD ∈ C be a domain. Letf be a meromorphic function
in the complex plane, we assume that the reader is familiar with the notations of Nevanlinna
theory (see, e.g., [5][12]).

Definition 1.1. Let k be a positive integer, for anya in the complex plane. We denote by
Nk)(r, 1/(f −a)) the counting function ofa-points off with multiplicity≤ k, byN(k(r, 1/(f −
a)) the counting function ofa-points off with multiplicity≥ k, byNk(r, 1/(f−a)) the counting
function ofa-points off with multiplicity of k, and denote the reduced counting function by
Nk)(r, 1/(f − a)), N (k(r, 1/(f − a)) andNk(r, 1/(f − a)), respectively.

In 1995, Chen-Fang [3] proposed the following conjecture:

Conjecture 1.1. Let F be a family of meromorphic functions in a domainD. If for every
functionf ∈ F , f (k) − afn − b has no zero inD, thenF is normal, wherea(6= 0), b are two
finite numbers andk, n(≥ k + 2) are positive integers.

In response to this conjecture, Xu [11] proved the following result.
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2 JUNFENG XU AND ZHANLIANG ZHANG

Theorem A. LetF be a family of meromorphic functions in a domainD anda(6= 0), b be two
finite constants. Ifk andn are positive integers such thatn ≥ k + 2 and for everyf ∈ F

(i) f (k) − afn − b has no zero,
(ii) f has no simple pole,

thenF is normal.

The condition (ii) of Theorem A can be dropped if we choosen ≥ k + 4 (cf. [8][10]). If
n ≥ k + 3, is condition (ii) in Theorem A necessary? We will give an answer.

Theorem 1.2. Let F be a family of meromorphic functions in a domainD and a(6= 0), b be
two finite constants. Ifk andn are positive integers such thatn ≥ k + 3 and for everyf ∈ F ,
f (k) − afn has no zero, thenF is normal.

In addition, Lahiri and Dewan [6] investigated the situation when the power off is negative
in condition (i) of Theorem A.

Theorem B. LetF be a family of meromorphic functions in a domainD anda(6= 0), b be two
finite constants. Suppose thatEf = {z : z ∈ D and f (k)(z) − af−n(z) = b}, wherek and
n(≥ k) are positive integers.

If for everyf ∈ F

(i) f has no zero of multiplicity less thank,
(ii) there exists a positive numberM such that for everyf ∈ F, |f(z)| ≥ M whenever

z ∈ Ef , thenF is normal.

I. Lahiri gave two examples to show that conditions (i) and (ii) are necessary. Naturally, we
can question whethern ≥ k is necessary, first we note the following example.

Example 1.1.Let D : |z| < 1 andF = {fn}, where

fp(z) =
z3

p
, p = 2, 3, . . . ,

andn = 2, k = 3, a = 1, b = 0. Thenfp has the zeros of multiplicity 3 andEfp = {z : z ∈
D and 6z6 − p3 = 0}. For anyz ∈ Ef , |fp(z)| =

√
p
6
→∞, asp →∞. But

|f ]
p(z)| =

∣∣∣∣ 3pz2

p2 + z6

∣∣∣∣ <

∣∣∣∣ 3pz2

p2 − |z|6

∣∣∣∣ <
3p

p2 − 1
<

3

p− 1
≤ 3,

for anyp. By Marty’s criterion, the family{fp} is normal.

Hence we can give some answers. In fact, we can prove the following theorem:

Theorem 1.3. Let F be a family of meromorphic functions in a domainD and a(6= 0), b be
two finite constants. Suppose thatEf = {z : z ∈ D andf (k) − af−n = b},wherek andn are
positive integers,

If for everyf ∈ F
(i) f has the zero of multiplicity at leastk,

(ii) there exists a positive numberM such that for everyf ∈ F , |f(z)| ≥ M whenever
z ∈ Ef .

ThenF is normal inD so long as

(A) n ≥ 2; or

(B) n = 1 andNk

(
r, 1

f

)
= S(r, f).

Especially, iff(z) is an entire function, we can obtain the complete answer.
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Theorem 1.4. LetF be a family of entire functions in a domainD anda(6= 0), b be two finite
constants. Suppose thatEf = {z : z ∈ D andf (k) − af−n = b}, wherek andn are positive
integers,

If for everyf ∈ F
(i) f has no zero of multiplicity less thank,

(ii) there exists a positive numberM such that for everyf ∈ F , |f(z)| ≥ M whenever
z ∈ Ef , thenF is normal.

2. PRELIMINARIES

Lemma 2.1. [13] Let f be nonconstant meromorphic in the complex plane,L[f ] = akf
(k) +

ak−1f
(k−1)+· · ·+a0f, wherea0, a1, . . . , ak are small functions, fora 6= 0,∞, letF = fnL[f ]−

a, wheren ≥ 2 is a positive integer. Then

lim sup
r→+∞

N(r, a; F )

T (r, F )
> 0 .

Lemma 2.2. Let f be nonconstant meromorphic in the complex plane,L[f ] is given as in
Lemma 2.1 andF = fL[f ]− a. Then

T (r, f) ≤
(

6 +
6

k

) (
N

(
r,

1

F

)
+ Nk)

(
r,

1

f

))
+ S(r, f).

Proof. For the simplification, we prove the case ofL[f ] = f (k), the general case is similar.
Without loss of generality, leta = 1, then

(2.1) F = fL[f ]− 1.

By differentiating the equation (2.1), we get

(2.2) fβ = −F ′

F
,

where

(2.3) β =
f ′

f
f (k) + f (k+1) − f (k)F

′

F
.

ObviouslyF 6≡ constant,β 6≡ 0. By the Clunie Lemma ([1] or [4])

(2.4) m(r, β) = S(r, f).

Let z0 be a pole off of orderq. Thenz0 is the simple pole ofF
′

F
, and the poles off of order

q(≥ 2) are the zeros ofβ of orderq− 1 from (2.2), the simple pole off is the non-zero analytic
point ofβ, therefore

(2.5) N(2(r, f) ≤ N

(
r,

1

β

)
+ N

(
r,

1

β

)
≤ 2N

(
r,

1

β

)
.

By (2.3), we know the zeros off of orderq > k are not the poles ofβ. From (2.3), we get

(2.6) N(r, β) ≤ N

(
r,

1

F

)
+ Nk)

(
r,

1

f

)
+ S(r, f).

Then, by (2.4) and (2.6), we have

(2.7) T (r, β) ≤ N

(
r,

1

F

)
+ Nk)

(
r,

1

f

)
+ S(r, f).
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Next with (2.5) and (2.7), we obtain

(2.8) N(2(r, f) ≤ 2N

(
r,

1

F

)
+ 2Nk)

(
r,

1

f

)
+ S(r, f).

Noting by (2.2), (2.7) and the first fundamental theorem, we obtain

m(r, f) ≤ m

(
r,

1

β

)
+ m

(
r,

F ′

F

)
(2.9)

≤ T (r, β)−N

(
r,

1

β

)
+ S(r, f)

= N

(
r,

1

F

)
+ Nk)

(
r,

1

f

)
+ S(r, f).

If f only have finitely many simple poles, we get Lemma 2.2 by (2.5) and (2.9).
Next we discuss thatf have infinity simple poles. Letz0 be any simple pole off . Thenz0 is

the non-zero analytic point ofβ. In a neighborhood ofz0, we have

(2.10) f(z) =
d1(z0)

z − z0

+ d0(z0) + O(z − z0)

and

(2.11) β(z) = β(z0) + β′(z0)(z − z0) + O((z − z0)
2),

whered1(z0) 6= 0, β(z0) 6= 0. By differentiating (2.10), we get

(2.12) f (j)(z) = (−1)j j!d1(z0)

(z − z0)j+1
+ · · · , j = 1, 2, . . . , k.

with (2.3) and (2.5) we have

(2.13) fβ = f ′f (k) + ff (k+1) − f 2f (k)β.

Substituting (2.10)-(2.12) into (2.13), we obtain that the coefficients have the forms

(2.14) d1(z0) =
k + 2

β(z0)
,

(2.15) d0(z0) = −(k + 2)2

k + 3

β′(z0)

(β(z0))2
,

so that

(2.16)
d0(z0)

d1(z0)
= −k + 2

k + 3

β′(z0)

β(z0)
.

Through the calculating from (2.10) and (2.12), we get

(2.17)
f ′(z)

f(z)
= − 1

z − z0

+
d0(z0)

d1(z0)
+ O(z − z0),

(2.18)
F ′(z)

F (z)
= − k + 2

z − z0

+
d0(z0)

d1(z0)
+ O(z − z0).

Let

(2.19) h(z) =
F ′(z)

F (z)
− (k + 2)

f ′(z)

f(z)
− (k + 1)(k + 2)

(k + 3)

β′(z)

β(z)
.
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Then, by (2.17)-(2.19), clearly,h(z0) = 0. Therefore the simple pole off is the zero ofh(z).
From (2.19), we have

(2.20) m(r, h) = S(r, f).

If f only has finitely many zeros. By (2.3) and the lemma of logarithmic derivatives, we get

m(

(
r,

1

f

)
≤ m

(
r,

1

β

(
f ′

f

f (k)

f
+

f (k+1)

f
− f (k)

f

F ′

F

))
≤ m

(
r,

1

β

)
+ S(r, f).

It follows by (2.4) and (2.5) that

m

(
r,

1

f

)
≤ N

(
r,

1

F

)
+ Nk)

(
r,

1

f

)
+ S(r, f).

Using Nevanlinna’s first fundamental theorem andf only has finitely many zeros, we obtain

T (r, f) = T

(
r,

1

f

)
+ O(1)

= m

(
r,

1

f

)
+ S(r, f)

≤ N

(
r,

1

F

)
+ Nk)

(
r,

1

f

)
+ S(r, f).

Hence the conclusion of Lemma 2.2 holds.
If f only has infinitely many zeros. We assert thath(z) 6≡ 0. Otherwiseh(z) ≡ 0, then

F ′

F
= (k + 2)

f ′

f
+

(k + 1)(k + 2)

(k + 3)

β′(z0)

β(z0)
.

By integrating, we have

(2.21) F (k+3) = cf (k+2)(k+3)β(k+1)(k+2),

wherec 6= 0 is a constant. Any zeros off of order q are not the zeros and poles ofF by
(2.1), and any zeros off must be the poles ofβ by (2.21). Suppose thatq > k, (otherwise, the
conclusion of Lemma 2.2 holds by above) it contradicts (2.6), henceh(z) 6≡ 0.

Sinceh(z) 6≡ 0, and the simple pole off is the zeros ofh, we know the poles ofh(z) occur
only at the zeros ofF , the zeros off , the multiple poles off , the zeros and poles ofβ, all are
the simple pole ofh(z). At the same time, we noteF ′ = f ′f (k) + ff (k+1), hence the zeros off
of the order ofq(≥ k + 2) at least are the zeros ofF ′ of 2q − (k + 1), and also at least are the
zeros ofβ of orderq − (k + 1) by (2.2), hence,

N (k+2

(
r,

1

f

)
≤ 1

k + 2
N(k+2

(
r,

1

f

)
≤ 1

k + 2

(
N

(
r,

1

β

)
+ (k + 1)N

(
r,

1

β

))
≤ N

(
r,

1

β

)
.
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It follows from (2.8),(2.12) and (2.19), we have

N(r, h) ≤ N

(
r,

1

F

)
+ Nk+1)

(
r,

1

f

)
+ N(r, β) + N

(
r,

1

β

)
(2.22)

≤ N

(
r,

1

F

)
+ Nk)

(
r,

1

f

)
+ Nk+1

(
r,

1

f

)
+ 2T (r, β) + S(r, f)

≤ 3

(
N

(
r,

1

F

)
+ Nk)

(
r,

1

f

))
+ Nk+1

(
r,

1

f

)
+ S(r, f).

Using (2.20), we get

N1)(r, f) ≤ N

(
r,

1

h

)
(2.23)

≤ N(r, h) + S(r, f)

≤ 3

(
N

(
r,

1

F

)
+ Nk)

(
r,

1

f

))
+ Nk+1

(
r,

1

f

)
+ S(r, f).

Note

Nk+1

(
r,

1

f

)
=

1

k + 1
Nk+1

(
r,

1

f

)
≤ 1

k + 1
T (r, f) + S(r, f).

By (2.14),(2.16) and (2.23), we deduce

T (r, f) ≤
(

6 +
6

k

) (
N

(
r,

1

F

)
+ Nk)

(
r,

1

f

))
+ S(r, f).

�

Lemma 2.3. Let f be a nonconstant meromorphic function in the complex plane such that the
zeros off(z) are of multiplicity at least≥ k anda(6= 0) be a finite constant. Then

(i) If n ≥ 2, f (k) − af−n must have some zero, wherek andn are positive integers.

(ii) If n = 1, andNk

(
r, 1

f

)
= S(r, f), f (k) − af−n must have some zero, wherek is a

positive integer.

Proof. First we assume thatn ≥ 2, by Lemma 2.1, we knowfnf (k) − a must have some zero.
Since a zero offnf (k) − a is a zero off (k) − af−n, thenf (k) − af−n must have some zero.

If n = 1, the zeros off(z) are of multiplicity at least≥ k, soNk−1)

(
r, 1

f

)
= S(r, f). With

the condition ofNk

(
r, 1

f

)
= S(r, f), we haveNk)

(
r, 1

f

)
= S(r, f). By Lemma 2.2, we know

ff (k) − a must have some zero. As the preceding paragraph a zero offf (k) − a is a zero of
f (k) − af−1, the lemma is proved. �

Lemma 2.4([13]). Let f(z) be a transcendental meromorphic function in the complex plane,
anda 6= 0 be a constant. Ifn ≥ k + 3, thenf (k) − afn assumes zeros infinitely often.

Remark 2.5. In fact, E. Mues’s [7, Theorem 1(b)] gave a counterexample to show thatf ′−f 4 =
c has no solution. We knowf (k) − afn cannot assume non-zero values for any positive integer
n, k andn = k+3. Hence Theorem 1.2 may be best when we drop the condition (ii) in Theorem
A.

Lemma 2.6. Let f be a meromorphic function in the complex plane, anda 6= 0 be a constant.
If n ≥ k + 3, andf (k) − afn 6= 0, thenf ≡ constant.
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Proof. By Lemma 2.4, we knowf(z) is not a transcendental meromorphic function. Iff(z) is
a rational function. Letf(z) = p(z)/q(z), wherep(z), q(z) are two co-prime polynomials with
deg p(z) = p, deg q(z) = q.

Thenf (k) =
(

p(z)
q(z)

)(k)

= pk(z)
qk(z)

, wherepk(z), qk(z) are two co-prime polynomials, it is easily

seen by induction thatdeg pk(z) = pk = p, deg qk(z) = qk = q + k, andfn(z) = pn(z)
qn(z)

, where
deg pn(z) = pn, deg q(z) = qn. Since

f (k) − afn =
pk(z)

qk(z)
− a

pn(z)

qn(z)
=

pk(z)qn(z)− aqk(z)pn(z)

qk(z)qn(z)
,

and the degree of the termpk(z)qn(z)− aqk(z)pn(z) is max{p + nq, q + k + np}. If p + nq =
q + k + np, we have

n− 1 =
k

q − p
≥ k + 2.

It is impossible. Hencepk(z)qn(z) − aqk(z)pn(z) is a polynomial with degree=max{pk +
nq, qk + np} > 0, Obviously,f (k) − afn can assume zeros. It is a contradiction. Thus we have
f ≡ constant. �

Lemma 2.7. Let f be meromorphic in the complex plane, anda 6= 0 be a constant. For any
positive integern, k, satisfyn ≥ k + 3. If f (k) − afn ≡ 0, thenf ≡ is the constant.

Proof. If f is not the constant, by the condition we knowf is an integer function. Otherwise,
if z0 is the pole ofp(≥ 1) order off , thennp = p + k contradicts withn ≥ k + 3. With the
identityfn ≡ −af (k), or (f)n−1 ≡ 1

a
f (k)

f
, we can get

(n− 1)T (r, f) = (n− 1)m(r, f) ≤ log+ 1

|a|
+ m

(
r,

f (k)

f

)
= S(r, f), if r →∞

andr /∈ E with E being a set ofr values of finite linear measure. It is impossible. This proves
the lemma. �

Lemma 2.8 ([9]). Let F be a family of meromorphic functions on the unit disc4 such that
all zeros of functions inF have multiplicity at leastk. If F is not normal at a pointz0, then
for 0 ≤ α < k, there exist a sequence of functionsfk ∈ F , a sequence of complex numbers
zk → z0 and a sequence of positive numbersρk → 0, such that

ρ−α
k gk(zk + ρkξ) → g(ξ)

spherically uniformly on compact subsets ofC, whereg is a nonconstant meromorphic function.
Moreover,g is of order at most two, andg has only zeros of multiplicity at leastk.

Lemma 2.9([2]). Letf be a transcendental entire function all of whose zeros have multiplicity
at leastk, and letn be a positive integer. Thenfnf (k) takes on each nonzero valuea ∈ C
infinitely often.

Lemma 2.10. Let f be a polynomial all of whose zeros have multiplicity at leastk, and letn
be a positive integer. Thenfnf (k) can assume each nonzero valuea ∈ C.

The proof is trivial, we omit it here.
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3. PROOF OF THE THEOREMS

Proof of Theorem 1.2.We may assume thatD = 4. Suppose thatF is not normal atz0 ∈ 4.
Then, takingα = k

n−1
, where0 < α < k, and applying Lemma 2.8 tog = {1/f : f ∈ F},

we can findfj ∈ F (j = 1, 2, . . . ), zj → z0 andρj(> 0) → 0 such thatgj(ζ) = ρα
j fj(zj +

ρjζ), converges locally uniformly with respect to the spherical metric tog(ζ), whereg is a
nonconstant meromorphic function onC. By Lemma 2.6, there existsζ0 ∈ {|z| ≤ R} such that

(3.1) g(ζ0)
n − a(g(k)(ζ0)) = 0.

From the above equality,g(ζ0) 6= ∞. Through the calculation, we have

gn
j (ζ)− a(g

(k)
j (ζ)) = ρ

nk
n−1

j (fn
j (ζ)− a(f

(k)
j (ζ))) 6= 0.

On the other hand,

gn
j (ζ)− a(g

(k)
j (ζ)) → gn(ζ)− a(g(k)(ζ)).

By Hurwitz’s theorem, we knowgn(ζ)− a(g(k)(ζ)) is either identity zero or identity non-zero.
From (3.1), we knowgn(ζ)− a(g(k)(ζ)) ≡ 0, then by Lemma 2.7 yieldsg(ζ) is a constant, it is
a contradiction. Hence we complete the proof of Theorem 1.2. �

Proof of Theorem 1.3.Let α = k
n−1

< k. If possible suppose thatF is not normal atz0 ∈ D.
Then by Lemma 2.8, there exist a sequence of functionsfj ∈ F (j = 1, 2, . . . ), a sequence of
complex numberszj → z0 andρj(> 0) → 0, such that

gj(ζ) = ρ−α
j fj(zj + ρjζ)

converges spherically and locally uniformly to a nonconstant meromorphic functiong(ζ) in C.
Also the zeros ofg(z) are of multiplicity at least≥ k. Sog(k) 6≡ 0. By the condition of Theorem
1.3 and Lemma 2.3, we get

(3.2) g(k)(ζ0) +
a

g(ζ0)n
= 0

for someζ0 ∈ C. Clearly ζ0 is neither a zero nor a pole ofg. So in some neighborhood of
ζ0, gj(ζ) converges uniformly tog(ζ). Now in some neighborhood ofζ0 we see thatg(k)(ζ) +
ag(ζ)−n is the uniform limit of

g(k)(ζ0) + ag(ζ0)
−n − ρnα

j b = ρ
nk

1+n

j

{
f

(k)
j (zj + ρjζj) + af−n

j (zj + ρjζj)− b
}

.

By (3.2) and Hurwitz’s theorem, there exists a sequenceζj → ζ0 such that for all large values
of j

f
(k)
j (zj + ρjζj) + af−n

j (zj + ρjζj) = b.

Therefore for all large values ofj, it follows from the given condition|gj(ζj)| ≥ M/ρα
j and as

in the last part of the proof of Theorem 1.1 in [6], we arrive at a contradiction. This proves the
theorem. �

Proof of Theorem 1.4.In a similar manner to the proof of Theorem 1.3, we can prove the theo-
rem by Lemma 2.8, 2.9 and Lemma 2.10. �
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