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ABSTRACT. In this paper we consider the problem of normal family criteria and improve some
results of . Lihiri, S. Dewan and Y. Xu.
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1. INTRODUCTION AND RESULTS

Let C be the open complex plane afde C be a domain. Lef be a meromorphic function
in the complex plane, we assume that the reader is familiar with the notations of Nevanlinna
theory (see, e.g.. [5][12]).

Definition 1.1. Let £ be a positive integer, for any in the complex plane. We denote by
Niy(r,1/(f —a)) the counting function od-points of f with multiplicity < k, by N (r, 1/(f —

a)) the counting function of-points of f with multiplicity > &, by Ny (r, 1/(f —a)) the counting
function of a-points of f with multiplicity of k£, and denote the reduced counting function by
Niy(r,1/(f —a)), Ng(r,1/(f —a)) andNy(r, 1/(f — a)), respectively.

In 1995, Chen-Fang [3] proposed the following conjecture:

Conjecture 1.1. Let F be a family of meromorphic functions in a domdhn |If for every
functionf € F, f® — af™ — b has no zero irD, thenF is normal, where:(# 0), b are two
finite numbers and&, n(> k + 2) are positive integers.

In response to this conjecture, Xu [11] proved the following result.
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2 JUNFENG XU AND ZHANLIANG ZHANG

Theorem A. Let F be a family of meromorphic functions in a domdmanda(# 0), b be two
finite constants. Ik andn are positive integers such that> k + 2 and for everyf € F

(i) f® —af™ — bhas no zero,

(i) f has no simple pole,
thenF' is normal.

The condition (ii) of Theorem A can be dropped if we choase & + 4 (cf. [8][10]). If
n > k + 3, is condition (ii) in Theorem A necessary? We will give an answer.

Theorem 1.2. Let F be a family of meromorphic functions in a domédmand a(# 0),b be
two finite constants. If andn are positive integers such that> £ + 3 and for everyf € F,
f%) — af"™ has no zero, therF is normal.

In addition, Lahiri and Dewan [6] investigated the situation when the powégri®hegative
in condition (i) of Theorem A.

Theorem B. Let F be a family of meromorphic functions in a domd@manda(# 0), b be two
finite constants. Suppose th&f = {z : z € D and f*)(2) — af~"(z) = b}, wherek and
n(> k) are positive integers.
If foreveryf € F
(i) f has no zero of multiplicity less than
(i) there exists a positive numbét such that for everyf € F,|f(z)| > M whenever
z € FEy, thenF' is normal.

I. Lahiri gave two examples to show that conditions (i) and (ii) are necessary. Naturally, we
can question whether > k is necessary, first we note the following example.

Example 1.1.LetD : |z| < 1 andF = {f,}, where
3

V4
fZ:_a p:2737"'a
»(2) 5

andn = 2,k = 3,a = 1,b = 0. Then f, has the zeros of multiplicity 3 anfi;, = {2 : z €
D and 6z°—p® =0}. Foranyz € Ey, |f,(2)] = /8 — oo, asp — oo. But

3pz? 3p 3
f — < <3
552 PP+ P =S -1 p—1 7

for anyp. By Marty’s criterion, the family{ f, } is normal.

3pz?

Hence we can give some answers. In fact, we can prove the following theorem:

Theorem 1.3. Let F be a family of meromorphic functions in a domdmand a(# 0), b be
two finite constants. Suppose that = {z : z € D and f*) — af~" = b},wherek andn are
positive integers,
If foreveryf € F
() f has the zero of multiplicity at least
(i) there exists a positive numb@r such that for every € F,|f(z)] > M whenever
A Ef.
ThenF is normal inD so long as
(A) n>2;0r
(B) n =1andN, (7’, %) =S(r, f).

Especially, iff(z) is an entire function, we can obtain the complete answer.
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Theorem 1.4.Let F be a family of entire functions in a domalhanda(# 0), b be two finite
constants. Suppose thay = {z : z € Dand f* — af~" = b}, wherek andn are positive
integers,
If foreveryf ¢ F
(i) f has no zero of multiplicity less than
(i) there exists a positive numbér such that for everyf € F,|f(z)| > M whenever
z € Ey, thenF is normal.

2. PRELIMINARIES

Lemma 2.1. [13] Let f be nonconstant meromorphic in the complex plag] = a; f* +
ap_1 f* V4. daof, whereag, ay, . . ., a, are small functions, for # 0, co, let ' = f"L[f] -
a, wheren > 2 is a positive integer. Then

, N(r,a; F)
imsup ————=
T )

Lemma 2.2. Let f be nonconstant meromorphic in the complex plahgf] is given as in

Lemmd 21 and’ = fL[f] — a. Then

T(r, f) < (6 + %) (N (r, %) + Np <r, %)) + S(r, f).

Proof. For the simplification, we prove the case bff] = f*), the general case is similar.
Without loss of generality, let = 1, then

(2.1) F=fL[f]—1.
By differentiating the equation (3.1), we get

Fl
(22) 8=
where
(2.3) gL 0y gy

f F

Obviously F' # constant # 0. By the Clunie Lemmal(J1] or [4])
(2.4) m(r,3) = S(r, f).

Let z, be a pole off of orderq. Thenz, is the simple pole o%/, and the poles of of order
q(> 2) are the zeros of of orderg — 1 from (2.2), the simple pole of is the non-zero analytic
point of 3, therefore

(2.5) Ni(r, f) <N (T, %) +N (7“, %) < 2N (r, %) :

By (2.3), we know the zeros ¢f of orderq > k are not the poles gf. From [2.3), we get
(2.6) N8 <N ( %) A ( %) £ 50 f).

Then, by [(2.4) and (2]6), we have

(2.7) T(r,3) <N (r, %) + Ny (r, %) +S(r, f).
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Next with (2.5) and[(2]7), we obtain

— 1 — 1
28) Nl f) <2 (1 ) + 280 (77 ) + 50
Noting by (2.2),[(2.]V) and the first fundamental theorem, we obtain
1 F’
: < - —
(2.9) m(r,f)_m(r,ﬁ)—i—m(r,F)

<T(r,B)—N (7’, %) +S(r, f)

— 1 — 1
=N <T,F) +Nk) (T’,}) +S(T,f)
If f only have finitely many simple poles, we get Lemimg 2.2[by| (2.5) (2.9).
Next we discuss that have infinity simple poles. Let, be any simple pole of. Thenz is

the non-zero analytic point gf. In a neighborhood of,, we have

(2.10) f(z) = 4iz) + do(20) + O(z — 20)
zZ— 20

and
(2.11) B(z) = B(z0) + B'(20)(z = 20) + O((z = 20)*),
whered; (zp) # 0, 3(z) # 0. By differentiating [2.1D), we get

Do i Jldi(z0) .
(2.12) f()(z)—(—l)ﬁjt---, j=1,2,... k.
with (2.3) and[(Z.p) we have
(2.13) f8 =10+ e — f2r0p.
Substituting[(2.T0)F(2.12) intd (2.]13), we obtain that the coefficients have the forms

k+2
(2.14) di(20) = Blz0)
_ (k+2)? B'(=)

(215) d0(20> = — ]{; I 3 (6(20))27
so that
(216) do(Z()) _ _k+2ﬁ/(20>

dl(Z()) k + 3 6(20) '

Through the calculating fron (2.1L0) arid (2.12), we get
1 (2) 1 do(z0)
2.17 - T O ’
2.17) f(2) z—2zy di(z0) (z = 20)

(2.18) 1;((;) _ _jjjo + Z?gz; +0(z — ).

Let
F) Rk F)
R OO}

(2.19) h(z) =
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Then, by )f(2.19), clearly,(z) = 0. Therefore the simple pole dfis the zero ofi(z).
From (2.19), we have

(2.20) m(r,h) = S(r, f).

If f only has finitely many zeros. By (2.3) and the lemma of logarithmic derivatives, we get

1 1 f/ f(k) f(k+1) f(k:) F
o)< (5 (57 5 -7 F))
<m <7’, %) + S(r, f).

It follows by (2.4) and[(2 ) that

1NN —/ 1\ — 1
m <r, ?) <N (r, F) + Ng (r, ?) + S(r, f).

Using Nevanlinna’s first fundamental theorem ghadnly has finitely many zeros, we obtain

T f)=T (n %) +0(1)

=m (r, %) + S(r, f)
<N (7‘%) + Ny (r, %) +S(r, f).

Hence the conclusion of LemrhaR.2 holds.
If f only has infinitely many zeros. We assert that) # 0. Otherwiseh(z) = 0, then

F’ I N (k+1)(k+2)B'(20)

P N (O T

By integrating, we have

(2.21) F+3) — Cf(k+2)(k+3)ﬂ(k+1)(k+2)’

wherec # 0 is a constant. Any zeros gf of order g are not the zeros and poles Bf by
(2.1), and any zeros gf must be the poles of by (2.21). Suppose that> £, (otherwise, the
conclusion of Lemmf 2|2 holds by above) it contradicts|(2.6), hénce 0.

Sinceh(z) # 0, and the simple pole of is the zeros of., we know the poles of(z) occur
only at the zeros of, the zeros off, the multiple poles off, the zeros and poles of all are
the simple pole ofi(z). At the same time, we not€’ = f'f*) 4 f f(#+1) "hence the zeros gf
of the order ofy(> k + 2) at least are the zeros &f of 2¢ — (k + 1), and also at least are the
zeros ofg3 of orderq — (k + 1) by (2.3), hence,
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It follows from (2.8),[2.1R) and (2.19), we have
— 1 — 1 — 1
(2.22) N(r,h) < N (r, F) + Nit1) (r, ?) + N(r,8)+ N (T, E)

< N( ) ( f) + N1 <r, %) +27(r, B) + S(r, f)

o737 (1)) 1) e
Using (2.20), we get
(2.23) f)<N (%)

Note

Nis (7”, %) = %_HNk+1 (7”, %) < k—j—lT(r’ f)+S(r, f).
By (2.14).,(2.16) and (2.23), we deduce

T(r, f) < (6 + %) (W (r, %) + Np <r, %)) + S(r, f).

Lemma 2.3. Let f be a nonconstant meromorphic function in the complex plane such that the
zeros off (z) are of multiplicity at least> k£ anda( 0) be a finite constant. Then

(i) If n > 2, f® — af~™ must have some zero, whérandn are positive integers.
(i) fn =1, and N, (7", %) = S(r, f), f*) — af~™ must have some zero, wherds a
positive integer.

O

Proof. First we assume that > 2, by Lemmg 2./, we know” f*) — o must have some zero.
Since a zero of " f*) — @ is a zero off*) — af~", thenf*) — o f~™ must have some zero.

If n = 1, the zeros off (z) are of multiplicity at least> k, SON._) ( ,f) S(r, f). With

the condition ofV,, (r, %) = S(r, f), we haveNy, (r, 7) S(r, f). By Lemmal we know

ff% — o must have some zero. As the preceding paragraph a zef¢®f— « is a zero of
f®) — qf~1 the lemma is proved. O

Lemma 2.4([13]). Let f(z) be a transcendental meromorphic function in the complex plane,
anda # 0 be a constant. I, > k + 3, thenf®*) — o f* assumes zeros infinitely often.

Remark 2.5. In fact, E. Mues's[[7, Theorem 1(b)] gave a counterexample to showthat! =

¢ has no solution. We knowi®) — o f* cannot assume non-zero values for any positive integer
n, k andn = k+3. Hence Theoremn 1.2 may be best when we drop the condition (ii) in Theorem
Al

Lemma 2.6. Let f be a meromorphic function in the complex plane, and 0 be a constant.
If n > k+3,andf*) — af™ +# 0, thenf = constant.
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Proof. By Lemmg 2.4, we knowf(z) is not a transcendental meromorphic functionf (£) is
a rational function. Lef(z) = p(z)/q(z), wherep(z), q(z) are two co-prime polynomials with

degp(z) = p,degq(2) = ¢.
Thenf) = <M> = 2x(2) wherepy(z), q1(z) are two co-prime polynomials, it is easily

q(2) k(%)
seen by induction thateg py(z) = pr = p, degqx(2) = qx = ¢ + k, and f"(z) = f]’n—gg where
degp"(z) = pn, deg q(z) = gn. Since

a(z) q(z) 0 (2)q"(2)

FO g pm = pr(2) ap"(z) ~ pe(2)q"(2) — agi(2)p"(2)

)

and the degree of the term(z)q"(2) — aqe(2)p™(2) iIsmax{p + nq,q + k + np}. If p+ng =
q + k + np, we have

k
n—1=——2>k+2.
q—p
It is impossible. Hencey(z)q"(z) — aqx(2)p™(z) is a polynomial with degreemax{p; +
ng, qx +np}y > 0, Obviously,f*) — af™ can assume zeros. Itis a contradiction. Thus we have
f = constant. 0J

Lemma 2.7. Let f be meromorphic in the complex plane, and4 0 be a constant. For any
positive integen, k, satisfyn > k + 3. If f(¥) — af" = 0, thenf = is the constant.

Proof. If f is not the constant, by the condition we kngws an integer function. Otherwise,
if zo is the pole ofp(> 1) order of f, thennp = p + k contradicts withn > k& + 3. With the

identity f* = —af®, or (f)" ! = %% we can get

(k)
(n—DT(r, f) = (n— )m(r, f) < log" ﬁ +m (r, fT) =S(r, f), if r—oo
andr ¢ E with E being a set of values of finite linear measure. It is impossible. This proves
the lemma. 0

Lemma 2.8([9]). Let F be a family of meromorphic functions on the unit discsuch that
all zeros of functions i have multiplicity at least. If F is not normal at a point,, then
for 0 < a < k, there exist a sequence of functiofise F, a sequence of complex numbers
zr — 2o and a sequence of positive numbggs— 0, such that

o “ gk (2 + pr&) — 9(§)

spherically uniformly on compact subset£ofvhereg is a nonconstant meromorphic function.
Moreover,g is of order at most two, ang has only zeros of multiplicity at least

Lemma 2.9([2]). Let f be a transcendental entire function all of whose zeros have multiplicity
at leastk, and letn be a positive integer. Thefi* f(*) takes on each nonzero valuec C
infinitely often.

Lemma 2.10. Let f be a polynomial all of whose zeros have multiplicity at léasand letn
be a positive integer. Thefi* f*) can assume each nonzero vatue C.

The proof is trivial, we omit it here.
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3. PROOF OF THE THEOREMS

Proof of Theorer 1]2We may assume thd? = A. Suppose thaf is not normal at, € A.
Then, takingn = %+, where0 < o < k, and applying Lemm.8 to={1/f: f € F},
we can findf; € F(j = 1,2,...), z; — 2z andp;(> 0) — 0 such thaty;(¢) = p f;(z; +
p;¢), converges locally uniformly with respect to the spherical metrig(t9), whereg is a
nonconstant meromorphic function 6nBy Lemmd 2.5, there exists € {|z| < R} such that

(3.1) 9(¢o)" — a(g™ (%)) = 0.

From the above equalityy(,) # oco. Through the calculation, we have

nk

g1(Q) = a(g(Q) = p7 7 (£1(C) — al £ (C))) # 0.
On the other hand,

gM¢) — a(g?(Q)) — ¢"(C) — alg™(Q)).

By Hurwitz’s theorem, we know™(¢) — a(g*)(¢)) is either identity zero or identity non-zero.

From [3.1), we know(¢) — a(g™(¢)) = 0, then by Lemma 2|7 yieldg(¢) is a constant, it is
a contradiction. Hence we complete the proof of Thedrern 1.2. O

Proof of Theorer I}3Let o = % < k. If possible suppose th&f is not normal at, € D.
Then by Lemma 2|8, there exist a sequence of functjors F (j = 1,2,...), a sequence of
complex numbers; — z, andp;(> 0) — 0, such that

9;(C) = p; “ fi(z; + piC)

converges spherically and locally uniformly to a nonconstant meromorphic fungtionn C.
Also the zeros ofi(z) are of multiplicity at least k. Sog¥) # 0. By the condition of Theorem
[1.3 and Lemma 2|3, we get

(k) e _

for some(, € C. Clearly(, is neither a zero nor a pole gf So in some neighborhood of
¢o, 9;(¢) converges uniformly tg(¢). Now in some neighborhood af we see thay®) (¢) +
ag(¢)~"™ is the uniform limit of

b
9™ (Go) + ag(Co) ™ = pi*b=p; ™" {fj(k)(zj +05G) +af; "z + piGy) — b} :
By (3.2) and Hurwitz’s theorem, there exists a sequepce: (, such that for all large values
of j
£z + piG) + af; ™ (2 + piGs) = b.

Therefore for all large values gf it follows from the given conditiong; (¢;)| > M/p§ and as
in the last part of the proof of Theorem 1.1 n [6], we arrive at a contradiction. This proves the
theorem. OJ

Proof of Theorer 1}4ln a similar manner to the proof of Theor¢m|1.3, we can prove the theo-
rem by Lemma 2]§, 2|9 and Lemina 2.10. O
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