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ABSTRACT. Let P, ,.(x) be the generalized weighted power means. We consider bounds for
the differences of means in the following form:
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Heref # 0,0p.8(x) = > 1 | w; [;chfpﬁt(x)]2 andCy,,3 = 457 . Some similar inequalities
are also considered. The results are applied to inequalities of Ky Fan’s type.
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1. INTRODUCTION

Let P, ,(x) be the generalized weighted power meat;, (x) = (3., wix;’)%, where
w; >0,1<i<nwith} " w =1landx = (x1,22,...,2,). HereP, ((x) denotes the limit
of P, .(x) asr — 0. In this paper, we always assume that z; < x5 < --- < z,,. We write

n 2
On,t,ﬁ(x) = Zu}z |:l’lﬁ — Prﬁt(x):|
=1

and denote,, ; aso,, . 1.
We let

An(x) = Py 1 (%), Gn(x) = Poo(x), Hn(x) = P, 1(x)

and we shall writeP, , for P, ,(x), A, for A,(x) and similarly for other means when there is
no risk of confusion.
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2 PENG GAO

We consider upper and lower bounds for the differences of the generalized weighted means
in the following forms (3 # 0):

Cuvﬁ Cuvﬁ PT(L)[U_P;;[U . Cuvﬁ Cuvﬁ
(11) max {F, W Onw' B Z T 2 1min x%ﬁ—_a’ W On,w,B5
whereC), , 3 = g[;;’. If we setry = - - =z, # x,, then we conclude from
Li Pr?,u - P;Ll,v - u—-v
im = — =
T1—Tn admwﬂ 2/8 In

that C,, 5 is best possible. Here we defie), — P),)/0 = In(P,./P,.), the limit of
(P, — Pg,)/aasa — 0.

In what follows we will refer to[(1.1l) aéu, v, a, 5, w, w’). D.l. Cartwright and M.J. Field [8]
first proved the cas@, 0, 1,1, 1, 1). H. Alzer [4] proved(1,0,1,1,1,0) and [5] (1,0, «r, 1,1, 1)
with o < 1. A.McD. Mercer [13] proved the right-hand side inequality with smaller constants
fora=p=u=1v=—-1,w==+l1.

There is a close relationship betwegn [1.1) and the following Ky Fan inequality, first pub-
lished in the monograpmequalitiesby Beckenbach and Bellman! [7].(In this section, we set
Al =1—A,.G, =[I",(1—x;)“. For general definitions, see the beginning of Se¢t|on 3.)

Theorem 1.1.For z; € [0, 1],

2

P
N

/
(1.2) n o n

3
S

3 <

with equality holding if and only if; = - - - = x,,.
P. Mercer[[15] observed that the validity @f, 0,1, 1, 1, 1) leads to the following refinement
of the additive Ky Fan inequality:
Theorem1.2.Llet0 <a<z; <b<1(1 <i<n,n>2).Fora#bwehave
@ _ A -G _ b '
l—a A,—G, 1-0b
Thus, by a result of P. Gadl[9], it yields the following refinement of Ky Fan’s inequality, first

proved by Alzerl[6]:
AN\ AN ()
n < n <™ .
<Gn) -G (Gn>

For an account of Ky Fan’s inequality, we refer the reader to the survey article [2] and the
references therein.

The additive Ky Fan’s inequality for generalized weighted means is a consequefnce of (1.1).
Since it does not always hold (see [9]), it follows that [1.1) does not hold for arbitrary
(u, v, o, B, w,w').

Our main result is a theorem that shows the validity[ of|(1.1) for sam& u, v, w, w’. We
apply it in Sectiof B to obtain further refinements and generalizations of inequalities of Ky Fan’s
type.

One can obtain further refinements of (1.1). Recently, A.McD. Mercer proved the following
theorem([14]:

Theorem 1.3. If z; # z,,n > 2, then

Gn — I Tp — Gn
~ /1 \Yn ATL - n -~ /1 N
2x1 (A, — xl)a 1> G > 2z, (T, — Ay)
We generalize this in Sectipn 2.

(1.3)

(1.4)

On,1-
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2. THE MAIN THEOREM

2.1.(1,2,1,2, L 8) 'y 5£ 51 # 0,7 # 0 holds for the following three cases:

De<r<21>tE>e>r

vy Y v ’/Y vy
L>2r-1>2>LL>1;

v vy , v v
@) <<t by,

Y 7 v

with equality holding if and only if; = - - - = x,, for all the cases.

Proof. Lety = 1 andr # s. We will show that[(1.]1) holds for the following three cases:
Q) s<r<2, 1>t/ >s>r—1;
@ r>2,r—1>s>tt >1,
RB)r<s<tt <1.

For case (1), consider the right-hand side inequality of (1.1) and let

(2.1) DW@:Aﬂ—ﬂi—Tw_ﬁiém(ﬁ—JiJ?

2_q 2
2z, i=1

We want to show thaD,, > 0 here. We can assume that < z, < --- < z,, and use
induction. The case = 1 is clear, so assume that the inequality holds#fer1 variables. Then

19 r—s 1
1 GDn Pnﬁ T P)n£ r
(2.2) — =1- ( ””) ] —(r—s)(l—( ’) )+S,
wy, O, Ty T,
where
1—t
— 2 Pnrz 1 1
S:( T_QSZ%(i_ nrz> + (r —s)—=% (P,ZA—P,;z)-
2w, Th o Tn" v o

Thus, whens <r <2,t<1,5 > 0.
Now by the mean value theorem

(fo)iTnSz(r—syfﬂ—l<1—<f1j)i);z(r—s)<1—-(ij)

forr > s >r — 1 with

1—

<=
N—

This implies

()] o (-(3) ) e

sz % Pn7§ z
( Tn ) - ( Ln > 7
which is positive ifs < ¢.

Thusfors <r <2, 1>1>s>r—1, wehaved? > 0. By letting, tend tox,, , we
haveD, > D,,_;(with weightsw,, ..., w,_2,w,_ 1+wn) ‘and thus the right-hand side mequallty

of (1.1) holds by induction. Itis also easy to see that equality holds if and only=f - - - = z,,.
Now consider the left-hand side inequality jof (1.1) and write

n 1 2
(2.3) <m@pa%—3ﬁ—rwi?§:%< PT).
2z] i=1 !

r—S

3

1—
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Now wll%% has an expression similar fo (R.2) with < z1,w, < w;,t < t'. Itis then easy
to see under the same conditi(%% > 0. Thus the left-hand side inequality ¢f (IL.1) holds by
a similar induction process with the equality holding if and only,if= - - - = z,,.

Similarly, we can showD,,(x) < 0, £, (x) > 0 for cases (2) and (3) with equality holding if
andonly ifz; = --- = z,, for all the cases.

Now for an arbitraryy, a change of variableg — y/~ for y = r, s,¢,t' in the above cases
leads to the desired conclusion. OJ

In what follows our results often include the cases- 0 or s = 0 and we will leave the
proofs of these special cases to the reader since they are similar to what we give in the paper.

Corollary 2.2. For r > s, min{l,r — 1} < s < max{l,r — 1} andmin{l,s} < ¢, t’ <
max{1,s}, (r,s,r,1,¢,t') holds. Fors < r < ¢, ¢’ < 1, (r,s,s,1,t,t") holds, with equality
holding if and only ifz; = - - - = x,, for all the cases.

Proof. This follows from takingy = 1 in Theorenj 2.Jl and another change of variabigs:—
min{z}, 2!}, z, — max{z], 2]} andx; = 2 for2 < i < n —1if n > 3 and exchanging
ands for the cases > 7. 0

We remark here sincg, » = 0,,++ (24,,— Pyt — Pov)(Pot — Poy), Wwe haver,, ; < o, for
t#1lando,, <o,y fort’ <t <1,0,, > o,y fort >t > 1. Thus the optimal choices for
the set{t, ¢’} will be {1, s} for the casdr, s,r, 1,¢,t') and{1, r} for the casér, s, s, 1,¢,t').

Our next two propositions give relations between differences of means with different powers:

Proposition 2.3.Forl —r >t —s >0, l # t, z; € |a,b], a > 0,
(r—s) (Pry = Prs)/r (r—s)
(l—1) (P —Pl N ARIGED]

Except for the trivial cases = s or (I,t) = (r, s), the equality holds if and only if; = --- =
r,,, where we defing/0 = /" for any.

1

alfr -

1
=

(2.4)

Proof. This is a generalization of a result A.McD. Mercéer[12]. We may assumeathat
a, T, = b and consider
r(r

D) = Py = PL = o (Pl Pl

=
Ex) =P, P, — =% (pl _ply
UL R T ,

We will show thatD,, - F,, < 0. Suppose — s > 0 here; the case— s < 0 is similar. We have

=" 9D, P,\N"° r—s
. = 1 —_ ’ - 1 -
rw, O, T, [ —t

-t

Pn r—Ss| r—s
(—t) ] + 8,
Tn

where

(r=s)(l—=71), !
L EE

Now by the mean value theorem

It
(%)r—slw—s _ l—tnl—tfrJrS (1_ (E)T—s> |
T r—s T
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whereZ:t < < 1 and
1—r r—s r—s
Ty aDn21_<Pn7s) _(1_(@) >ZO
rw, 0, T Tn
sincet > s.

Similarly, we have— "’E" > 0 and by a similar induction process as the one in the proof of
Theorenj 2]L, we havB E < 0. This completes the proof. O

By takingl = 2,t = 0 r = 1,s = —1 in the proposition, we get the following inequality:

(2.5) G%—G%>A—¢{>%JR;—@)

211
and the right-hand side inequality above gives a refinement of a result of A.McD. Mercer [13].

Proposition 2.4. For r > s, a > (3,

pﬁ - pﬁ
(2.6) adm > pioe > ( /B > Pﬂ &> ghe
’ (Br — P/ o
with equality holding if and only it; = - - - = z,,, where we define/0 = xf“" for any:.

Proof. By the mean value theorem,
(0% (e} o o ﬁ — 163 (6%
P’T/Lgfr - Pr?,s = (Pn,'r)ﬁ/ - (Pn,s)ﬁ/ = 577/6 (Pn,r - Pn,s)’
whereP, ; < n < P,, and [2.6) follows. O

We apply [(2.6) to the cas@d,0,1,1,1,1) to see tha(1,0,«, 1,1, 1) holds witha < 1, a
result of Alzer [5]. We end this section with a generalizatior of|(1.4) and leave the formulation
of similar refinements to the reader.

Theorem 2.5.1f x1 # z,, n > 2,thenforl > s >0

(2.7) Punt —or” e Ppy > 0 =
. = n > n -
2 (A, —zy) ™ oy — Ay
Proof. We prove the right-hand inequality; the left-hand side inequality is similar. Let

1-s _ P&;s

1-s
2z,

Da(%) = (20 — A)(An — Py) —

On,1-

We show by induction thab,, > 0. We have

oD 1—s (P 1os T \°
D= 1— n An_Pns - ~E 1— i n n
oz, (1= wn)( o) 2z, < Ty ) ( (Pn,s) v )U ’1

1—s
>1_ n An_Pns_ n 207
> ( w)( 5T o 0',1)

n

where the last inequality holds by Theorem|2.1. By an induction process similar to the one in
the proof of Theorerp 2|1, we have, > 0. Since not all ther;’s are equal, we get the desired

result. O
Corollary 2.6. For1 > s > 0,
1-— 5 P, 1—s
28 ek > A ns > —— n,59
(2:8) 21 An A, ! - 2x, I,
with equality holding ifand only ity = - - - = x,,.
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1—s 1—s
Proof. By Theore, we only need to sh%% < 3= and this is easily verified
by using the mean value theorem. O

3. APPLICATIONS TO INEQUALITIES OF KY FAN’STYPE

Let f(x,y) be a real function. We regagdas an implicit function defined by(z, y) = 0 and
fory = (1, yn), l€t f(25,:) = 0,1 < i < n. WewriteP,, . = P, ,(y) with A =P

n,1»

G, = P!, H, = P, _,. Furthermore, we write; = a > 0 andz,, = b so thatz; € [a, b] with

y; € [a',b'],a’ > 0 and require that;, f, existforz; € [a,b], y; € [a',b'].
To simplify expressions, we define:

P (y) = Pry(y)
Pe.(x) — Pgy(x)

(3.1) Arso =

Pn,S(Y) Pn-,S(x)
inequalities in our discussion, we defifd = 1 from now on.
In this section, we apply our results above to inequalities of Ky Fan’s type.f(ety) be
any function satisfying the conditions in the first paragraph of this section. We now show how
to get inequalities of Ky Fan’s type in general.
Suppose[(1]1) holds for some> 0, r > s, 3 = 1andt =t =1, write 0,,1(y) = 0,,,
apply [1.1) to sequencesy and then take their quotients to get

with A, 50 = <ln P"—(Y))/ <ln P"”“(")> and, in order to include the case of equality for various

/

/
ao, ban’l

S Ar,s,a S

blo—ml CL/O'n71

Sinceo), ; = >0 wi(3 -, we(y: — yk))?, the mean value theorem yields

- —%@, y(©) (2 — 1)

for some¢ € (a,b). Thus

1|2 12

. /
min on1 < 0,1 < max |=| op1,
/ ) n, / )
a<z<b fy a<z<b -fy
which implies
/ 2 712
a . b J
— min —f <Aysa < — max —f
b a<z<b fy a’ a<z<b fy

We next apply the above argument to a special case.

Corollary 3.1. Let f(z,y) = ca? +dy? — 1,0 < ¢ < d,p > 1, z; € [0,(c+ d)‘%]. For
s € [0,2] anda = max{s, 1} we have

(32) Al,s,oz S 1
with equality holding if and only if; = - - - = x,,.
Proof. This follows from Corollary 2. by the appropriate choice-ainds. O

From now on we will concentrate on the cae, y) = = + y — 1. Extensions to the case of
general functiong(z, y) are left to the reader.
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Corollary 3.2. Letf(z,y) =z +y—1,0<a<b< landz; € [a,b] (i =1,...,n),n > 2.
Then forr > s, min{1l,r — 1} < s <max{l,r — 1}

(3.3) max{(%}) : ’(1ia> }>Ar,s,r>miﬂ{(1i_b> : ’<1ia) ) }

Fors <r <1,

b 2—s a 2—s ‘ b 2—s a 2—s
(3.4) max{(m> , (1—@) } >Am7s>mm{<m) , <1—a) }

Proof. Apply Corollary[2.2 to sequences y with ¢t = ¢ = 1 and take their quotients, by

noticingo,, 1 (x) = 0,1(y)- O
As a special case of the above corollary, by taking 0, s = —1, we get the following
refinement of the Wang-Wang inequality [17]:
G, (=) o o ()
: — << :
(59) &) <z<(®)

We can use Corollary 2.6 to get further refinements of inequalities of Ky Fan’s type. Since
Ons = on1+ (A, — P,s)?, we can rewrite the right-hand side inequality[in {2.8) as

1-— 1-—
(3.6) (Poi(x) = Pos(x)) (1 — 5 (Pua() - Pw(x))) > o
Apply (2.8) toy and taking the quotient with (3.6), we get
Pn,l(y> - Pn,S(Y) < bo':l,l Prlb,s o b P’I{L7S

(Pn,l(x> - Pn,s(x)) (1 - 12;bS(Pn71(X> — Pn,s(X))) - alan,l Aln - a A;’L :
Similarly,
(Por(y) = Pos(¥)) (1 = 57 (Par(¥) = Pus(v))) _ @ An
Pn,l (X) — Pn’S(X) -y Pn,s.
Combining these with a result in/[9], we obtain the following refinement of Ky Fan’s inequality:

Corollary 3.3. Let0 < a < b < landx; € [a,b] (i = 1,...,n),n > 2. Then fora < 1,
0<s<1

b 2—a P/ a 2—a A
3.7 B> A, " A
G- (1—b> A, 7o >(1—a> P

where

We note here whea = 1, s = 0, b < £, the left-hand side inequality df (3.7) yields

A -G b G,
(3.8) 1-C <1 bA—;l(An +Gh)
a refinement of the following two results of H. Alzér [1}, /G, < (1 — G,)/(1 — A,,), which
is equivalenttd A!, — G.,)/(A, — G,) < G, /A, and [3]: A] — G, < (A, — G,)(Al, + G,,).
Next, we give a result related to Levinson’s generalization of Ky Fan’s inequality. We first
generalize a lemma of A.McD. Mercer [12].
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Lemma 3.4. Let J(z) be the smallest closed interval that contains alkpfind lety € J(z)
and f(z), g(z) € C*(J(z)) be two twice continuously differentiable functions. Then

(3.9) i wif (@) — fly) — i wim —y) f'(y) _ (&)
i wig(xi) = g(y) — Qo wimi —y)g'(y) — g"(§)

for somef € J(x), provided that the denominator of the left-hand side is nonzero.

Proof. The proof is very similar to the one given in [12]. Write

szf toi + (1= t)y) — f(y) — tA—y)f'(y)
and consideiV (t) = (Qf)(t) — K(Qg)(t), whereK is the left-hand side expression jn (3.9).
The lemma then follows by the same argument as in [12]. O
By takingg(z) = z*,y = P, in the lemma, we get:
Corollary 3.5. Let f(z) € C*a,b] withm = min f”(z), M = max f”(x). Then

a<x<b a<xz<b

M m
(310) _Unt > szf xz <Z Wzmz> A - Pn t)f (Pn,t> Z Eo'n,t'
Moreover, if f(x) exists forx € [a,b] with f”(xz) > 0 or f”(z) < 0 for z € [a,b] then the
equality holds ifand only ity = - - - = x,,.

The case = 1 in the above corollary was treated by A.McD. Merder!/[11]. Note for an
arbitrary f(x), equality can hold even if the condition, = --- = z, is not satisfied, for
example, forf(z) = 22, we have the following identity:

n n 2 n n 2
Zwix? — (Z wixi) = Zwi (Iz — Zwkxk) .
=1 i=1 =1 k=1
Corollary[3.% can be regarded as a refinement of Jensen’s inequality and it leads to the fol-

lowing well-known Levinson'’s inequality for 3-convex functions [10]:
Corollary 3.6. Letz; € (0,al. If f”'(x) > 0in (0, 2a), then

(3.11) sz ;) (wa> < sz f(2a — ;) <Zw z; ) .

If f/(x) > 00n(0,2a) then equality holds |f and onlyif, = --- = x,.

Proof. Taket = 1in (3:10) and apply Corollafy 3.5 @, ...,z,) and(2a — z, ..., 2a — z,,).

Since f”'(z) > 01in (0, 2a), it follows thatolilaf f(x) < gm<n2 f"(x) and the corollary is

proved. O
Now we establish an inequality relating differeht  ,’s:
Corollary3.7. Forl—r >t—s > 0,1 £ t,r # s, (I,t) # (r,s), z; € [a,b], y; € [a,b],n > 2,
b b Ar,s,r a =r
(3.12) (Z) S omk (E) .
Proof. Apply (2.4) to bothx andy and take their quotients. O

For another proof of inequality (3.5), use this corollary with 1, t =0, s = —1 andr = 0.
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4. A FEw COMMENTS
A variant of {1.1) is the following conjecture by A.McD. Mercer [13] % s,t,t' = r, s):

r—s r—=s:s P,,.—P . r—s r—=:s
(4.2) max {— —} Ontt > ™% > min {— —} Ont-

2087 2w Pl 2077 2

The conjecture presented here has been reformulated (one can compare it with the original
one in [13]), since heré- — s)/2 is the best possible constant by the same argument as above.

Note whenr = 1, (4.1) coincides with (1]1) and thus the conjecture in general is false.

There are many other kinds of expressions for the bounds of the difference between the
arithmetic and geometric means. See Chapter Il of the laksical and New Inequalities in

Analysis[16].
In[12], A.McD. Mercer showed
P2, —G? P2, —G?
(4.2) ISy N N S Ry
44 4z,

He also pointed out that the above inequality is not comparable to either of the inequalities in
@TI) witha=p=u=10=0,t=1t = 0,1. We note that{(4]2) can be obtained frgm [1.1)
by averaging the case= 3 =u =t =t = 1, v = 0 with the following trivial bound:
2 2 2 2
21’1 B o QI’n
Thus the incomparability of (4.2) anfd (4.1) with= 1, s = 0, ¢t = 1 reflects the fact that
P2, — A2 andA? — G are in general not comparable.
We also note when replacing, . s by a smaller constant, that we sometimes get a trivial
bound. For example, for < % the following inequality holds:

1< 1/2 1/2 2 1 ¢ 2
An_Pn’SZ§kz_;wk (xk, — A ) 28—Zwk(xk—An).

The first inequality is equivalent t5'/% AV > P, s. For the second, simply apply the mean

n,1/2
value theorem to

2 1 _
(xllf/2_Ayll/2> _ (5@ 1/2($k_An))

with &, in betweenr;, and A,,.

S |
> = (gp — A)?
_élacn(aclg )%
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