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Abstract

The aim of this paper is to extend the results of [7] and [8] to a Lebesgue integral
whose integrand and limits of integration depend on parameters.
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As it is known, the main instrument used in the dynamic programming method
in optimal control theory to get necessary and/or sufficient optimality conditions
is the value function, whose monotonicity plays an important réig (1], [6],

[9], [10], etc.).

In general, since the value function of an optimal control problem is not dif-
ferentiable, the monotonicity properties lead to differentiable inequalities which
can be expressed with the help of the generalized derivatives.

The particular structure of the value function and the necessity of the es-
timation of its generalized derivatives imply an estimation of the generalized
derivatives with respect to parameters of the Lebesgue intediRI[ (], [Z]).
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The most known result regarding the differentiability in a classical meaning of
the Lebesgue integral with respect to parameters retaken and used by L. Cesari

([3, Lemma 2.3.1]) is Theorem 3.9.2 from E.I. McSharie A recent general-
ization of McShane’s theorem is that of I. Miéd2].

In the results to follow we shall use the concepts of tangent cones and corre-

sponding generalized derivatives (e.q, [ 2], [4], etc.).

Let R™ be then-dimensional euclidian space with noff|. Forz € R™ and
e>0letB. (z) ={y € R": ||y — z|| < ¢} be the open ball centeredatind
with radiuse.

If X C R™isanonempty setandife X thecontingen{Bouligand-Severi)
coneto a subseX C R"™ at the pointr is defined by

(21) KX

={u e R"(3) Om,um) — (0x,u) : z+0pu, € X (YV)m e N}

Forg(-) : X € R" — R, we shall usehe extreme contingent derivatives at
a pointz € X in directionu € KX defined by:

g(x 4+ 0.v) — g(x)

(2.2) Ef{g(x;u) = limsup ,u € KEX,
(0,0)—(0) 0
0.v) —
Dig(x;u) = liminf glz+6.v) g(x), ue KX,

(G,U)H(Oi,u) 0

which coincide with the well known Dini derivatives X C R is an interval
andu =1 e R.
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We recall that a mapping(-) : X ¢ R" — R™ is said to be (Fréchet)
differentiableatz € int(X) if there exists a linear mappingl, € L (R"*,R™),

such that
L (1@ +h) = f(@) = AR])
h—0 ]
In this cased is said to be the (Fréchedgrivativeof f(-) atx and is denoted
by: A= Df(z); inthe caser = 1 we denote:f’ (r) = Df(x) - 1.
As it is well known, the classical (Fréchet) differentiability is generalized by
the “contingent differentiabilityof a mappingf(-) : X € R" — R™ assuming On Differentiability with
the existence of theontingent directional derivative Respect to Parameters of the

Lebesgue Integral
flx+0.v) — f(z)

=0.

23 + : = li ’ c KiX. Vasile Lupulescu
(2.3) &WU)(Mg&m 7 ue K;
Wg regall that a real-value_d functiog,-) : X € R" — R is a differentiable Title Page
mapping inz € X if and only if Contents
_:t n
(2.4) Qﬁg(x,u) = DKg(x;u) :glﬁ;($§u)a (‘v’)u €R <« >
andgi (r;-) :R" - Risa I_inear mapping. < >
We denote by, the family of all subsets of the null Lebseque measure from
R, and for the interval C R we denote byl (7; R") and by Li*¢(I; R") the Go Back
space of the measurable mappings) : I — R", which are Lebesgue inte- Close

grable and locally integrable respectively; in addition we denotétfy7; R") _
the space of the locally essentially bounded maps. Quit
The relationship of differentiability to the Riemann integral parameters has Page 5 of 29
been studied in almost all the books that deal with mathematical analysis (e.g.
[5]), but similar properties of the Lebesgue integral are very seldom approached. 3. inea. Pure and Appl. Math. 3(4) Art. 64, 2002
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The most famous result concerning the differentiability of the Lebesgue in-
tegral with parameters, in the classic meaning (a result used by L. Césari [
Lemma 2.3.1]), is Theorem 3.9.2.in E.J. Mc. Shaile |

Lemma2.1.([7]) Let I C Rbeanintervalp, 5 € Randh(:,-) : I x (a, ) —
R a function with the following properties:

1. h(-,2) € Li(I;R), 2 € (a1, B);

2. There isk(-) € Li(I;R;) and I, C R, of zero Lebesgue measure, such
that for eacht € I\ Iy, there isD,h(t, z) with the following property:

(2.5) |Dah(t, 2)| < k(t), (V)t € I\1y, 2z € (a, ).

ThenDyh(-, z) € Li(I;R), (V) z € («a, 5) and the functionV(-); (o, 3) —
R defined by:

(2.6) U(z):= /h(t, z)dt, (V) z € («, )
I
is differentiable, and its derivative is given by:
2.7) V() = / Doh(t, 2)dt, (V)= € (, B).
1

A recent generalization of E.J. Mc. Shane’s result is given by |.3dif&]:

Lemma 2.2. ([8]) Let I C R be aninterval,Z, C R", zy € Zy andh(-,) :
I x Zy — R a function with the following properties:
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1. h(-,2) € Li(I;R), z € Zy;
2. There isk(-) € L;(I; R, ) such that:
(2.8)  |h(t,z) = h(t,20)| < k(t) ||z — 20|, (V)2 € Zy, a.p.t.(1).

Then the extreme contingential derivatives of the funcition in (2.6) at the
pointzy € Zy, in the directionz € K3 Z,, verify the following inequalities:

Respect to Parameters of the
Lebesgue Integral

(2.9) /Q}t(h(t, V(z0;Z)dt < Qli{\li(zo; Z) On Differentiability with
I

Vasile Lupulescu

< D7) < [ Dgh(t ) o o)
I

In particular, if there isl, C I, of zero Lebesgue measure, such that the func-
tions A(t, -) are contingentially differentiable in the directioh € K= Z, for Title Page
eacht € I\ Iy, then the function — (h(t, )% (z0; Z), is Lebesgue integrable, Contents
() is contingentially differentiable in, in the directionz is and its contingent

derivative is given by: K D
< >
+ _
210 Vi) = [ () o2 oo Back
Proof. The essential instrument for the theorem’s proof is the generalization of Close
Fatou’s Lemma (e.g.1[l, Ex. 8.18]) according to which i§,,(-) : I — R is Quit
a sequence of measurable functions, such that theie)is L, (/; R, ) which Ew————
fulfills the following: age 7o
(211) gm<t) S g (t) apt ([) , (V)m c N7 J. Ineq. Pure and Appl. Math. 3(4) Art. 64, 2002
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then we have that:

(2.12) /liminfgm(t)dt < liminf/gm(t)dt
I Mo I

m—0o0

< lim sup/gm(t)dt < /lim supgn, (t)dt.

m— oo I I m—oo

In order to be able to apply this result to our case, we consider a sequence

(dm, Zm) — (04, Z) with the following property:
(2.13) 20+ 0mzZm € Zo, (V)meN
and we define the sequence of measurable functig(s as follows:

h(t,zo + 0mZm) — h(t, zo)
Om

(2.14) gm(t) == ,meN, tel.

Then, from the definitions(3) of the extreme contingent derivatives, we have
that:

(2.15) Qf((t, )(20;2) < liminfg,,(t) < limsupg,(t) < bf{(t, )(20;2),

m—oo m—oo

the extreme equalities taking place for the inferior and superior limits with re-
spect to the set of the sequeniég,, z,,) — (0, z), with the property in2.13).
Moreover, from the Lipschitz propertg (8) and from ¢.14) it follows that:

(2.16) |9m ()] < k(E) |Zm]| a.p-t.(1), (V) m € N.
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From the fact that,, — 7z it results that(V)e > 0 there ism. € N such
that||z,, — Z|| < e, (V)m > m. and, as a consequence, the inequality §
implies:

(2.17) gn®] < k() [l
< kO[IZn — =l + 121]
< g(t) = kO 2] + ), m = e,

which shows that the subsequereg,(-); m > m.} has the property in(11)
because the function,(-), defined in .17) is obviously integrable. As a con-
sequence, from the inequalitie®. 15 and from the monotonicity property of
the Lebesgue integral (i, Corollary 8.2.4]) we deduce that the following in-
equalities are true:

(2.18) Ziﬁmux%ﬁmpgﬂhmmmm@ﬁ

m—00

< / lim sup g, (t)dt
I

m—0o0

(/DKh )(z0; ) dt.

The inequalitiesZ.9) in the theorem’s text now follow from2(18), (2.12 and
from the fact that for each sequenéeg,, z,,) — (04, Z) with the property2.13
the extreme contingent derivatives of the functibf) in (2.6) verify the fol-
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lowing inequalities:

v Zm) — VU
(2.19) DiV(2; %) < liminf (20 + OmZm) (20)

m—oo Gm

= liminf/gm(t)dt
I

m—0o0

< limsup/gm(t)dt
I

m—0o0

< E;E(\IJ(ZO;Z).

In the case when the functiorts(t, -) ,t € I\, are contingentially differ-
entiable inz, in the directionz € Kgf)Zo, the contingent differentiability of the
function¥(-) and the formulaZ.10) result from the inequalitie2(9) and from
the fact that, according to the property ih4), we have:

(h(t, )£ (20:%) = DEA(E, ) (207) = Dich(t, )(20:7), (V) € I\Iy;

a similar equality taking place for the functidn(-) as well.

Finally, the integrability of the function — (h (¢, -))j (20, Z) results from
the fact that for each sequengg(-) having the form in 2.14) the following
relation is true:

(h(t, )i (20;%) = lim g, (1), (V)¢ € I\,

and from Lebesgue’s Theorem of Dominated Convergence{lheorem 8.2.16])
according to which the inequalitie&.(L7) and the integrability of the functions
g:(+), defined in .17) imply the integrability of the following limittim inf g,, (¢)
when this one exists a.p.t.(1). ]
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Remark 2.1. Except for some very particular cases, the property of “integral
lipschitzianity” in (2.8) seems to be compulsory in order to get the results in
Lemma2.2 principally, the property 2.8) assures the fulfillment of the condi-
tions in the form ofZ.11) which, in their turn, imply the inequalities i2(10).

On the other hand, as one may easily check, prop&) {s implied in more
restrictive hypotheses, but it may be more easily checked, as in the case of con-
dition (2.5 in Lemma2.1: thereisr > 0, k(-) € Ly (I; R, ) andl, C I, of zero
Lebesgue measure, such tbgt= B, (z,) C R™and for each € I\1y, z € Z,,

the function. (¢, -) is differentiable in the point and its derivative verifies the On Differentiability with

; ; [P Respect to Parameters of the
following inequality: Lebesgue Integral

(2.20) | Doh(t, 2)|| < k(t), (V)t e I\ly, z € Zy := By(20). Vasile Lupulescu

In this case, by using the measurability property of the derivative and the evident

. ) Title Page
relations:
1 Contents
h(t,z) — h(t, z9) = / Doh(t, 2o+ s(z — 20)) (2 — 20), (V)2 € Zy, <« >
0
4 >

by (2.20 it results the radial lipschitzianity property in2(8) follows. As a

consequence, Lemn#a2 represents a generalization of Lemrd from the Go Back

following points of view: the set of the parameters, is not necessarily scalar

and open(Z, = («, 3)) C R in Lemma2.1, and the functions& (¢,-), t € I, _

are not necessarily differentiable, not even at the fixed pgirt 7. Quit
Page 11 of 29

Close

J. Ineq. Pure and Appl. Math. 3(4) Art. 64, 2002
http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:lupulescu_v@yahoo.com
http://jipam.vu.edu.au/

We are going to extend the result in Lemi2& to the case of the Lebesgue
integral whose integrand and integrability interval depend on parameters. We

need some notions and preliminary results for this particular purpose.

Let L, be the family of the subsets of zero Lebesgue measui® and
h(-) € L°¢(I,R) a given function. Then we define tlessential right superior
limit andessential left inferior limiof the functioni(-) at the pointt € I, by
following relations:

(3.1) esslimsuph(t) ;= inf inf  sup h(s);
sty Q e>0J€Lo st t+e)\J (5)

essliminfh(t) := sup su inf  A(s).

s—t_ ( ) E>Ig Je[l?o s€[t,t+e)\J ( )

Similarly, we can definezss lim suph(s), ess liminfh(s).

s—t_ s—ty

Lemma 3.1.If I C R is an interval andh(-) € L%¢(I,R) then the following
inequalities are true:

1 t4-0
(3.2) essliminfh(t) < liminf 5/ h(s)ds
¢

s—ty 0—04+

1 t+0
< limsup —/ h(s)ds < esslimsuph(t).
6—04+ 5 t s—ty

Proof. Lett € I ande > 0 such thaft,t +¢) C I, letJ € Ly such that/ C I

andleta. ; := sup h(s), a. := inf a.y, a:=inf a.. Sinceh(s) < a. 4,
s€t,t+e)\J JeLo >0
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(V)s € [t,t + &)\ J, we have that:

1 t+e
(3.3) —/ h(s)ds < inf a. ;= a..
t

15 JeLog

Sinceh(-) is essentially bounded, then is finite; hence by the fact that the

functione — a. is increasing (which means thatip «. = as), and by 8.3),
€€(0,0)
we have that:

1 t+6 1 t+6
lim sup—/ h(s)ds := inf sup —/ h(s)ds
0—04 4 t ( ) 6>0€€(0,5) d t ( )

<inf sup a.
6>0€E(0,6)

= inf a. =a,
€€(0,9)

thus, we have established the following inequality:
1 t+0
lim sup —/ h(s)ds < esslimsup h(t).
6—04 ) t s—ty
We can similarly establish other inequalities in the text. O
Lemma 3.2. Leta(:) : Z C R" — R, 3(-) : Z € R" — R be the given
functions andzy € Z such that there i$im, .., a(-) = ap € Randj(-) is

bounded on a neighborhood of the poigt Then the following relations are
true:

aplimsupf (z), if a >0

. — Z—20
(3.4) lliriszljp [ (2) B (2)] aoliminfj3 (2) , if o < 0,
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apliminff (z),if a >0

(3.5) liminf[a (2) 8 ()] = o timsupB (), if @ < 0.

Z—Z20

Proof. Some more steps are necessary in order to prove the relafighsuid

(3.5).

1. If a e RandB C R is nonempty bounded set, then we have that: On Differentiability with
Respect to Parameters of the

Lebesgue Integral

ainf B,if a >0
(36) inf (aB) = Vasile Lupulescu
asup B, if a <0,
asup B,if a >0 Title Page
Sup (aB) - . . Contents
ainf B, if a < 0.
44 44
Indeed, ifa = 0 the equalities in{.6) are obvious. In the case > 0, < >

from the fact thatinf B < b, (V)b € B, it follows thatainf B < ab,
(V)b € B, which shows that inf B is a minorant of the setB, hence Go Back
ainf B < inf(aB).

Close
On the other hand, for eaeh> 0, there isb. € B, such thab, < inf B + _
e/a; it results: ab. < ainf B + ¢, henceinf(aB) < ab. < ainf B + €. Quit
Sinces > 0 is arbitrary it follows thainf(aB) < ainf B. Therefore, for Page 14 of 29
a > 0, from the inequalities,inf B < inf(aB), inf(aB) < ainf B, we
deduce the fact thathf(aB) = ainf B. 3.1neq, Pure and Appl. Math. 3(4) Art. 64, 2002
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In the case: < 0, we have:
inf(aB) = inf[(—a)(—B)] = —ainf(—B) = —a(—sup B) = asup B;

hence, the first equality ir3(6) is established. The second equality may
be similarly established.

. If for a sequence of real numbefrs,,),, we denote by. (u,,) the set of its
limit points, defined by:

(3.7) L(um) = {u € R;(3) (un,), subsequence of the sequence

(), * Uy — u},

then for every two sequences of real numbers),,, (vm),, such that
r, — ¢ € Rand(y,),, is bounded, the following equality is true:

(3.8) L (mym) = 2L (ym)

Indeed, ifz,,, — 0, then from the fact that the sequerigg,), , is bounded,

it results thatr,,y,, — 0, henceL (z,,y.n) = {0} = 0.L (y,,). There-
fore, we suppose that,, — = € R\{0} and we consider an element
u € L(z,ym); then, according to the definitiod (7), there is the subse-
quencer,,, .ym, — u, as a consequence, sineg, — z, it results that
Ym, — = € L(ym), henceu = z* € xL(y,); thus, we have estab-
lished the inclusion. (z,,y,,) C xL (y,). Vice versa, ifu € xL (y),
then, according to the definitior8.(?), there is a subsequen¢g,,, ), of
the sequencey,,),, such thaty,,,, — * € L (y.,) . If for the subsequence
(ym,),, We choose a corresponding subsequepngsg ), of the sequence
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(Tm) s thenz,,, .y, — % = u which shows that € L (z,,yn,) - There-
fore, it has established the inclusiénz,,y,,) 2 xL (y,,) and thus the
relation (3.8) is proved.

N (zm),, » (ym),, are sequences of real numbers such that— = € R
and(y.,),, is bounded, then the following relations are true:

zlimsup (y,,) , if >0
( ) 1m sup (I‘ Y ) th lnf (ym) s |f T < 07

zliminf (y,,,) , if >0

(310) lgalogf (xmym) = { ;L'hmn?sc?]_p (ym) Jf 2 <0,

Indeed, ifz,, — 0, then, sincgy,,),, is bounded sequence, it results that
TmYm — 0and thus the equalitie8 ©) and .10 are obvious. Therefore,
we suppose that,, — = € R\{0}; then forz > 0, from (3.6) and from
(3.89), we have that:

m—00

= Sup[l'L (ym)]
= zsup L (y,,) = xlim sup y,,,

and ifz < 0 we have that:
lim sup (TmYm) = sup L (mYm)

= sup[zL (ym)] = zinf L (y,,) = xliminfy,,,

m—0o0
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hence the equality3(9); we get to the equality3(10 by a similar proce-
dure.

. According to the results previously established, we prove the relations
(3.4), (3.9. Indeed, iflim,_,,, a(z) = 0 then, from the fact thas(-) is
bounded in a neighborhood of the poigt we have thalim, .., a (z) 3 (2)

= 0 and the equalities3(4), (3.5) are obvious. Therefore, we suppose that
lim, .., a(z) = ap € R\{0}. In case thaty, > 0, according to the equal-
ities (3.6), (3.9 we have that:

On Differentiability with
Respect to Parameters of the

lim sup [O& (Z) ﬁ (Z)] Lebesgue Integral
o Vasile Lupulescu
= sup {limsupa (zm) B (2m) 5 2m — 20, 2m € Z\{20}, (V)m € N}
Title Page
= sup {040 limsup B (2m) ; 2m — 20, 2m € Z\{20}, (V)m € N}

m—00 Contents
= awsup {msu 5 (2 2 — 1.2 € Z\{h, (¥)m € ) “« | »
= o limsup G (z), < >

z=o Go Back
and if g < 0, we have that: Close
limsup [« (2) 5 (2)] Quit
e Page 17 of 29
= sup {5 () 2 20— 20 20 € Z\(an)s () m € N}
m—0o0 J. Ineq. Pure and Appl. Math. 3(4) Art. 64, 2002
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= sup {040 Iminff (zm); 2m — 20, 2m € Z\{20}, (V)m € N}

m—00

= q Sup {lim inff (zm) ; 2m — 20, 2m € Z\{20}, (V) m € N}

m—00

= opliminff (2),
Z—Z20

hence, the equality3(4) is established. The equaliti3.6) can be estab-
lished in a similar procedure.

On Differentiability with
] Respect to Parameters of the
Lebesgue Integral

Now we are able to present a generalization of the result in Lethéta the Vasile Lupulescu
case of the Lebesgue integral whose integrand and integrability interval depend
on the parameters.

Title Page
Theorem 3.3.Let/ C R be aninterval,Z Cc R*andg(-,-) : I x Z — Ra
. . - ) Contents
function with the following properties:

44 44
1g(,Z)€Lf>OOC(I7R),(\V/>Z€Z, < >
2. For eachz € Z, there isk.(-) € L'¢(I;R,) andr > 0 such that:

Go Back
(3.11) |g(s,y) — g(s,2)| Close
<k,(s)|ly—=z|l, V)ye B.(2)NZ, apt.(]). Quit

) . ) ) Page 18 of 29
Leta(:) : Z — 1, b(+) : Z — I be contingent differentiable functions at

J. Ineq. Pure and Appl. Math. 3(4) Art. 64, 2002
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z € Zindirectionz € K*Z such thatu(z) < b(z) and let:

( ai(z;?)esslil(rn)infg(s, 2),ifaz(2;2) > 0
s—a(z)+

(3.12) A (2,2) =

az(z;Z)ess limsupg(s, 2), if af(2;%) < 0,
\ s—a(2)

az(z;Z)ess limsupg(s, 2), if a(2;2) > 0

s—a(z)+ . o
+ = On Differentiability with
(3'13) A (27 Z) =9 Respect to Parameters of the
az(z;7)ess liminfg(s, 2), if ax(2;7) < 0, Lebesgue Integral
\ s—a(2)F

Vasile Lupulescu

bz (z;Z)ess limsupg(s, 2), if b (2;2) > 0

— s—a(z)+ Title Page
(3.14) B (z;%Z) =

bz (2;Z)ess lim infg(s, 2), if b (2;Z) < 0, Contents
‘ s <4 >
bﬁ(z;?)essli{n)infg(s, 2),if b5(2;2) > 0 < 4
s—a(z)+
(3.15)  B*(%7%):= 1o 16K
bz (z;Z)ess limsupg(s, 2), if bz (2;2) < 0. Close
s—a(z)
T Quit

Then, forany: € Z andz € K*Z, the functionG(-) : Z — R, defined by:
Page 19 of 29

b(z)
(3-16) G(Z> = / 9(87 z)dS, z e Z’ J. Ineq. Pure and Appl. Math. 3(4) Art. 64, 2002
a(z) http://jipam.vu.edu.au
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verifies the inequalities:

(817)  B*(%%)-A"(%2)+ [  Dig(s,) (22)ds
a(z)
< D%G(z%)
< DrG(27)
o - b(z) o
ST (2) - @9+ [ Digls,) (z9)ds
a(z)

Proof. Let = € Z andz € K=Z; from the definition 2.3 of the extreme
contingent derivatives and from definitioB. {6 of the functionGG(-), we have
that:

(3.18) DyG(2%)
G(z+6v) —G(z)

= limsup

(0.0)—(0+.2) 0
b(2) Ov) —
= limsup / 9(s,2+0v) g(s,z)ds
0:0)—(01,2) | Ja(2) 0
1 b(z+6v) 1 a(z+6v)
+ —/ g(s,z+ 0v)ds — —/ g(s,z + 6v)ds
0 Joz) 0 Jaz)
b(2) Ov) —
< iy [T Z5003),
(6.0)—(0+.2) Ja(2) 0

On Differentiability with
Respect to Parameters of the
Lebesgue Integral

Vasile Lupulescu

Title Page

Contents
44 44
< >
Go Back
Close
Quit
Page 20 of 29
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b(z+6v)
+ limsup —/ g(s,z + 6v)ds

(9,’1})—>(0+,E) b Z)

1 a(z+6v)
— liminf —/ s,z + 6v)ds

(va)_)(0+ 75) 0 a(z) g( )
Under the conditions (1) and (2) from the hypothesis of the theorem, we can
apply Lemma2.2to obtain that:

b(z) . e
) g(s,z+60v)—g(s,z On Differentiability with
@19) Jmap [ ABEERZ0l,
(0,0)=(04,2) Ja(z) Lebesgue Integral
- b(2) E}g(s, ) (Z; 5) ds. Vasile Lupulescu
a(z)
We are now going to prove that: Title Page
1 b(z+6v) — Contents
(3.20) lim sup —/ g(s,z+0v)ds < B (z;Z).
0,0)—(0-,2)0 Jo(z) <« »»
First we are going to establish the following equality: < 3
b(z+6v) b(z+6v) Go Back
(3.21) limsup / g(s,z+0v)ds = limsup / g(s, z)ds. 0=ac
(6,0)=(04.,2) Jb(2) (0,0)=(04,2) Jb(2) Close
Indeed, if we take into account the fact t@at v — z when(0,v) — (04,%), Quit

then, from the condition (2), from the hypothesis, we deduce that there exists

Page 21 of 29
r > (0 such that: -

|g(s7 z+ 9"0) — g(s, Z)| < /{72(8)0 ||’U|| , (V) v € B, (g)ﬂZ, 0<f<r, a,p,t([)’ J. Ineq. Pure and Appl. Math. 3(4) Art. 64, 2002
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hence
(322) [g(s, 2+ 0v) — g(s,2)| < ku(s)8 (|7l + 7). 0 <0 <7, ap.t(]).

Therefore, from 8.22 and the fact thab(z + 6v) — b(z) when(0,v) —
(04,%), we have that:

1 b(z+6v)
lim sup —/ [9(s,z + 0v) — g(s, 2)]ds
(0:0)(04.2) |0 Joz) P
b(z-+0v) On Differentiability with
. 1 Respect to Parameters of the
< limsup = lg(s, z + Ov) — g(s, 2)| ds Lebesgue Integral
(977))_>(0+ 72) b(Z)

Vasile Lupulescu

b(z+6v)
< limsup L / k()6 (2] + r) ds
0,0)—(0+.2) 0 Joz)

b(z+6v) Title Page
= limsup / k.(s) (||| +7)ds Contents
(0,0)—(04,2) Jb(2)
o, «“ b
| 4

hence, by using the absolute continuity of the Lebesgue integral and the fact
thatb(z + 0v) — b(z) when(6,v) — (04,%), we deduce the relatiorB(21). Go Back
Furthermore, from the relatior3(21) we have that:

Close
b(z+0v) .
(3.23) limsup — / g(s,z + 6v)ds Quit
0.0)—(0:.2) 0 Jo(z) Page 22 of 29
b(z+6v)
- (92}?1}?(1)13?2) 5 A(z) g(S, Z)dS J. Ineq. Pure and Appl. Math. 3(4) Art. 64, 2002
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— limsup b(z + Ov) — b(z)
(6,0)—(04.2) 0

1 b(z+6v)
b(z + 0v) — b(2) /,,(Z) 9(s, 2)ds | -

We consider the functions:
b(z+ 0v) — b(2)

a(f,v) = 0 ) On Differentiability with
Respect to Parameters of the
5 (9 ) 1 /b(z+9v) ( )d Lebesgue Integral
,U) 1= g(s,z)ds
b(z + 90) - b(Z) b(z) Vasile Lupulescu

as well and we note on one hand that, sihGg is contingent differentiable at

the pointz € Z in the directiorz € K=+, then there exist: limsup « (6,v) = Title Page
(9,U)~>(0+,f)

b, (z;Z) and this limit is finite; on the other hand, by the hypothesis of Theorem

3.3we have thay (-, z) € L(I;R), (V)2 € Z, such that, on the basis of <4< >

Lemmas3.2, we have that:

Contents

< >
essliminfg(s,z) < liminf ((6,v
s—=b(z)+ g( ) (e,v)ﬁ(o%z)ﬁ( ) Go Back
< limsup ((0,v) < esslimsupg(s, z), Close
(9,U)—>(0+,Z) S—>b(z)+ QUIt
hence, we deduce that the functigft) is bounded in a neighborhood of the Page 23 of 29
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point (0, %) . Therefore, from§.14) and from (3.23 we obtain that:

1 b(z+6v)
limsup = / g(s,z + 6v)ds
(6,0)—(04,2) b(z)

— limsup [a(6,0) 8(6,v)
(0,v)—(04,2)

bj(2;Z) limsup B(0,v),if bj(2;2) >0
(9,’!})—>(0+,E)

bi(z;Z) liminf B(6,v),if bL(2;2) <0,
(0,0)=(0+,2)

hence, from Lemma&.2, we get the inequality3(20).
Following an analogous argument with the previous one we prove that:

1 (2+6v) .
3.24 liminf - s, z+0v)ds > A (z;,Z).
@20)  Jmint 5| gz s 2 7 :3)

From the inequalities in3(19, (3.20 and (3.24), the inequality in .18 im-
plies the following inequality:
—+ -+ —+ S
(3.25) DyG(z;z) < B (z2)— A (2;2) + Dyg(s,+) (2;Z) ds.
a(z)

Since the left variant (foD . G(z;%)) of the inequality 8.25 and the similar

On Differentiability with
Respect to Parameters of the
Lebesgue Integral

Vasile Lupulescu

Title Page

Contents
44 44
< >
Go Back
Close
Quit
Page 24 of 29

inequalities which contain the lower contingent derivatives results in the same
way, the theorem is proved. O
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As to different types of variants of Theore®n3 which are going to be ob-
tained taking into account the hypothesis 1) and 2) we are going to deal with
only two, which are contained in the following statement:

Corollary 3.4. Let] C R be anintervaly Cc R", Z Cc R x Y, andg(,") :
B := I x Z — R a function that satisfies condition 2) from Theor&ri and
such thatg(-, 2) is regulated §(-, z) has one-sided limits at each point and at
most a countable number of discontinuities, all of the first ki(d)z € Z. If,

forany(t,z2) := (t,7,y) € B, (£,z) :== ({,7.7) € Kéﬁz)B, we consider:

tg(ty,2),if7>0
A* ((t,2);(£,7)) ==
tg (t+,2),if7 <0,

79 (ty,2),If7>0
B ((r,2);(7,%)) =
Tg(ts, 2),if 7 <0,
then, the following are true:

(i) Forany(t,z) == (t,7,y) € B, (£,z) = ({,7,7) € K?;’Z)B, the function
G(-,-) : B — R, defined by:

(3.26) G(t, z) == /tTg(s, z)ds

On Differentiability with
Respect to Parameters of the
Lebesgue Integral
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44 44
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verifies the inequalities:

(i) If the functionsy(¢, -) are contingent differentiable at € Z in the direc- Regnegi:fsfsgrt;ﬂitteyrgg?the
tionz € Kf;z)Z, then functions — (g (s, -))}t( (z,%) is Lebesgue inte- pLebesgue Integral

grable and the functiordz(-, -), defined by §.26), is contingent differen-
tiable at(t, z) := (t,7,y) € B, indirection (¢,z) := ({,7,7) € K(f,Z)B,
and its contingent derivative is given by:

Vasile Lupulescu

Title Page
(Gﬁ( ((t7 z); (a 5)) Contents
— B* ((t, 2); (f, E)) — A* ((t, z); (f, E)) —l—/ (g(s, ))i (2;%) ds. <4« 44
t < >
Proof. We consider the functio&(-) : B — R, defined by: —
b(¢)
GIQ) = [ s, s, Ci= (t,2) € B cose
a(¢) Quit
and we apply the Theoref3to the particular case for whieh(¢) =¢,b(¢) = Page 26 of 29
7,andg (s,¢) = g (s, 2),if ( := (t,2) € B, by taking into account, at the same
time, the fact that, in case, on the one hanfl,(¢,{) = 7, b% (¢,¢) = 7, 3. Ined. Pure and Appl. Math. 3(4) Art. 64, 2002
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V)¢ € K(fyz)B, and, on the other hand, the fact that, as the functighs),

z € Z, are regulated (i.e.g(-, z) has one-sided limits at each point and at
most a countable number of discontinuities, all of the first kind), hence locally
bounded, then from3(1) we have that:

essliminfg(s, z) = esslimsupg(s, 2) = g(ts, 2), (V)z € Z.

s—t4 s—t4+
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