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ABSTRACT. The aim of this paper is to extend the results of [7] and [8] to a Lebesgue integral
whose integrand and limits of integration depend on parameters.
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1. I NTRODUCTION

As it is known, the main instrument used in the dynamic programming method in optimal
control theory to get necessary and/or sufficient optimality conditions is the value function,
whose monotonicity plays an important role ([3], [4], [6], [9], [10], etc.).

In general, since the value function of an optimal control problem is not differentiable, the
monotonicity properties lead to differentiable inequalities which can be expressed with the help
of the generalized derivatives.

The particular structure of the value function and the necessity of the estimation of its gener-
alized derivatives imply an estimation of the generalized derivatives with respect to parameters
of the Lebesgue integral ( [3], [7], [8]).

2. PRELIMINARY NOTATIONS AND RESULTS

The most known result regarding the differentiability in a classical meaning of the Lebesgue
integral with respect to parameters retaken and used by L. Cesari ([3, Lemma 2.3.1]) is Theorem
3.9.2 from E.I. McShane [7]. A recent generalization of McShane’s theorem is that of I. Mirică
[8].

In the results to follow we shall use the concepts of tangent cones and corresponding gener-
alized derivatives (e.g. [1], [2], [4], etc.).
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2 VASILE LUPULESCU

Let Rn be then-dimensional euclidian space with norm‖·‖. For x ∈ Rn andε > 0 let
Bε (x) = {y ∈ Rn : ‖y − x‖ < ε} be the open ball centered atx and with radiusε.

If X ⊂ Rn is a nonempty set and ifx ∈ X thecontingent(Bouligand-Severi)coneto a subset
X ⊂ Rn at the pointx is defined by:

(2.1) K±
x X := {u ∈ Rn; (∃) (θm, um) → (0±, u) : x + θmum ∈ X (∀) m ∈ N}.

Forg(·) : X ⊂ Rn → R, we shall usethe extreme contingent derivatives at a pointx ∈ X in
directionu ∈ K±

x X defined by:

D
±
Kg(x; u) := lim sup

(θ,v)→(0±,u)

g(x + θ.v)− g(x)

θ
, u ∈ K±

x X,(2.2)

D±
Kg(x; u) := lim inf

(θ,v)→(0±,u)

g(x + θ.v)− g(x)

θ
, u ∈ K±

x X,

which coincide with the well known Dini derivatives ifX ⊂ R is an interval andu = 1 ∈ R.
We recall that a mappingf(·) : X ⊂ Rn → Rm is said to be (Fréchet)differentiableat

x ∈ int(X) if there exists a linear mapping,A ∈ L (Rn, Rm) , such that

lim
h→0

(‖f(x + h)− f(x)− Ah‖)
‖x‖

= 0.

In this caseA is said to be the (Fréchet)derivativeof f(·) atx and is denoted by:A = Df(x);
in the casen = 1 we denote:f ′ (x) = Df(x) · 1.

As it is well known, the classical (Fréchet) differentiability is generalized by the “contingent
differentiability” of a mappingf(·) : X ⊂ Rn → Rm assuming the existence of thecontingent
directional derivative:

(2.3) f±K(x; u) := lim
(θ,v)→(0±,u)

f(x + θ.v)− f(x)

θ
, u ∈ K±

x X.

We recall that a real-valued function,g(·) : X ⊂ Rn → R is a differentiable mapping in
x ∈ X if and only if

(2.4) D±
Kg(x; u) = D

±
Kg(x; u) = g±K(x; u), (∀) u ∈ Rn

andg±K (x; ·) : Rn → R is a linear mapping.
We denote byL0 the family of all subsets of the null Lebseque measure fromR, and for

the intervalI ⊂ R we denote byL1(I; Rn) and byLloc
1 (I; Rn) the space of the measurable

mappingsu(·) : I → Rn, which are Lebesgue integrable and locally integrable respectively; in
addition we denote byLloc

∞ (I; Rn) the space of the locally essentially bounded maps.
The relationship of differentiability to the Riemann integral parameters has been studied in

almost all the books that deal with mathematical analysis (e.g. [5]), but similar properties of the
Lebesgue integral are very seldom approached.

The most famous result concerning the differentiability of the Lebesgue integral with param-
eters, in the classic meaning (a result used by L. Cesari [3, Lemma 2.3.1]), is Theorem 3.9.2.in
E.J. Mc. Shane [7]:

Lemma 2.1. ([7]) Let I ⊂ R be an interval,α, β ∈ R andh(·, ·) : I × (α, β) → R a function
with the following properties:

(1) h(·, z) ∈ L1(I; R), z ∈ (α, β);
(2) There isk(·) ∈ L1(I; R+) and I0 ⊂ R, of zero Lebesgue measure, such that for each

t ∈ I\I0, there isD2h(t, z) with the following property:

(2.5) |D2h(t, z)| ≤ k(t), (∀)t ∈ I\I0, z ∈ (α, β).
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ON DIFFERENTIABILITY WITH RESPECT TOPARAMETERS OF THELEBESGUE INTEGRAL 3

ThenD2h(·, z) ∈ L1(I; R), (∀) z ∈ (α, β) and the functionΨ(·); (α, β) → R defined by:

(2.6) Ψ(z) :=

∫
I

h(t, z)dt, (∀) z ∈ (α, β)

is differentiable, and its derivative is given by:

(2.7) Ψ′(z) =

∫
I

D2h(t, z)dt, (∀) z ∈ (α, β).

A recent generalization of E.J. Mc. Shane’s result is given by I. Miriča [8]:
Lemma 2.2. ([8]) Let I ⊂ R be an interval,Z0 ⊂ Rn, z0 ∈ Z0 andh(·, ·) : I × Z0 → R a
function with the following properties:

(1) h(·, z) ∈ L1(I; R), z ∈ Z0;
(2) There isk(·) ∈ L1(I; R+) such that:

(2.8) |h(t, z)− h(t, z0)| ≤ k(t) ‖z − z0‖ , (∀)z ∈ Z0, a.p.t. (I) .

Then the extreme contingential derivatives of the functionΨ(·) in (2.6) at the pointz0 ∈ Z0,
in the directionz ∈ K±

z0
Z0, verify the following inequalities:

(2.9)
∫

I

D±
Kh(t, ·)(z0; z)dt ≤ D±

KΨ(z0; z) ≤ D
±
KΨ(z0; z) ≤

∫
I

D
±
Kh(t, ·)(z0; z)dt

In particular, if there isI0 ⊂ I, of zero Lebesgue measure, such that the functionsh(t, ·) are
contingentially differentiable in the directionz ∈ K±

z0
Z0 for eacht ∈ I\I0, then the function

t → (h(t, ·))±K (z0; z), is Lebesgue integrable,Ψ(·) is contingentially differentiable inz0 in the
directionz is and its contingent derivative is given by:

(2.10) Ψ±
K(z) =

∫
I

(h(t, ·))±K (z0; z)dt.

Proof. The essential instrument for the theorem’s proof is the generalization of Fatou’s Lemma
(e.g. [11, Ex. 8.18]) according to which ifgm(·) : I → R is a sequence of measurable functions,
such that there isg(·) ∈ L1 (I; R+) which fulfills the following:

(2.11) gm(t) ≤ g (t) a.p.t. (I) , (∀)m ∈ N,

then we have that:

(2.12)
∫

I

lim inf
m→∞

gm(t)dt ≤ lim inf
m→∞

∫
I

gm(t)dt ≤ lim sup
m→∞

∫
I

gm(t)dt ≤
∫

I

lim sup
m→∞

gm(t)dt.

In order to be able to apply this result to our case, we consider a sequence(φm, zm) → (0±, z)
with the following property:

(2.13) z0 + θmzm ∈ Z0, (∀) m ∈ N
and we define the sequence of measurable functionsgm(t) as follows:

(2.14) gm(t) :=
h(t, z0 + θmzm)− h(t, z0)

θm

, m ∈ N, t ∈ I.

Then, from the definitions (2.3) of the extreme contingent derivatives, we have that:

(2.15) D±
K(t, .)(z0; z) ≤ lim inf

m→∞
gm(t) ≤ lim sup

m→∞
gm(t) ≤ D

±
K(t, .)(z0; z),

the extreme equalities taking place for the inferior and superior limits with respect to the set of
the sequence(θm, zm) → (0±, z), with the property in (2.13). Moreover, from the Lipschitz
property (2.8) and from (2.14) it follows that:

(2.16) |gm(t)| ≤ k(t) ‖zm‖ a.p.t.(I), (∀) m ∈ N.
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4 VASILE LUPULESCU

From the fact thatzm → z it results that(∀) ε > 0 there ismε ∈ N such that‖zm − z‖ ≤
ε, (∀) m ≥ mε and, as a consequence, the inequality (2.16) implies:

|gm(t)| ≤ k(t) ‖zm‖(2.17)

≤ k(t)[‖zm − z‖+ ‖z‖]
≤ gε(t) := k(t) [‖z‖+ ε] , m ≥ mε,

which shows that the subsequence{gm(·); m ≥ mε} has the property in (2.11) because the func-
tion, gε(·), defined in (2.17) is obviously integrable. As a consequence, from the inequalities
(2.15) and from the monotonicity property of the Lebesgue integral ([11, Corollary 8.2.4]) we
deduce that the following inequalities are true:∫

I

D±
Kh(t, ·)(z0; z)dt ≤

∫
I

lim inf
m→∞

gm(t)dt(2.18)

≤
∫

I

lim sup
m→∞

gm(t)dt

≤
∫

I

D
±
Kh(t, ·)(z0; z)dt.

The inequalities (2.9) in the theorem’s text now follow from (2.18), (2.12) and from the fact
that for each sequence(θm, zm) → (0±, z) with the property (2.13) the extreme contingent
derivatives of the functionΨ(·) in (2.6) verify the following inequalities:

D±
KΨ(z0; z) ≤ lim inf

m→∞

Ψ(z0 + θmzm)−Ψ(z0)

θm

(2.19)

= lim inf
m→∞

∫
I

gm(t)dt

≤ lim sup
m→∞

∫
I

gm(t)dt

≤ D
±
KΨ(z0; z).

In the case when the functionsh (t, ·) , t ∈ I\I0 are contingentially differentiable inz0 in the
directionz ∈ K±

z0
Z0, the contingent differentiability of the functionΨ(·) and the formula (2.10)

result from the inequalities (2.9) and from the fact that, according to the property in (2.4), we
have:

(h(t, ·))±K(z0; z) = D±
Kh(t, ·)(z0; z) = D

±
Kh(t, ·)(z0; z), (∀) t ∈ I\I0;

a similar equality taking place for the functionΨ(·) as well.
Finally, the integrability of the functiont → (h (t, ·))±k (z0, z) results from the fact that for

each sequencegm(·) having the form in (2.14) the following relation is true:

(h (t, ·))±k (z0; z) = lim
m→∞

gm(t), (∀) t ∈ I\I0,

and from Lebesgue’s Theorem of Dominated Convergence ([11, Theorem 8.2.16]) according to
which the inequalities (2.17) and the integrability of the functionsgε(·), defined in (2.17) imply
the integrability of the following limit:lim inf

m→∞
gm(t) when this one exists a.p.t.(I). �

Remark 2.3. Except for some very particular cases, the property of “integral lipschitzianity” in
(2.8) seems to be compulsory in order to get the results in Lemma 2.2; principally, the property
(2.8) assures the fulfillment of the conditions in the form of (2.11) which, in their turn, imply
the inequalities in (2.10). On the other hand, as one may easily check, property (2.8) is implied
in more restrictive hypotheses, but it may be more easily checked, as in the case of condition
(2.5) in Lemma 2.1: there isr > 0, k(·) ∈ L1 (I; R+) andI0 ⊂ I, of zero Lebesgue measure,
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ON DIFFERENTIABILITY WITH RESPECT TOPARAMETERS OF THELEBESGUE INTEGRAL 5

such thatZ0 = Br (z0) ⊂ Rnand for eacht ∈ I\I0, z ∈ Z0, the functionh (t, ·) is differentiable
in the pointz and its derivative verifies the following inequality:

(2.20) ‖D2h(t, z)‖ ≤ k(t), (∀) t ∈ I\I0, z ∈ Z0 := Br(z0).

In this case, by using the measurability property of the derivative and the evident relations:

h(t, z)− h(t, z0) =

∫ 1

0

D2h(t, z0 + s(z − z0)) (z − z0) , (∀) z ∈ Z0,

by (2.20) it results the radial lipschitzianity property in (2.8) follows. As a consequence, Lemma
2.2 represents a generalization of Lemma 2.1 from the following points of view: the set of the
parameters,Z0, is not necessarily scalar and open(Z0 = (α, β)) ⊂ R in Lemma 2.1, and the
functionsh (t, ·) , t ∈ I, are not necessarily differentiable, not even at the fixed pointz0 ∈ Z0.

3. THE M AIN RESULTS

We are going to extend the result in Lemma 2.2 to the case of the Lebesgue integral whose in-
tegrand and integrability interval depend on parameters. We need some notions and preliminary
results for this particular purpose.

Let L0 be the family of the subsets of zero Lebesgue measure inR andh(·) ∈ Lloc
∞ (I, R) a

given function. Then we define theessential right superior limitandessential left inferior limit
of the functionh(·) at the pointt ∈ I, by following relations:

ess lim sup
s→t+

h(t) := inf
ε>0

inf
J∈L0

sup
s∈[t,t+ε)\J

h(s);(3.1)

ess lim inf
s→t−

h(t) := sup
ε>0

sup
J∈L0

inf
s∈[t,t+ε)\J

h(s).

Similarly, we can define:ess lim sup
s→t−

h(s), ess lim inf
s→t+

h(s).

Lemma 3.1. If I ⊂ R is an interval andh(·) ∈ Lloc
∞ (I, R) then the following inequalities are

true:

(3.2) ess lim inf
s→t±

h(t) ≤ lim inf
δ→0±

1

δ

∫ t+δ

t

h(s)ds ≤ lim sup
δ→0±

1

δ

∫ t+δ

t

h(s)ds ≤ ess lim sup
s→t±

h(t).

Proof. Let t ∈ I andε > 0 such that[t, t + ε) ⊂ I, let J ∈ L0 such thatJ ⊂ I and let
αε,J := sup

s∈[t,t+ε)\J
h(s), αε := inf

J∈L0

αε,J , α := inf
ε>0

αε. Sinceh(s) ≤ αε,J , (∀)s ∈ [t, t + ε)\J, we

have that:

(3.3)
1

ε

∫ t+ε

t

h(s)ds ≤ inf
J∈L0

αε,J = αε.

Sinceh(·) is essentially bounded, thenαε is finite; hence by the fact that the functionε → αε is
increasing (which means thatsup

ε∈(0,δ)

αε = αδ), and by (3.3), we have that:

lim sup
δ→0+

1

δ

∫ t+δ

t

h(s)ds := inf
δ>0

sup
ε∈(0,δ)

1

δ

∫ t+δ

t

h(s)ds

≤ inf
δ>0

sup
ε∈(0,δ)

αε

= inf
ε∈(0,δ)

αε = α,
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6 VASILE LUPULESCU

thus, we have established the following inequality:

lim sup
δ→0+

1

δ

∫ t+δ

t

h(s)ds ≤ ess lim sup
s→t+

h(t).

We can similarly establish other inequalities in the text. �

Lemma 3.2. Let α(·) : Z ⊂ Rn → R, β(·) : Z ⊂ Rn → R be the given functions andz0 ∈ Z
such that there islimz→z0 α(·) = α0 ∈ R andβ(·) is bounded on a neighborhood of the point
z0. Then the following relations are true:

(3.4) lim sup
z→z0

[α (z) β (z)] =

 α0lim sup
z→z0

β (z) , if α ≥ 0

α0lim inf
z→z0

β (z) , if α < 0,

(3.5) lim inf
z→z0

[α (z) β (z)] =

 α0lim inf
z→z0

β (z) , if α ≥ 0

α0lim sup
z→z0

β (z) , if α < 0.

Proof. Some more steps are necessary in order to prove the relations (3.4) and (3.5).
(1) If a ∈ R andB ⊂ R is nonempty bounded set, then we have that:

(3.6) inf (aB) =

 a inf B, if a ≥ 0

a sup B, if a < 0,
sup (aB) =

 a sup B, if a ≥ 0

a inf B, if a < 0.

Indeed, ifa = 0 the equalities in (3.6) are obvious. In the casea > 0, from the fact that
inf B ≤ b, (∀) b ∈ B, it follows thata inf B ≤ ab, (∀) b ∈ B, which shows thata inf B
is a minorant of the setaB, hencea inf B ≤ inf(aB).

On the other hand, for eachε > 0, there isbε ∈ B, such thatbε < inf B + ε/a;
it results: abε < a inf B + ε, henceinf(aB) ≤ abε < a inf B + ε. Sinceε > 0 is
arbitrary it follows thatinf(aB) ≤ a inf B. Therefore, fora > 0, from the inequalities
a inf B ≤ inf(aB), inf(aB) ≤ a inf B, we deduce the fact thatinf(aB) = a inf B.

In the casea < 0, we have:

inf(aB) = inf[(−a)(−B)] = −a inf(−B) = −a(− sup B) = a sup B;

hence, the first equality in (3.6) is established. The second equality may be similarly
established.

(2) If for a sequence of real numbers(um)m we denote byL (um) the set of its limit points,
defined by:

(3.7) L (um) = {u ∈ R; (∃) (umk
)k subsequence of the sequence(um)m : umk

→ u},
then for every two sequences of real numbers(xm)m , (ym)m such thatxm → x ∈ R
and(ym)m is bounded, the following equality is true:

(3.8) L (xmym) = xL (ym) .

Indeed, ifxm → 0, then from the fact that the sequence(ym)m is bounded, it results
that xmym → 0, henceL (xmym) = {0} = 0.L (ym) . Therefore, we suppose that
xm → x ∈ R\{0} and we consider an elementu ∈ L (xmym) ; then, according to
the definition (3.7), there is the subsequencexmk

.ymk
→ u, as a consequence, since

xmk
→ x, it results thatymk

→ u
x
∈ L(ym), henceu = xu

x
∈ xL(ym); thus, we

have established the inclusionL (xmym) ⊆ xL (ym) . Vice versa, ifu ∈ xL (ym), then,
according to the definition (3.7), there is a subsequence(ymk

)k of the sequence(ym)m

such thatymk
→ u

x
∈ L (ym) . If for the subsequence(ymk

)k we choose a corresponding
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ON DIFFERENTIABILITY WITH RESPECT TOPARAMETERS OF THELEBESGUE INTEGRAL 7

subsequence(xmk
)k of the sequence(xm)m, thenxmk

.ymk
→ xu

x
= u which shows that

u ∈ L (xmym) . Therefore, it has established the inclusionL (xmym) ⊇ xL (ym) and
thus the relation (3.8) is proved.

(3) If (xm)m , (ym)m are sequences of real numbers such thatxm → x ∈ R and(ym)m is
bounded, then the following relations are true:

(3.9) lim sup (xmym) =

{
xlim sup

m→∞
(ym) , if x ≥ 0

xlim inf
m→∞

(ym) , if x < 0,

(3.10) lim inf
m→∞

(xmym) =

{
xlim inf

m→∞
(ym) , if x ≥ 0

xlim sup
m→∞

(ym) , if x < 0,

Indeed, ifxm → 0, then, since(ym)m is bounded sequence, it results thatxmym → 0
and thus the equalities (3.9) and (3.10) are obvious. Therefore, we suppose thatxm →
x ∈ R\{0}; then forx > 0, from (3.6) and from (3.8), we have that:

lim sup
m→∞

(xmym) := sup L (xmym)

= sup[xL (ym)]

= x sup L (ym) = x lim sup
m→∞

ym,

and ifx < 0 we have that:

lim sup
m→∞

(xmym) := sup L (xmym)

= sup[xL (ym)]

= x inf L (ym) = xlim inf
m→∞

ym,

hence the equality (3.9); we get to the equality (3.10) by a similar procedure.
(4) According to the results previously established, we prove the relations (3.4), (3.5). In-

deed, iflimz→z0 a(z) = 0 then, from the fact thatβ(·) is bounded in a neighborhood
of the pointz0, we have thatlimz→z0 α (z) β (z) = 0 and the equalities (3.4), (3.5) are
obvious. Therefore, we suppose thatlimz→z0 α (z) = α0 ∈ R\{0}. In case thatα0 > 0,
according to the equalities (3.6), (3.9) we have that:

lim sup
z→z0

[α (z) β (z)] = sup

{
lim sup

m→∞
α (zm) β (zm) ; zm → z0, zm ∈ Z\{z0}, (∀) m ∈ N

}
= sup

{
α0 lim sup

m→∞
β (zm) ; zm → z0, zm ∈ Z\{z0}, (∀) m ∈ N

}
= α0 sup

{
lim sup

m→∞
β (zm) ; zm → z0, zm ∈ Z\{z0}, (∀) m ∈ N

}
= α0 lim sup

z→z0

β (z) ,
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and ifα0 < 0, we have that:

lim sup
z→z0

[α (z) β (z)] = sup

{
lim sup

m→∞
α (zm) β (zm) ; zm → z0, zm ∈ Z\{z0}, (∀) m ∈ N

}
= sup

{
α0 lim inf

m→∞
β (zm) ; zm → z0, zm ∈ Z\{z0}, (∀) m ∈ N

}
= α0 sup

{
lim inf
m→∞

β (zm) ; zm → z0, zm ∈ Z\{z0}, (∀) m ∈ N
}

= α0lim inf
z→z0

β (z) ,

hence, the equality (3.4) is established. The equality (3.5) can be established in a similar
procedure.

�

Now we are able to present a generalization of the result in Lemma 2.2 to the case of the
Lebesgue integral whose integrand and integrability interval depend on the parameters.

Theorem 3.3. Let I ⊂ R be an interval,Z ⊂ Rn andg (·, ·) : I × Z → R a function with the
following properties:

(1) g (·, z) ∈ Lloc
∞ (I; R), (∀) z ∈ Z;

(2) For eachz ∈ Z, there iskz(·) ∈ Lloc
∞ (I; R+) andr > 0 such that:

(3.11) |g(s, y)− g(s, z)| ≤ kz(s) ‖y − z‖ , (∀) y ∈ Br(z) ∩ Z, a.p.t.(I).

Let a(·) : Z → I, b(·) : Z → I be contingent differentiable functions atz ∈ Z in direction
z ∈ K±

z Z such thata(z) < b(z) and let:

(3.12) A
±

(z; z) :=


a±K(z; z)ess lim inf

s→a(z)±
g(s, z), if a±K(z; z) ≥ 0

a±K(z; z)ess lim sup
s→a(z)∓

g(s, z), if a±K(z; z) < 0,

(3.13) A± (z; z) :=


a±K(z; z)ess lim sup

s→a(z)±

g(s, z), if a±K(z; z) ≥ 0

a±K(z; z)ess lim inf
s→a(z)∓

g(s, z), if a±K(z; z) < 0,

(3.14) B
±

(z; z) :=


b±K(z; z)ess lim sup

s→a(z)±

g(s, z), if b±K(z; z) ≥ 0

b±K(z; z)ess lim inf
s→a(z)∓

g(s, z), if b±K(z; z) < 0,

(3.15) B± (z; z) :=


b±K(z; z)ess lim inf

s→a(z)±
g(s, z), if b±K(z; z) ≥ 0

b±K(z; z)ess lim sup
s→a(z)∓

g(s, z), if b±K(z; z) < 0.

Then, for anyz ∈ Z andz ∈ K±
z Z, the functionG(·) : Z → R, defined by:

(3.16) G(z) :=

∫ b(z)

a(z)

g(s, z)ds, z ∈ Z,
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verifies the inequalities:

B± (z; z)− A± (z; z) +

∫ b(z)

a(z)

D±
Kg(s, ·) (z; z) ds(3.17)

≤ D±
KG(z; z)

≤ D
±
KG(z; z)

≤ B
±

(z; z)− A
±

(z; z) +

∫ b(z)

a(z)

D
±
Kg(s, ·) (z; z) ds.

Proof. Let z ∈ Z andz ∈ K±
z Z; from the definition (2.3) of the extreme contingent derivatives

and from definition (3.16) of the functionG(·), we have that:

D
±
KG(z; z) = lim sup

(θ,v)→(0+,z)

G (z + θv)−G (z)

θ
(3.18)

= lim sup
(θ,v)→(0+,z)

[∫ b(z)

a(z)

g (s, z + θv)− g (s, z)

θ
ds

+
1

θ

∫ b(z+θv)

b(z)

g(s, z + θv)ds− 1

θ

∫ a(z+θv)

a(z)

g(s, z + θv)ds

]

≤ lim sup
(θ,v)→(0+,z)

∫ b(z)

a(z)

g (s, z + θv)− g (s, z)

θ
ds

+ lim sup
(θ,v)→(0+,z)

1

θ

∫ b(z+θv)

b(z)

g(s, z + θv)ds

− lim inf
(θ,v)→(0÷,z)

1

θ

∫ a(z+θv)

a(z)

g(s, z + θv)ds

Under the conditions (1) and (2) from the hypothesis of the theorem, we can apply Lemma 2.2
to obtain that:

(3.19) lim sup
(θ,v)→(0+,z)

∫ b(z)

a(z)

g (s, z + θv)− g (s, z)

θ
ds ≤

∫ b(z)

a(z)

D
+

Kg(s, ·) (z; z) ds.

We are now going to prove that:

(3.20) lim sup
(θ,v)→(0÷,z)

1

θ

∫ b(z+θv)

b(z)

g(s, z + θv)ds ≤ B
+

(z; z) .

First we are going to establish the following equality:

(3.21) lim sup
(θ,v)→(0+,z)

∫ b(z+θv)

b(z)

g(s, z + θv)ds = lim sup
(θ,v)→(0+,z)

∫ b(z+θv)

b(z)

g(s, z)ds.

Indeed, if we take into account the fact thatz + θv → z when(θ, v) → (0+, z) , then, from the
condition (2), from the hypothesis, we deduce that there existsr > 0 such that:

|g(s, z + θv)− g(s, z)| ≤ kz(s)θ ‖v‖ , (∀) v ∈ Br (z) ∩ Z, 0 < θ < r, a.p.t(I),

hence

(3.22) |g(s, z + θv)− g(s, z)| ≤ kz(s)θ (‖z‖+ r) , 0 < θ < r, a.p.t(I).
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Therefore, from (3.22) and the fact thatb(z + θv) → b(z) when(θ, v) → (0+, z) , we have that:

lim sup
(θ,v)→(0+,z)

∣∣∣∣∣1θ
∫ b(z+θv)

b(z)

[g(s, z + θv)− g(s, z)]ds

∣∣∣∣∣
≤ lim sup

(θ,v)→(0+,z)

1

θ

∫ b(z+θv)

b(z)

|g(s, z + θv)− g(s, z)| ds

≤ lim sup
(θ,v)→(0+,z)

1

θ

∫ b(z+θv)

b(z)

kz(s)θ (‖z‖+ r) ds

= lim sup
(θ,v)→(0+,z)

∫ b(z+θv)

b(z)

kz(s) (‖z‖+ r) ds

= 0,

hence, by using the absolute continuity of the Lebesgue integral and the fact thatb(z + θv) →
b(z) when (θ, v) → (0+, z) , we deduce the relation (3.21). Furthermore, from the relation
(3.21) we have that:

lim sup
(θ,v)→(0+,z)

1

θ

∫ b(z+θv)

b(z)

g(s, z + θv)ds(3.23)

= lim sup
(θ,v)→(0+,z)

1

θ

∫ b(z+θv)

b(z)

g(s, z)ds

= lim sup
(θ,v)→(0+,z)

b(z + θv)− b(z)

θ

[
1

b(z + θv)− b(z)

∫ b(z+θv)

b(z)

g(s, z)ds

]
.

We consider the functions:

α (θ, v) :=
b(z + θv)− b(z)

θ
, β (θ, v) :=

1

b(z + θv)− b(z)

∫ b(z+θv)

b(z)

g(s, z)ds

as well and we note on one hand that, sinceb(·) is contingent differentiable at the pointz ∈ Z in
the directionz ∈ K±

z , then there exist: lim sup
(θ,v)→(0+,z)

α (θ, v) = b+
K(z; z) and this limit is finite; on

the other hand, by the hypothesis of Theorem 3.3 we have thatg (·, z) ∈ Lloc
∞ (I; R), (∀) z ∈ Z,

such that, on the basis of Lemma 3.2, we have that:

ess lim inf
s→b(z)+

g(s, z) ≤ lim inf
(θ,v)→(0+,z)

β(θ, v) ≤ lim sup
(θ,v)→(0+,z)

β(θ, v) ≤ ess lim sup
s→b(z)+

g(s, z),

hence, we deduce that the functionβ(·) is bounded in a neighborhood of the point(0, z) .
Therefore, from (3.14) and from (3.23) we obtain that:

lim sup
(θ,v)→(0+,z)

1

θ

∫ b(z+θv)

b(z)

g(s, z + θv)ds = lim sup
(θ,v)→(0+,z)

[α (θ, v) β (θ, v)]

=


b+
K(z; z) lim sup

(θ,v)→(0+,z)

β(θ, v), if b+
K(z; z) ≥ 0

b±K(z; z) lim inf
(θ,v)→(0+,z)

β(θ, v), if b±K(z; z) < 0,

hence, from Lemma 3.2, we get the inequality (3.20).
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Following an analogous argument with the previous one we prove that:

(3.24) lim inf
(θ,v)→(0+,z)

1

θ

∫ a(z+θv)

a(z)

g(s, z + θv)ds ≥ A
+

(z; z) .

From the inequalities in (3.19), (3.20) and (3.24), the inequality in (3.18) implies the following
inequality:

(3.25) D
+

KG(z; z) ≤ B
+

(z; z)− A
+

(z; z) +

∫ b(z)

a(z)

D
+

Kg(s, ·) (z; z) ds.

Since the left variant (forD
−
KG(z; z)) of the inequality (3.25) and the similar inequalities which

contain the lower contingent derivatives results in the same way, the theorem is proved.�

As to different types of variants of Theorem 3.3 which are going to be obtained taking into
account the hypothesis 1) and 2) we are going to deal with only two, which are contained in the
following statement:

Corollary 3.4. Let I ⊂ R be an interval,Y ⊂ Rn, Z ⊂ R× Y, andg(·, ·) : B := I × Z → R
a function that satisfies condition 2) from Theorem 3.3 and such thatg(·, z) is regulated (g(·, z)
has one-sided limits at each point and at most a countable number of discontinuities, all of the
first kind), (∀) z ∈ Z. If, for any (t, z) := (t, τ, y) ∈ B,

(
t, z

)
:=

(
t, τ , y

)
∈ K±

(t,z)B, we
consider:

A±
(
(t, z) ;

(
t, z

))
:=

 tg (t±, z) , if τ ≥ 0

tg (t∓, z) , if τ < 0,

B± ((τ, z) ; (τ , z)) :=

 τg (t±, z) , if τ ≥ 0

τg (t∓, z) , if τ < 0,

then, the following are true:

(i) For any (t, z) := (t, τ, y) ∈ B,
(
t, z

)
:=

(
t, τ , y

)
∈ K±

(t,z)B, the functionG(·, ·) : B →
R, defined by:

(3.26) G(t, z) :=

∫ τ

t

g(s, z)ds

verifies the inequalities:

B± (
(t, z) ;

(
t, z

))
− A±

(
(t, z) ;

(
t, z

))
+

∫ τ

t

D±
Kg(s, ·) (z; z) ds

≤ D±
KG

(
(t, z);

(
t, z

))
≤ D

±
KG

(
(t, z);

(
t, z

))
≤ B± (

(t, z) ;
(
t, z

))
− A±

(
(t, z) ;

(
t, z

))
+

∫ τ

t

D
±
Kg(s, ·) (z; z) ds.

(ii) If the functionsg(t, ·) are contingent differentiable atz ∈ Z in the directionz ∈ K±
(t,z)Z,

then functions → (g (s, ·))±K (z, z) is Lebesgue integrable and the functionG(·, ·),
defined by (3.26), is contingent differentiable at(t, z) := (t, τ, y) ∈ B, in direction(
t, z

)
:=

(
t, τ , y

)
∈ K±

(t,z)B, and its contingent derivative is given by:

(G)±K
(
(t, z);

(
t, z

))
= B± (

(t, z) ;
(
t, z

))
− A±

(
(t, z) ;

(
t, z

))
+

∫ τ

t

(g(s, ·))±K (z; z) ds.
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Proof. We consider the functionG(·) : B → R, defined by:

G(ζ) :=

∫ b(ζ)

a(ζ)

g̃(s, z)ds, ζ := (t, z) ∈ B

and we apply the Theorem 3.3 to the particular case for whicha (ζ) = t, b (ζ) = τ, and
g̃ (s, ζ) = g (s, z) , if ζ := (t, z) ∈ B, by taking into account, at the same time, the fact that, in
case, on the one hand,a±K

(
ζ, ζ

)
= t, b±K

(
ζ, ζ

)
= τ , (∀) ζ ∈ K±

(t,z)B, and, on the other hand,
the fact that, as the functionsg(·, z), z ∈ Z, are regulated (i.e.g(·, z) has one-sided limits at
each point and at most a countable number of discontinuities, all of the first kind), hence locally
bounded, then from (3.1) we have that:

esslim inf
s→t±

g(s, z) = esslim sup
s→t±

g(s, z) = g(t±, z), (∀) z ∈ Z.

�
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