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1. INTRODUCTION

As it is known, the main instrument used in the dynamic programming method in optimal
control theory to get necessary and/or sufficient optimality conditions is the value function,
whose monotonicity plays an important rolel ([3], [4], [6], [9], [10], etc.).

In general, since the value function of an optimal control problem is not differentiable, the
monotonicity properties lead to differentiable inequalities which can be expressed with the help
of the generalized derivatives.

The particular structure of the value function and the necessity of the estimation of its gener-
alized derivatives imply an estimation of the generalized derivatives with respect to parameters
of the Lebesgue integral (I[3],[7].][8]).

2. PRELIMINARY NOTATIONS AND RESULTS

The most known result regarding the differentiability in a classical meaning of the Lebesgue
integral with respect to parameters retaken and used by L. Césari ([3, Lemma 2.3.1]) is Theorem
3.9.2 from E.l. McShané [7]. A recent generalization of McShane’s theorem is that of 1aMiric
[8].

In the results to follow we shall use the concepts of tangent cones and corresponding gener-
alized derivatives (e.g. [1].[2]. 4], etc.).
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2 VASILE LUPULESCU

Let R” be then-dimensional euclidian space with norin|. Forz € R™ ande > 0 let
B. (z) = {y € R": ||y — z|| < ¢} be the open ball centered:aand with radius.

If X C R™isanonempty setandif € X thecontingeniBouligand-Severifoneto a subset
X C R" at the pointz is defined by
(21) KEX:={ueR"3) Onm, tm) — (0+,1) : 2+ Opu, € X (V)m € N},

Forg(:) : X € R™ — R, we shall use¢he extreme contingent derivatives at a paint X in
directionu € K X defined by:

g(x +0v) - g(x)

(2.2) Ef{g(x;u) ;= limsup ,u € KEX,
(0,0)—(0u) 0
f.v) —
Dig(v;u) := liminf glz+6) g(x)) ue KFX,

(0,0)— (04 ,u) 6

which coincide with the well known Dini derivatives ¥ C R is an interval and. = 1 € R.
We recall that a mapping(-) : X ¢ R* — R™ is said to be (Fréchetifferentiableat
x € int(X) if there exists a linear mapping, € L (R™,R™) , such that

(G h) — f() — AR])

h—0 ]

In this caseA is said to be the (Fréchedgrivativeof f(-) atx and is denoted byd = D f(z);
in the casen = 1 we denote:f’ (z) = Df(x) - 1.

As it is well known, the classical (Fréchet) differentiability is generalized by toatingent
differentiability’ of a mappingf(-) : X € R™ — R™ assuming the existence of thentingent
directional derivative

=0.

(2.3) fiu) = lim L@V /@

L u€ KEX.
(6,0)—(0+,u) 0

We recall that a real-valued function(-) : X C R® — R is a differentiable mapping in
x € X if and only if

(2.4) Qf(g(x; u) = b}t(g(x; u) = g[j?(:c; u), (V)ueR"

andgi (r;-) : R” — Ris alinear mapping.

We denote by, the family of all subsets of the null Lebseque measure fidnand for
the intervall C R we denote byL,(/;R") and by L¢(I; R") the space of the measurable
mappingsu(-) : I — R, which are Lebesgue integrable and locally integrable respectively; in
addition we denote by.!o¢(7; R™) the space of the locally essentially bounded maps.

The relationship of differentiability to the Riemann integral parameters has been studied in
almost all the books that deal with mathematical analysis (€.g. [5]), but similar properties of the
Lebesgue integral are very seldom approached.

The most famous result concerning the differentiability of the Lebesgue integral with param-
eters, in the classic meaning (a result used by L. Cesari [3, Lemma 2.3.1]), is Theorem 3.9.2.in
E.J. Mc. Shane |7]:

Lemma 2.1. ([7]) Let/ C R be anintervalp, 5 € Randh(-,-) : I x (a, 3) — R a function
with the following properties:

(1) h(-, 2) € Li([;R), z € (a, B);
(2) There isk(-) € Ly(I;Ry) and Iy C R, of zero Lebesgue measure, such that for each
t € I\Io, there isD,h(t, z) with the following property:

(2.5) |Doh(t, 2)| < k(t), (V)t € I\Iy, z € (o, B).
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ON DIFFERENTIABILITY WITH RESPECT TOPARAMETERS OF THELEBESGUE INTEGRAL 3

ThenDsh(-, z) € L1(I;R), (V) z € (a, #) and the functionl(-); («, 3) — R defined by:

(2.6) U(z) = /h(t,z)dt, (V) z € (o, B)
1
is differentiable, and its derivative is given by:
2.7) V() = / Doh(t, 2)dt, (V)2 € (v, ).
I

A recent generalization of E.J. Mc. Shane’s result is given by |.8di(8]:

Lemma 2.2. ([8]) Let/ C R be aninterval,Z, C R", zy € Z, andh(-,-) : [ x Zy — Ra
function with the following properties:

(1) h(-,2) € Li(I;R), z € Zy;
(2) Thereisk(-) € L,(I; R, ) such that:
(28) |h<t,2) - h<t720)| < k<t> H’Z - ZOH ) (V)Z < ZO> a.p.t. (I) :
Then the extreme contingential derivatives of the funcii¢ in (2.6) at the point, € Z,,
in the directionz € KT Z,, verify the following inequalities:

(2.9) /DjE )(20:2)dt < DEW(2077) < DV (20:2 /DKh (20;Z)dt

In particular, if there isl, C I, of zero Lebesgue measure, such that the functigns) are
contingentially differentiable in the direction KZj;ZO for eacht € I\ Iy, then the function

t — (h(t,-))% (20;Z), is Lebesgue integrabldj(-) is contingentially differentiable in, in the
direction? is and its contingent derivative is given by:

(2.10) Vi) = [ (bt ik (i)t

I
Proof. The essential instrument for the theorem’s proof is the generalization of Fatou’'s Lemma
(e.g. [11, Ex. 8.18]) according to whichdf,(-) : I — Ris a sequence of measurable functions,
such that there ig(-) € L, (I; R, ) which fulfills the following:
(2.12) (1) < g(8) apt.(I), ()m €N,
then we have that:

(2.12) /liminfgm(t)dt < liminf/gm(t)dt < limsup/gm(t)dt < /limsupgm(t)dt.
I Mo I I I

m—00 m—00 m—00

In order to be able to apply this result to our case, we consider a sequencg,) — (0+,%)
with the following property:

(2.13) 20 + 0mZm € Zy, (V)meN
and we define the sequence of measurable functig(s as follows:
h(t, zo + OmZzZm) — h(t, 20)

(2.14) gm(t) = 7 ,meN, tel.
Then, from the definitions (2.3) of the extreme contingent derivatives, we have that:
(2.15) D%(t,.)(20;Z) < liminfg,,(t) < limsupg,,(t) < ﬁf{(t, )(20;2),

the extreme equalities taking place for the inferior and superior limits with respect to the set of
the sequencéd,,,.z,,) — (04,z), with the property in[(2.13). Moreover, from the Lipschitz

property [(2.8) and fronj (2.14) it follows that:
(2.16) 90 (8)] < k() [Z]l @pt.(D), (V) m € N,
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From the fact that,, — Z it results that(V) ¢ > 0 there ism. € N such that|z,, — Z|| <
e, (V) m > m. and, as a consequence, the inequd]ity (2.16) implies:
(2.17) lgm ()] < K(E) |Zm]]
< k@O[lzm =2 + 1]
< g:(t) == k@) [zl + ], m = m.,
which shows that the subsequergg, (-); m > m.} has the property if (2.11) because the func-
tion, g.(-), defined in ) is obviously integrable. As a consequence, from the inequalities

(2.13) and from the monotonicity property of the Lebesgue intedral ([11, Corollary 8.2.4]) we
deduce that the following inequalities are true:

(2.18) /I DER(E, ) (20: 2)dt < /I lim inf gy, (£)dt

m—00

< /limsupgm(t)dt
I

m—00

< / DR, ) (20 2t

The inequalities[(2]9) in the theorem’s text now follow from (2.1B), (R.12) and from the fact
that for each sequend®,,,z.,) — (04,%) with the property|[(2.13) the extreme contingent
derivatives of the functiod(-) in (2.6) verify the following inequalities:

V(20 + OpZm) — U
(2.19) DEW(20:7) < lim inf L0+ OnZm) = V(o)

m— oo Hm

= liminf/gm(t)dt
I

m—00

< limsup/gm(t)dt
I

< Eilll(zo; Z).
In the case when the functiongt, -) ,t € I\ I, are contingentially differentiable i, in the
directionz € KZ Z,, the contingent differentiability of the functioh(-) and the form 0)

result from the inequalitie$ (4.9) and from the fact that, according to the propefty |n (2.4), we
have:

(h(t, ))E(20;7) = DER(t, ) (20:7) = Dich(t, ) (20:2), (7)t € I\;
a similar equality taking place for the functidn-) as well.

Finally, the integrability of the function — (h (t,-)); (20, Z) results from the fact that for
each sequenag, (-) having the form in[(2.14) the following relation is true:

(h (£, (20:7) = lim gu(0), (V)1 € I\,

and from Lebesgue’s Theorem of Dominated Convergence ([11, Theorem 8.2.16]) according to
which the inequalitieg (2.17) and the integrability of the functigsis), defined in ) imply
the integrability of the following limitim inf g,,,(¢) when this one exists a.p.t.(l). O

Remark 2.3. Except for some very particular cases, the property of “integral lipschitzianity” in
(2.8) seems to be compulsory in order to get the results in Lemra 2.2; principally, the property
(2.9) assures the fulfillment of the conditions in the form[of (R.11) which, in their turn, imply
the inequalities i (2.10). On the other hand, as one may easily check, property (2.8) is implied
in more restrictive hypotheses, but it may be more easily checked, as in the case of condition
(2.8) in Lemmd 21: there is > 0, k(-) € L; (I;Ry) andl, C I, of zero Lebesgue measure,
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such thatZ, = B, (z9) C R"and for each € I\ Iy, z € Z, the functionk (¢, -) is differentiable
in the pointz and its derivative verifies the following inequality:

(220) ||D2h(t, 2)” S k’(t)7 (V)t S ]\]0, A Z[) = BT(Z()).

In this case, by using the measurability property of the derivative and the evident relations:

h(t,z) — h(t, z) = /0 Doh(t, 20+ s(z — 20)) (2 — 20), (V) 2z € Zy,

by (2.20) it results the radial lipschitzianity property[in (2.8) follows. As a consequence, Lemma
[2.2 represents a generalization of Lenjma 2.1 from the following points of view: the set of the
parametersZ, is not necessarily scalar and opefy = («, 5)) C R in Lemma[2.1, and the
functionsh (t,-) , t € I, are not necessarily differentiable, not even at the fixed pgirt 7.

3. THE MAIN RESULTS

We are going to extend the result in Lemmd 2.2 to the case of the Lebesgue integral whose in-
tegrand and integrability interval depend on parameters. We need some notions and preliminary
results for this particular purpose.

Let Ly be the family of the subsets of zero Lebesgue measuRedndh(-) € L¢(I,R) a
given function. Then we define tlessential right superior limiandessential left inferior limit
of the functioni(-) at the pointt € I, by following relations:

(3.1) esslimsuph(t) := inf inf sup h(s);
s—ty Q e>0 J€Lo st t+e)\J (5)

esslim infh(t) ;= sup su inf  h(s).
s—t_ ( ) 5>%) Je[li) sE[t,t—l—e)\J ( )

Similarly, we can definezss lim suph(s), essliminfh(s).

s—t_ s—ty

Lemma 3.1.If I C Ris an interval andh(-) € L'¢(I,R) then the following inequalities are
true:

1 t+6 1 t+0
(3.2) essli:&n infh(t) < liminf 5/ h(s)ds < limsup 5/ h(s)ds < esslimsuph(t).
t ¢

St 6—0+ 6—04 s—t4

Proof. Lett € I ande > 0 such thatlt,t + ) C I, let J € L, such that/ C I and let

aeg:= sup h(s), a:= inf a.;, a:=inf a.. Sinceh(s) < a. 5, (V)s € [t,t +¢)\J, we
s€[t,t+e)\J J€Lo e>0
have that:
1 t+e
(33) g/t h(S)dS S Jlél[f:o Qe J = Q.

Sinceh(-) is essentially bounded, then is finite; hence by the fact that the functiern- a. is

increasing (which means thatip a. = as), and by EF), we have that:
€€(0,0)

1 t+6 1 t+o
limsup—/ h(s)ds := inf sup —/ h(s)ds
50 0 ) (%) 0>0c¢(0,6) 0 Ji )

<inf sup a.
6>0 €€(0,9)

= inf a. =a,
€€(0,9)
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thus, we have established the following inequality:

1 t+9
lim sup —/ h(s)ds < esslimsup h(t).
t

0—04 s—ty

We can similarly establish other inequalities in the text. O

Lemma 3.2. Leta(:) : Z C R* — R, (:) : Z C R" — R be the given functions ang € Z
such that there i$im, .., a(-) = ap € R andg(-) is bounded on a neighborhood of the point
zo. Then the following relations are true:

aplimsupf (z),if a >0

(3.4) limsup [« (2) B (2)] = 220

P apliminff (z), if « <0,

Z—20

apliminff (z),ifa >0

(3.5) liminf [ (2) B (2)] = s

PN aplimsupf (z), if a < 0.

z—20

Proof. Some more steps are necessary in order to prove the reldtions (3.4) and (3.5).

(1) If a € RandB C R is nonempty bounded set, then we have that:
ainf B, if a >0 asupB,ifa >0

(36) inf (CLB) = sup (CLB) =

asup B, if a <0, ainf B, if a < 0.

Indeed, ifa = 0 the equalities in(3]6) are obvious. In the case 0, from the fact that
inf B <b, (V)b € B, itfollows thatainf B < ab, (V)b € B, which shows that inf B
is a minorant of the setB, henceninf B < inf(aB).

On the other hand, for each > 0, there isb. € B, such thath. < inf B + ¢/aq;
it results: ab. < ainf B + ¢, henceinf(aB) < ab. < ainf B + . Sincee > 0 is
arbitrary it follows thatinf(aB) < ainf B. Therefore, fora > 0, from the inequalities
ainf B < inf(aB), inf(aB) < ainf B, we deduce the fact thaif(aB) = ainf B.

In the case: < 0, we have:

inf(aB) = inf[(—a)(—B)] = —ainf(—B) = —a(—sup B) = asup B;

hence, the first equality i (3.6) is established. The second equality may be similarly
established.

(2) If for a sequence of real numbsdts,, ), we denote by (u,,) the set of its limit points,
defined by:

(3.7)  L(um)={u€R;(3)(un,), subsequence of the sequeeg),, : uy, — u},

then for every two sequences of real numbers),, , (ym),, such thate,, — = € R
and(y,,),, is bounded, the following equality is true:

(3.8) L (xmym) = 2L (ym) -

Indeed, ifz,, — 0, then from the fact that the sequengg,),, is bounded, it results
that z,,y,, — 0, henceL (z,,y,) = {0} = 0.L(y,,). Therefore, we suppose that
r, — x € R\{0} and we consider an elemeatec L (z,,y,); then, according to
the definition [(3.J7), there is the subsequengg.y,,, — u, as a consequence, since
T, — x, it results thaty,, — % € L(y.), henceu = z% € xL(yn); thus, we
have established the inclusidnz,,y.,) C =L (y,,) . Vice versa, ifu € xL (y,,), then,
according to the definitior} (3.7), there is a subsequépge), of the sequencéy,,),,
such thay,,, — % € L (y,,) . I for the subsequendg,,, ), we choose a corresponding
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subsequencer,,, ), of the sequencer,,),,, thenz,,, .y, — x* = u which shows that
u € L(znyn). Therefore, it has established the inclusibiz,,y,,) 2 =L (y,,) and

thus the relatior (3]8) is proved.
(3) If (z1),,, (ym),, are sequences of real numbers such that— = € R and(y,,),, is

bounded, then the following relations are true:

zlimsup (ym) , if 2 >0
(3.9) lim sup (2,,Ym) = olim inf (Ym) , If <0,

zlimsup (y,,) , if © <0,

m—00

(3.10) liminf (z,,ym) =

m—00

{ zliminf (y,,),if 2 >0

Indeed, ifz,, — 0, then, sincgy,,),, is bounded sequence, it results thaty,, — 0
and thus the equalitief (3.9) and (3.10) are obvious. Therefore, we supposg, that
z € R\{0}; then forz > 0, from (3.8) and from[(3]8), we have that:

lim sup (2,,Ym) := sup L (TmYm)

= sup[zL (Ynm)]
=zsup L (y,,) = xlimsup y,,,

and ifr < 0 we have that:

lim sup (2, Ym) == sup L (ZmYm)

= sup[zL (Ym)]
= zinf L (y,,) = xliminfy,,,

hence the equality (3.9); we get to the equality (B.10) by a similar procedure.

(4) According to the results previously established, we prove the relafionjs (3.4), (3.5). In-
deed, iflim,_,., a(z) = 0 then, from the fact tha#(-) is bounded in a neighborhood
of the pointz,, we have thatim, .., a (2) 8 (z) = 0 and the equalitie$ (3.4), (3.5) are
obvious. Therefore, we suppose thai._.., « (z) = oy € R\{0}. In case thaty, > 0,
according to the equalities (3.6), (3.9) we have that:

limsup [« (2) 6 (z)] = sup {lim sup @ (zm) B (2m) 3 2m — 20, 2m € Z\{20}, (V) m € N}

zZ—20 m— oo

= sup {ao limsup 3 (zm) ; 2m = 20, 2m € Z\{20}, (V) m € N}

m—00

= agsup {limsupﬁ(zm) s 2m — 20, 2m € Z\{20}, (V) m € N}

m—00

= aglimsup G (z),

z—20
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and if g < 0, we have that:

limsup [« (2) 5 (z)] = sup {lim supa (2m) B (2m) ; 2m — 20, 2m € Z\{20}, (V) m € N}

Z—Z0 m—00

= sup {ao lminf5 (zm); 2m — 20, 2m € Z\{20}, (V)m € N}

m—0o0

= Qg sup {liminfﬁ (2m) ;2m — 20, 2m € Z\{20}, (V) m € N}
= apliminff (2),
z—20
hence, the equality (3.4) is established. The equdlity (3.5) can be established in a similar
procedure.
O
Now we are able to present a generalization of the result in Lemma 2.2 to the case of the

Lebesgue integral whose integrand and integrability interval depend on the parameters.

Theorem 3.3.Let/ C R be aninterval,Z C R* andg (-,-) : I x Z — R a function with the
following properties:

(1) g(,2) € LE(LR), (V) 2 € Z;
(2) For eachz € Z, there isk.(-) € L'°¢(I; R, ) andr > 0 such that:
(3.11) 9(s,y) = g(s,2)| < k() [ly — 2l (V)y € Be(2) N Z, ap.t.(]).

Leta(-) : Z — I, b(:) : Z — I be contingent differentiable functions atc Z in direction
z € K*Z such thata(z) < b(z) and let:

( a}%(z;?)essil(il{ginfg(s, 2),ifat(2;,2) > 0
(3.12) a* (2;2) ==
a}t{(z;i)esslir?)supg(s, 2),if a(2;2) <0,
\ S—alz F
( a[i((z;i)esslir(n)supg(s, 2),ifaz(2;2) > 0
s—a(z)+
(3.13) A*(2;2) =
az(z;%)ess li]([n)infg(s, 2),if ax(2;2) <0,
sS—alz F
( b}i(z;%)esslir(lrl)supg(s, 2),if b5(2;2) > 0
- s—a(z)+
(3.14) B (%) =
b,i((z;E)essli{n)infg(s, 2),if b (2;2) <0,
\ S—alz F
( bi(z;?)eiﬂiginfg(s, 2),if b5(2;2) > 0
(3.15) B* (2,7) .=
bz (2;7)ess liI(n)supg(s, 2),if b (2;2) < 0.
L s—a(z)x

Then, forany: € Z andz € K*Z, the functionG(-) : Z — R, defined by:

b(z)
(3.16) G(z) ::/ g(s,2)ds, z € Z,
a(z)
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verifies the inequalities:

b(z)
(3.17) B (57) = A5 (52)+ | Diols. ) (52)ds
a(z)
< DEG(2; %)
< DrG(27)
—+ —t b=
<SB (%7) - A (72)+ Dieg(s,-) (2;%) ds.

a(z)

Proof. Letz € Z andz € K*Z; from the definition[(2.8) of the extreme contingent derivatives
and from definition[(3.16) of the functiafi(-), we have that:

(3.18) Ef{G(Z;E) = limsup Gz +0v) - G(2)

(0,0)—(0+2) 0
b(2) Ov) —
iy [ [0z 00,
(0,0)—(0+.2) | Ja(2) 0

1 b(z+6v) 1 a(z+6v)
+ - / g(s,z + 0v)ds — — / g(s,z + 0v)ds
0 Ju) 0 Ja(z)

b(2) Ov) —
[tz g,
a(z) 0

< limsup
(evv)_’(OJﬁ ,E)

1 b(z+6v)
+ limsup —/ g(s, 2+ 0v)ds
(0,0)=(0+.,2) ¥ Jb(z)
1 a(z+6v)

— liminf —/ s,z + 0v)ds
0.0) =020 oz 4l )

Under the conditions (1) and (2) from the hypothesis of the theorem, we can apply Lenima 2.2
to obtain that:

b(z) o0 — be)
(3.19) lim sup / 9(s,2400) = 9(s2) ds < / D;g(s, ) (2;%) ds.
(0.0)—(0+2) Ja(z) 0 a(2)
We are now going to prove that:
1 b(z+6v) .
(3.20) lim sup —/ g(s,z+0v)ds < B (z;Z).
(0,0)—(0+,2)V Jb(2)

First we are going to establish the following equality:
b(z+6v) b(z+06v)
(3.21) lim sup / g(s,z+ 0v)ds = limsup / g(s, z)ds.
(0.0)—(01.2) Jb(z) (0.0)—(04.2) Jb(2)

Indeed, if we take into account the fact that v — z when(0,v) — (0., %), then, from the
condition (2), from the hypothesis, we deduce that there exist$ such that:

lg(s,2 4+ 0v) — g(s,2)| < k.(s)0|v||, MveDB.(Z)NZ, 0<0<r, ap.t(l),
hence
(3.22) lg(s, z+ 0v) — g(s,2)| < k()8 (|Z]| +7), 0< 0 <7, a.p.t(]).
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Therefore, from[(3.22) and the fact thidt + 6v) — b(z) when(0,v) — (0,,%) , we have that:

1 (z+6v)
5[ otz 00) — gls.2)as
0 b(z)

lim sup
(071})—>(0+ 75)

1 b(z+6v)
< limsup —/ lg(s, z 4+ 0v) — g(s, z)| ds
0.0)—(0+.2) 0 Joz)

1 b(z+6v)
< limsup - / k.(s)0 (|[Z]] +r)ds
(0,0)—=(04,2) b(z)

b(z+6v)
~ limsup / ka(s) (2] + 1) ds
(0,v)—(04,2) Jb(2)

=0,

hence, by using the absolute continuity of the Lebesgue integral and the falgtthatv) —
b(z) when (6,v) — (04,%), we deduce the relatiof (3]21). Furthermore, from the relation
(3.21) we have that:

b(z+6v)
(3.23) lim sup —/ g(s,z+ 6v)ds
0.0)—(01,2) 0 Ji(z)

(z+6v)
= limsup —/ g(s, z)ds
b(

(0,v)—(0+,%) z)
1 b(z+6v)
ds| .
b(z + 0v) — b(2) /b(z) 9(s, 2)ds

b(z+ 0v) — b
= limsup (z+6v) (2)
(0,0)—(0+) 0

We consider the functions:

bz +0v) —b(2) - 1 b(=+60)
a(f,v):= 7 , B(0,v) = bz 00 ) /b(z)

as well and we note on one hand that, sibiceis contingent differentiable at the point Z in

the directiorz € K, then there exist: limsup « (0, v) = bj.(2; %) and this limit is finite; on
(9,’!})—>(0+,E)

the other hand, by the hypothesis of Theo@ 3.3 we haveythat) € L°(I;R), (V) z € Z,

such that, on the basis of Lemina|3.2, we have that:

g(s, z)ds

essliminfg(s, 2) § hmmf B(0,v) < limsup B(0,v) < esslimsupg(s, 2),
s—b(2)+ —(0+.2) (0.0)—(01.2) s—b(2) +

hence, we deduce that the functigi) is bounded in a neighborhood of the poffit z) .
Therefore, from[(3.14) and fror (3]23) we obtain that:

1 b(z+6v)
limsup = / g(s,z 4+ 0v)ds = limsup [« (6,v) 3 (0,v)]
(0,v)—(0+,2) b(z) (0,v)—(04,2)

bi(2;%Z) limsup B3(6,v),if bj(2;%z) >0
(va)_)(OJrvE)

b (2%) liminf B(6,v),if bE(2;%) <0,
(6,0)—(04.,%)

hence, from Lemmja 3.2, we get the inequality (B.20).

J. Inequal. Pure and Appl. Math3(4) Art. 64, 2002 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

ON DIFFERENTIABILITY WITH RESPECT TOPARAMETERS OF THELEBESGUE INTEGRAL 11

Following an analogous argument with the previous one we prove that:
1 a(z+6v) .
3.24 lim inf —/ s, z+0v)ds > A (z;Z).
(3.24) oimint g [ glez ) (7)

From the inequalities in (3.19], (3]20) afnd (3.24), the inequality in {3.18) implies the following
inequality:

o b(z)
(3.25) D;G(Z;E) <B"' (2;2) — A (2;2) + /( | D;r{g(s, ) (2;2) ds.

Since the left variant (foD .G (z; Z)) of the inequality ) and the similar inequalities which
contain the lower contingent derivatives results in the same way, the theorem is proved.

As to different types of variants of Theor¢m 3.3 which are going to be obtained taking into
account the hypothesis 1) and 2) we are going to deal with only two, which are contained in the
following statement:

Corollary 3.4. Let/ C Rbeanintervaly C R", Z C Rx Y,andg(-,-): B:=1xZ —- R
a function that satisfies condition 2) from Theofenj 3.3 and suchythat) is regulated §(-, z)
has one-sided limits at each point and at most a countable number of discontinuities, all of the
first kind), (V) = € Z. If, for any (¢,2) := (t,7,y) € B, ({,z) := ({,7,7) € Kéﬁz)B, we

consider:
tg(te,z),f7>0
A* ((t, 2); (f,?)) =

BE((1,2);(7,72)) = _
Tg (ts, 2),if T <O,

then, the following are true:
(i) For any (t,z):=(t,7,y) € B, (1,z) = ({,7.7) € KéZ)B, the functionG(-,-) : B —
R, defined by:

(3.26) Glt,2) = /t " (s, 2)ds
verifies the inequalities:
B* ((t,2);(t,2)) — A* ((t,2); (£,7)) +/tTQ}t<g(s,-) (2;2) ds
< DEG (2): (7)) < DEG (123 (7.2)
< B* ((t.2): (1.2)) — A* (1, 2): (1.2)) + / "Ditg(s, ) (2:7) ds.

(i) Ifthe functionsy(t, -) are contingent differentiable atc 7 in the directiornz € K(t A

then functions — (g(s,-)) (z,%) is Lebesgue integrable and the functi6i-, -),
defined by[(3.26), is contlngent differentiable(atz) := (¢,7,y) € B, in direction
(t,2) :== (t,7,y) € K( B, and its contingent derivative is given by:

(@) ((t,2); (1.2)) = B* ((t.2); (£.2)) — AT ((t,2); (£,2)) + /t (9(s,) (%) ds.
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Proof. We consider the functio&'(-) : B — R, defined by:

’e)
G(() == /(g) g(s,2)ds, ¢ :=(t,2z) € B

and we apply the Theorem 3.3 to the particular case for whigh) = ¢, b(¢) = 7, and
g(s,¢) =g(s,z2),if (:= (t,2) € B, by taking into account, at the same time, the fact that, in
case, on the one handy; (¢,() =1, b% ((,.¢) =7, (V)¢ € K(j,;z)B, and, on the other hand,

the fact that, as the functiong-, z), z € Z, are regulated (i.eg(-, z) has one-sided limits at
each point and at most a countable number of discontinuities, all of the first kind), hence locally
bounded, then froni (3.1) we have that:

esslimtinfg(s, z) = esslimsupg(s, z) = g(t+, 2), (V)z € Z.
s—t4

s—t4
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