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ABSTRACT. In this paper, we establish first-order optimality conditions for the problem of min-
imizing a functionf on the solution set of an inclusion0 ∈ F (x) wheref and the support
function of a set-valued mappingF are epi-differentiable atx.
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1. I NTRODUCTION

It is well known that epi-convergence of functions is coming to the fore as the correct concept
for many situations in optimization. The strong feature of epi-convergence is that it corresponds
to a geometric concept of approximation much like the one used in classical differential analysis
(see [2]). Derivatives defined in terms of it therefore have a certain “robustness” that can be
advantageous. Our principal objective is to give necessary and sufficient optimality conditions
of type Ferma for the optimization problem

(P ) Maximizef(x) subject to0 ∈ F (x)

wheref is a function from a reflexive Banach spaceX into R ∪{+∞} andF is a set valued
map defined fromX into another reflexive Banach spaceY.
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2 T. AMAHROQ, N. GADHI , AND H. RIAHI

The organization of the paper is as follows. Section 2 contains basic definitions and prelim-
inaries that are widely used in the sequel. In Section 3 we study the epi-differentiability of the
support function ofF defined byCF (y∗, x) := infy∈F (x) 〈y∗, y〉 for everyy∗ ∈ Y ∗. Section 4 is
devoted to the optimality conditions and also for an application in mathematical programming
problems.

2. PRELIMINARIES

Let F be a mapping defined inX with nonempty, closed and convex values inY, and letX∗

be the topological dual ofX.
In all the sequel, we denote the domain ofF and its graph by, respectively,

Dom(F ) := {x ∈ X : F (x) 6= ∅} ,

Gr(F ) := {(x, y) ∈ X × Y : y ∈ F (x)} .
Let us recall some definitions.

Definition 2.1. A set-valued mappingF is said to be locally Lipschitz atx if there existsα > 0
andr > 0 such that

F (x) ⊂ F (x′) + α ‖x− x′‖BY

for all x andx′ in x+ rBX , whereBX indicates the unit ball centered at the origin in spaceX.
LetA be an arbitrary nonempty subset ofX. The notions of contingent cone and tangent cone

toA at a pointx ∈ A will be used frequently in this paper.
The contingent cone toA atx is

K (S, x) := {v ∈ X : ∃ (tn) ↘ 0, ∃vn → v : x+ tnvn ∈ S, ∀n} .

The tangent cone toA atx is

k(A, x) :=
{
v ∈ X : ∀tn → 0+,∃vn → v x+ tnvn ∈ A ∀n

}
.

Definition 2.2. A set-valued mapF is said to be proto-differentiable at(x, y) ∈ Gr(F ) if the
contingent coneK(Gr(F ), (x, y)) coincides with the tangent conek(Gr(F ), (x, y)).

The proto-derivative is thus the set-valued map denoted byDFx,y, the graph of which is the
common set

Gr(DFx,y) = K(GrF, (x, y)) = k(GrF, (x, y)).

For more details, see [1] and [9].

Lemma 2.1. LetF be a Lipschitz set valued map atx andy ∈ F (x), one has

i) lim sup
(t,v)→(0+,v)

DtFx,y (v) = lim sup
t→0+

DtFx,y (v) ,

ii ) lim inf
(t,v)→(0+,v)

DtFx,y (v) = lim sup
t→0+

DtFx,y (v) ,

iii ) lim
(t,v)→(0+,v)

DtFx,y (v) = lim sup
t→0+

DtFx,y (v) ,

withDtFx,y (v) = t−1(F (x+ tv)− y).

Proof. i) The inclusion” ⊃ ” is trivial. Let us prove the opposite inclusion. Consider any
w ∈ lim sup

(t,v)→(0+,v)

DtFx,y (v) , there exists(tn, vn, wn) → (0+, v, w) such thaty + tnwn ∈

F (x+ tnvn) . As F is Lipschitz atx, there existsn0 ∈ N such that for anyn ≥ n0 one
has

F (x+ tnvn) ⊂ F (x+ tnv) + αtn ‖vn − v‖BY .

J. Inequal. Pure and Appl. Math., 4(2) Art. 41, 2003 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


OPTIMALITY CONDITIONS FOR ANEXTREMAL PROBLEM 3

Sincey + tnwn ∈ F (x+ tnvn) , there exist(w̃n) ⊂ Y and(bn) ⊂ BY such that for any
n ≥ n0 we gety+tnwn = y+tnw̃n+αtn ‖vn − v‖ bn andy+tnw̃n ∈ F (x+ tnv) . This
implies that(tn, w̃n) → (0+, w) andw̃n ∈ DtnFx,y (v) . Hencew ∈ lim sup

t→0+

DtFx,y (v) .

ii ) It suffices to prove thatlim sup
(t,v)→(0+,v)

DtFx,y (v) ⊂ lim inf
t→0+

DtFx,y (v) .

Let w ∈ lim sup
(t,v)→(0+,v)

DtFx,y (v) and lettn ↘ 0+. Then there existswn → w such

thaty + tnwn ∈ F (x+ tnv) . Considering a sequencevn → v; and using the Lipschitz
property ofF at x, there existn0 ∈ N, (w̃n) ⊂ Y and (bn) ⊂ BY such thaty +
tnwn = y+ tnw̃n + αtn ‖vn − v‖ bn andy+ tnw̃n ∈ F (x+ tnvn) for all n ≥ n0. Then
w̃n ∈ lim sup

t→0+

DtnFx,y(vn) with w̃n → w.

iii ) It is a direct consequence ofi) andii).
�

Proposition 2.2.LetF be a set valued map fromX intoY and(x, y) ∈ Gr(F ). If F is Lipschitz
at x thenF is proto-differentiable at(x, y) with a proto-derivativeDFx,y (v) if and only if for
everyv ∈ X

DFx,y (v) = lim sup
t→0+

DtFx,y (v) exists.

Proof. i) Fix (v, w) ∈ K(GrF, (x, y)). There exists(tn, vn, wn) → (0+, v, w) such that
wn ∈ DtnFx,y (vn) ; that isw ∈ lim inf

(t,ṽ)→(0+,v)
DtFx,y(ṽ). Using Lemma 2.1 one hasw ∈

lim inf
(t,ṽ)→(0+,v)

DtFx,y(ṽ). Consequently, for any(tn, ṽn) → (0+, v) there existsw̃n → w

such that(x, y) + tn(ṽn, w̃n) ∈ Gr(F ). This implies that(v, w) ∈ k(GrF, (x, y)), and
hence the proto-differentiability ofF at (x, y).

ii ) Fix w ∈ lim inf
t→0+

DtFx,y (v) and lettn ↘ 0. From Lemma 2.1, one hasw ∈ lim sup
(t,v′)→(0+,v)

DtFx,y (v′) and consequently(v, w) ∈ K(GrF, (x, y)). Thus by proto-differentiability
(v, w) ∈ k(GrF, (x, y)). Then there exists(vn, wn) → (v, w) such thaty + tnwn ∈
F (x+ tnvn). Using the Lipschitz property ofF at x, there exists̃wn → w such that
w̃n ∈ DtnFx,y (v) . Hencew ∈ lim sup

t→0+

DtFx,y(v); and the proof is finished.

�

In order to define the epi-derivative, as introduced by Rockafellar [8], let us recall the notion
of epi-convergence and some of its main properties; for more details see [8].

A sequence of functionsϕn from X into R ∪ {+∞} is said to beτ -epi-converging for a
topologyτ fromX, and we denote byτ -elmϕn its τ -epi-limit, if the two following conditions
hold  ∀ xn

τ−→ x ϕ(x) ≤ lim sup
n→+∞

ϕn(xn),

∃ xn
τ−→ x ϕ(x) ≥ lim sup

n→+∞
ϕn(xn).

A family of functions(ϕt)t>0 is said to be epi-converging toϕwhent↘ 0, if for every sequence
tn ↘ 0, the sequence of functions(ϕtn) epi-converges toϕ.

Whens designs the strong topology ofX andw its weak sequential topology, a sequence
of functions(ϕn) is said to be Mosco-epi-converging toϕ if (ϕn) s-epi-converges andw-epi-
converges toϕ, that is

∀vn
w→ v ϕ (v) ≤ lim inf ϕn (vn) ,

∃vn → v ϕ (v) ≥ lim supϕn (vn)
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4 T. AMAHROQ, N. GADHI , AND H. RIAHI

Finally, recall that a sequence of subsets(Cn) τ -converges in the sense of Kuratawski-Painlevé
to another subsetC if the indicator functionsδCn of Cn τ -epi-converge toδC . Note, see [2],
that if X is reflexive and(Cn), C is a sequence of closed convex subsets, then(Cn) Mosco-
converges toC if and only if d(x,Cn) → d(x,C) for all x ∈ X.

Let f be a function defined fromX into R ∪ {+∞} , finite at a pointx. The functionf is
(Mosco-) epi-differentiable atx if the difference quotient functions

(∆tf)x (·) := t−1 (f(x+ t·)− f(x)) ; t > 0,

have the property that the (Mosco-) epi-limit functionf
′
x exists andf

′
x(0) > −∞. Note that the

epigraph off
′
x is the proto-derivative of the epigraph off at (x, f(x)).

By ∂ef(x), the epi-gradient off at x, we denote the set of all vectorsx∗ ∈ X∗ satisfying
f

′
x(v) ≥ 〈x∗, v〉 for all v ∈ X.

3. EPI-DIFFERENTIABILITY OF THE SUPPORT FUNCTION OF A SET-VALUED

M APPING

In the remainder of this paper we assume thatX is reflexive and we denote byδ∗A(·) the
support function of a subsetA of X

δ∗A(x∗) := sup
x∈A

〈x∗, x〉 for everyx∗ ∈ X∗.

It is easy to see that for two subsetsA andB of X

δ∗A+B(·) = δ∗A(·) + δ∗B(·),

A ⊂ B =⇒ δ∗A(·) ≤ δ∗B(·),
and ifA andB are closed convex then the last implication is an equivalence.

For the following,

• F will be a set-valued mapping fromX into Y with a closed convex set-values.
• NF (x)(y) designs the normal cone toF (x) aty ∈ F (x), i.e.

NF (x)(y) := {y∗ ∈ Y ∗ : 〈y∗, y − y〉 ≤ 0 for all y ∈ F (x)}
=

{
y∗ ∈ Y ∗ : 〈y∗, y〉 = δ∗F (x)(y

∗)
}
.

• We denote byY ∗F :=
{
y∗ ∈ Y ∗ : δ∗F (x)(y

∗) < +∞
}

the barrier cone ofF. It is easy to

prove that whenF is locally Lipschitz, see [5], the setY ∗F does not depend onx.

Definition 3.1. A function f : X → R ∪ {+∞} is said to be (Mosco-) epi-regular atx if the
(Mosco-) epi-derivative off exists atx and coincides with the directional derivative off atx.

Lemma 3.1. Let (x, y) ∈ GrF. Suppose thatF is Lipschitz atx, then the functionψt (v) :=
δ∗DtFx,y(v)(y

∗) is equi-locally Lipschitz.

Proof. Fix v ∈ X. AsF is Lipschitz atx, there existα > 0 andr > 0 such that for anyt ∈ ]0, r]
and anyv, v′ ∈ v + rBX

F (x+ tv) ⊂ F (x+ tv′) + αt ‖v − v′‖BY .

Consequently(DtF )x,y(v) ⊂ (DtF )x,y(v
′) + α ‖v − v′‖BY . Hence

|ψt (v)− ψt (v′)| ≤ α ‖y∗‖ ‖v − v′‖
for anyt ∈ ]0, r] and anyv, v′ ∈ v + rBX .

The proof is thus complete. �
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Proposition 3.2. Let (x, y) ∈ GrF. Suppose thatY is reflexive and that for every sequence
tn ↘ 0

(3.1) d (·, DtnFx,y (v)) −→ d (·, DFx,y (v)) .

Then:

i) the set-valued mapNDtnFx,y(v) graph-converges toNDFx,y(v),
ii ) there existsw ∈ DFx,y (v) , y∗ ∈ NDFx,y(v) (w) , wn ∈ DtnFx,y (v) and y∗n ∈

NDtnFx,y(v) (wn) such that(wn, y
∗
n) −→ (w, y∗) andδ∗DtnFx,y(v)(y

∗
n) −→ δ∗DFx,y(v)(y

∗).

Motivated by the article of Demyanov, Lemaréchal and Zowe [4], where the authors approx-
imateF under the assumption that

δ∗DFx,y(·)(y
∗) := lim

t↘0,h→d
t−1

(
δ∗F (x+th)(y

∗)− δ∗F (x)(y
∗)

)
exists (as an element ofR) for everyy∗ ∈ Rp, we give in Theorem 3.3 sufficient conditions
insuring the existence of this derivative.

Theorem 3.3. Let (x, y) ∈ GrF. Suppose thatY is reflexive,F is directionally Lipschitz atx
and thatNF (x)(y) 6= ∅. Suppose also that the condition (3.1) is satisfied for eachv and that the
functionδ∗DtnFx,y(v)(·) is equi-Lipschitz. i.e.∃β ≥ 0 such that

δ∗Cn(v)(y
∗
n) ≥ δ∗Cn(v)(y

∗)− β ‖y∗n − y∗‖ .

Then for ally∗ ∈ NF (x)(y), the functionf(x) := δ∗F (x)(y
∗) = sup

y∈F (x)

〈y∗, y〉 is epi-regular atx,

with δ∗DFx,y(·)(y
∗) as its epi-derivative.

Proof. Let tn ↘ 0. By definition off one has

t−1
n [f(x+ tnv)− f(x)] = δ∗DtnFx,y(v)(y

∗).

SettingCn (v) := DtnFx,y (v) , C (v) := DFx,y (v) andΨn (v) := δ∗Cn(v)(y
∗), then condition

(3.1) permits us to conclude thatδCn(v) Mosco-converges toδC(v). Using Attouch’s theorem [2],
we conclude thatδ∗Cn(v) Mosco-converges toδ∗C . Hence

a) for anyy∗n
w∗
→ y∗ one hasδ∗C(v)(y

∗) ≤ lim inf δ∗Cn(v)(y
∗
n),

b) there existsy∗n
s→ y∗ such thatδ∗C(v)(y

∗) ≥ lim sup δ∗Cn(v)(y
∗
n).

Let us prove that
i) for anyvn → v one hasΨ (v) := δ∗C(v)(y

∗) ≤ lim inf Ψn(vn),

ii) there existsvn → v such thatΨ (v) ≥ lim sup Ψn(vn).

i) Let vn → v. From Lemma 3.1, there existsn0 ∈ N such that for anyn ≥ n0

Ψn(vn) ≥ Ψn(v)− α ‖y∗‖ ‖vn − v‖ .
Letting n → +∞ we getlim inf Ψn(vn) ≥ lim inf Ψn(v). Finally, using a), we have
lim inf Ψn(vn) ≥ Ψ (v) . The result is thus proved.

ii) Considering b), there existsy∗n
s→ y∗ such thatΨ (v) ≥ lim sup δ∗Cn(v)(y

∗
n). Since

δ∗Cn(v)(·) is equi-Lipschitz, there existsβ ≥ 0 such that

δ∗Cn(v)(y
∗
n) ≥ δ∗Cn(v)(y

∗)− β ‖y∗n − y∗‖ .

Hencelim sup Ψn(vn) ≤ Ψ(v). Moreover, sinceF is directionally Lipschitz atx on has

lim
t→0+

δ∗(DtF )x,y(v)(y
∗) = lim

(t,v′)→(0+,v)
δ∗(DtF )x,y(v′)(y

∗)
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Thus

δ∗(DF )x,y(v)(y
∗) = lim

t→0+
δ∗(DtF )x,y(v)(y

∗) = f ′x(v) = lim
t→0+

t−1[f(x+ tv)− f(x)].

The proof of the theorem is complete. �

Remark 3.4. When, instead of (3.1), we assume the Mosco-Proto-differentiability ofF at
(x, y) ∈ GrF ; we can justify the Mosco-epi-regularity off atx.

Indeed, suppose that there existsvn
w→ v such thatDtnFx,y (vn) does not Mosco-converge

to DFx,y (v) . Consequently, there existszn
w→ z such thatzn ∈ t−1

n (F (x+ tnvn)− y) and
z /∈ DFx,y (v) . Thus(vn, zn)

w→ (v, z) , (vn, zn) ∈ t−1
n (GrF − (x, y)) andz /∈ DFx,y (v) ;

which contradictsF Mosco-Proto-differentiable atx.

Theorem 3.5. Let f : X → R ∪ {+∞} be a function epi-differentiable atx and letg : X →
R ∪ {+∞} be a function epi-regular atx. Thenf + g is epi-differentiable atx.

Proof. Setting

an(v) := t−1[f(x+ tnv)− f(x)], bn(v) := t−1[g(x+ tnv)− g(x)]

and
cn(v) := t−1[(f + g)(x+ tnv)− (f + g)(x)].

i) Let vn
w→ v. Sincef andg are epi-differentiable atx, we have

lim inf
n→∞

cn(vn) ≥ lim inf
n→∞

an(vn) + lim inf
n→∞

bn(vn) ≥ a(v) + b(v).

ii) Sincef andg are epi-differentiable atx, there existv1
n

s→ v andv2
n

s→ v such that

b(v) ≥ lim inf
n→∞

bn(v2
n) anda(v) ≥ lim inf

n→∞
an(v1

n).

Consequently

lim inf
n→∞

cn(v1
n) ≤ lim inf

n→∞
an(v1

n) + lim inf
n→∞

bn(v1
n) ≤ a(v) + lim inf

n→∞
bn

(
v1

n

)
.

Using the epi-regularity ofg atx,

lim inf
n→∞

bn(v1
n) = lim inf

n→∞
bn(v2

n) = lim inf
n→∞

bn(v).

Then
lim inf
n→∞

cn(v1
n) ≤ a(v) + b(v).

The conclusion is thus immediate, that is,f + g is epi-differentiable atx. �

4. OPTIMALITY CONDITIONS

Fix y∗ ∈ Y ∗ and letCF (y∗, x) := inf
y∈F (x)

〈y∗, y〉 ,

NF (x)(y) = {y∗ ∈ Y ∗ : 〈y∗, y〉 = CF (y∗, x)}
and

Y ∗F = {y∗ ∈ Y ∗ : CF (y∗, x) > −∞} .
Let I(x) := {y∗ ∈ Y ∗F such thatCF (y∗, x) = dF (x)} . In particular, ifx ∈ C we haveI(x) :=
{y∗ ∈ Y ∗F such thatCF (y∗, x) = 0} . Consider, whenCF (y∗, ·) is epi-differentiable atx

DF (x) := {d ∈ X : ∀y∗ ∈ I(x), ∀x∗ ∈ ∂eCF (y∗, ·)(x) 〈x∗, d〉 ≤ 0}
and

HF (x) :=
{
d ∈ X : ∀y∗ ∈ I(x) C

′

F (y∗, ·)x̄ (d) ≤ 0
}
.
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Definition 4.1. x is said to be regular if there exist two realsλ, r > 0 such that

d(0, F (x)) ≥ λ d(x, F−(0))

for all x ∈ x+ rBX .

For everyx ∈ X, let dF (x) := d(0, F (x)).

Proposition 4.1. The following inclusions are always true

K(F−(0), x) ⊂ HF (x) ⊂ DF (x).

Proof. Let d ∈ K(F−(0), x). There exists(tn, dn) → (0+, d) such thatx + tndn ∈ F−(0).
Considery∗ ∈ I(x) andx∗ ∈ X∗ such thatC

′
F (y∗, ·)x̄ (v) ≥ 〈x∗, v〉 for all v ∈ X. All we have

to show is thatC
′
F (y∗, ·)x̄ (d) ≤ 0. Indeed, since0 ∈ F (x+tndn) we haveCF (y∗, x+tndn) ≤ 0.

ButCF (y∗, x) = 0, consequentlyC
′
F (y∗, ·)x̄ (d) ≤ lim inf

n→∞
t−1
n [CF (y∗, x+ tndn)−CF (y∗, x)] ≤

0. ThenC
′
F (y∗, ·)x̄ (d) ≤ 0 and〈x∗, d〉 ≤ 0. The proof is thus complete. �

The following lemma will play a very crucial role in the remainder of the paper.

Lemma 4.2. Let ∂dF be the Clarke subdifferential. We assumeF to have the following prop-
erties.

i. F is Lipschitz atx,
ii. ∂eCF (y∗, ·) (x) is upper semicontinuous (at(y∗, x)) whenX∗, Y ∗ are endowed with the

weak-star topology andX with the strong topology, that is, ifx∗n ∈ ∂eCF (y∗n, ·) (xn)

wherex∗n
w∗
→ x∗ in X∗, y∗n

w∗
→ y∗ in Y ∗ andxn → x in X, thenx∗ ∈ ∂eCF (y∗, ·) (x) .

Then
∂dF (x) ⊂ co {∂eCF (y∗, x) : y∗ ∈ I(x) ∩ B∗Y } .

Proof. To prove the lemma, we need the following result of Thibault [11].
Let h : X → R be a locally Lipschitzian function,H a subset ofX such thatX/H is Haar-

nul set and at everyx ∈ H, the functionh is Gateaux differentiable and has Gateaux differential
∇h (x) . Then we have

(1) h (x, v) = max {〈x∗, v〉 : x∗ ∈ LH (h, x)} for everyv ∈ X,
(2) ∂h (x) = {coLH (h, x)} ,

whereLH (h, x) =

{
lim sup

n→∞
∇h (xn) : xn ∈ H, xn → x

}
and the “limit ” of {∇h (xn)} is

in the weak* topology.
Now, from Christensen’s Theorem [3] applied to the locally Lipschitzian functiondF it fol-

lows that there exists a subsetM ⊂ X such thatdF is Gateaux differentiable onM andX/M
is a Haar-nul set.

For everyxn ∈M, y∗n ∈ I (xn) ∩ B∗Y , v ∈ X we have

〈∇dF (xn) , v〉 = lim
ε→0

dF (xn + εv)− dF (xn)

ε

≤ lim
ε→0

CF (y∗n, xn + εv)− CF (y∗n, xn)

ε

≤ lim sup
k→∞

CF (y∗n, xn + εkv)− CF (y∗n, xn)

εk

.

SinceCF is epi-derivable, there existsvk → v such that

C ′F (y∗n, ·)xn (v) ≥ lim sup
k→∞

CF (y∗n, xn + εkvk)− CF (y∗n, xn)

εk

.
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On the other hand,CF is α ‖y∗n‖-Lipschitz. Consequently

〈∇dF (xn) , v〉 ≤ lim sup
k→∞

CF (y∗n, xn + εkvk)− CF (y∗n, xn) + αεk ‖y∗n‖ ‖vk − v‖
εk

≤ C ′F (y∗n, ·)xn (v) + lim sup
k→∞

αεk ‖y∗n‖ ‖vk − v‖
εk

≤ C ′F (y∗n, ·)xn (v) .

Hence

(4.1) ∇dF (xn) ∈ ∂eCF (y∗n, ·)xn .

It is easily seen that the set-valued mapx 7→ I (x) ∩ B∗Y is upper semi-continuous. Moreover,
since∂eCF (y∗, ·) (x) is upper semicontinuous, the set valued-mapx 7→ G (x) defined by

G (x) := {x∗ : x∗ ∈ ∂eCF (y∗, x) andy∗ ∈ I (x) ∩ B∗Y }
is upper semi-continuous as well.

From (4.1), we have
LM (dF , x) ⊂ G (x) .

The lemma now follows from the second part of the mentioned result of Thibault and the com-
pactness of the setG (x) (in the weak topology). �

In the following, we give necessary optimality conditions of type Fermat. Throughout the
reminder of the paper, we assume that the functionf is epi-differentiable, the support func-
tion CF (z∗, ·) of the set valued-mapF is epi-differentiable and that∂eCF (y∗, ·) (x) is upper
semicontinuous.

Theorem 4.3. Consider problem (P ). Suppose also thatx is regular.
If x̄ is a solution of (P ) then

(4.2) f
′

x(v) ≤ 0

for all v ∈ DF (x).

We begin by giving an important lemma which we shall use later on.

Lemma 4.4. If x is regular then

HF (x) = DF (x) = K(F−(0), x̄).

Proof. All we have to show is thatDF (x) ⊂ K(F−(0), x̄). Let d ∈ DF (x) with d 6= 0.Without
loss of generality we can assume that‖d‖ = 1. As x is regular, we can fixr > 0 andλ > 0
such that

(4.3) dF (x) ≥ λd(x, F−(0))

for all x ∈ x+ rBX .
Let tn ↘ 0. Since∂dF (·) is upper semicontinuous, there existsrn > 0 such that

(4.4) ∂dF (x) ⊂ ∂dF (x) + tnλB

for all x ∈ x+ rnBX .
Settingµn := min (r, rn, tn) , and by Lebourg’s Mean value Theorem [7], we can assert that

for anyn ∈ N there existxn ∈ [x, x+ µnd] andx∗n ∈ ∂dF (xn) such that

dF (x+ µnd)− dF (x) = 〈x∗n, µnd〉 ≤ sup
y∗

n∈∂dF (xn)

〈y∗n, µnd〉 = µn sup
y∗

n∈∂dF (xn)

〈y∗n, d〉 .
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Observe thatxn ∈ [x, x+ µnd] ⊂ x+ rnB. From (4.4) we get

sup
y∗

n∈∂dF (xn)

〈y∗n, d〉 ≤ sup
y∗

n∈∂dF (x)

〈y∗n, d〉+ tnλ.

By virtue of Lemma 4.2,

∂dF (x) ⊂ co {∂eCF (y∗, x) : y∗ ∈ I(x) ∩ B∗Y }
and consequentlydF (x+µnd) ≤ µntnλ. Taking account of (4.3), we deduced(x+µnd, F

−(0)) ≤
µntn < 2µntn.

This implies the existence of a sequence(vn) such that forn large enough,x+µnvn ∈ F−(0)
and‖x+ µnd− (x+ µnvn)‖ = µn ‖vn − d‖ < 2µntn. Henced ∈ K(F−(0), x). This ends the
proof of the lemma. �

Proof of Theorem 4.3.Let v ∈ DF (x). By virtue of Lemma 4.4,v ∈ K(F−(0), x̄), hence there
exist (tn) ↘ 0 andvn → v such thatx + tnvn ∈ F−(0). Sincex is a solution of (P ), there
existsn0 ∈ N such that for anyn ≥ n0 f(x + tnvn) ≤ f(x). From the epi-differentiability of
f atx, one getsf

′
x(v) ≤ lim inf

n→∞
(∆tnf)x(vn) ≤ 0. The proof is thus complete. �

Remark 4.5. Without the regularity ofx, the proof of Theorem 4.3 permit to get

f
′

x(v) ≤ 0 ≤ C
′

F (y∗, ·)x̄ (v) for everyv ∈ K(F−(0), x̄) and everyy∗ ∈ I(x).
By virtue of the complexity ofF−(0), we were forced to adoptDF (x) instead ofK(F−(0), x̄)
in Theorem 4.3.

Theorem 4.6. Consider problem (P ) and let us assume thatdim (X) < +∞. Suppose thatx
is regular and thatf is Lipschitz atx.

Thenx̄ is a solution of (P ) wheneverf
′
x(v) < 0 for anyv ∈ DF (x)\ {0} .

Proof. Assume the contrary, that is, that the statement of Theorem 4.6 is not true. Then there
exists a sequence(xn) ⊂ F−(0) satisfyingxn → x andf(xn) > f(x) ∀n. Let tn := ‖xn − x‖
andvn :=

xn − x

tn
. Sincedim (X) is finite, there existsv ∈ X with ‖v‖ = 1 and a subsequence

noted another time(vn) such thatvn → v. From the epi-differentiability off atx, there exists
ṽn → v such that

f
′

x(v) ≥ lim sup
n→+∞

f(x+ tnṽn)− f(x)

tn
.

Settingan := t−1
n [f(x+ tnṽn)− f(x)] , bn := t−1

n [f(x+ tnvn)− f(x)] andcn := bn − an.
We have thatf is Lipschitz atx, lim sup

n→+∞
cn = 0 and thatbn ≥ 0; consequentlyf

′
x(v) ≥

lim sup
n→+∞

an ≥ lim sup
n→+∞

bn− lim sup
n→+∞

cn ≥ 0. This conflicts withv ∈ DF (x)\ {0} and the theorem

follows. �

f is said to be hypo-differentiable atx,with f ′h,x as its hypo-derivative, if−f is epi-differentiable
atx. In this casef ′h,x = −(−f)′x.

Theorem 4.7. Consider problem (P ) and let us assume thatdim (X) < +∞. Suppose thatx
is regular and thatf is hypo-differentiable atx.

Thenx̄ is a solution of (P ) wheneverf ′h,x(v) < 0 for anyv ∈ DF (x)\ {0} .

Proof. The argument is slightly similar to that used above, but we give it for the convenience of
the reader. Assume the contrary, that is, that the statement of Theorem 4.6 is not true. Then there
exists a sequence(xn) ⊂ F−(0) satisfyingxn → x andf(xn) > f(x) ∀n. Let tn := ‖xn − x‖
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andvn :=
xn − x

tn
. Sincedim (X) is finite, there existsv ∈ X with ‖v‖ = 1 and a subsequence

noted another time(vn) such thatvn → v. From the hypo–differentiability off atx,

(−f)
′

x (v) ≤ lim inf
n→+∞

(−f) (x+ tnvn)− (−f) (x)

tn
≤ 0.

Hencef ′h,x(v) ≥ 0. This is a contradiction sincev ∈ DF (x)\ {0} . �

As an application for the above results, we are concerned with the mathematical programming
problem

max f (x)(P ∗)

subject togi (x) ≤ 0 andhj (x) = 0

for all i ∈ {1, 2, . . . ,m} and allj ∈ {1, 2, . . . , k} .

LetC := {x : gi (x) ≤ 0, hj (x) = 0 for all i, j} . Let g (x) = (g1 (x) , g2 (x) , . . . , gm (x)) and
h (x) = (h1 (x) , h2 (x) , . . . , hk (x)). The problem (P ∗) reduces to (P ), where the set-valued
mappingF : X ⇒ Y = Rm × Rk is defined by

F (x) := (g (x) , h (x)) + Rm
+ × {0Rk} .

Obviously, in that caseY ∗F = Rm
+ × Rk and for anyy∗ = (λ, µ) ∈ Y ∗F we have

CF (y∗, x) = 〈λ, g (x)〉+ 〈µ, h (x)〉 .
It can be verified thatCF (y∗, x) = 0 if and only if λigi (x) = 0 for all i ∈ {1, 2, . . . ,m}.

ThenI(x) =
{
(λ, µ) ∈ Rm

+ × Rk : λigi (x) = 0 ∀i = 1, . . . ,m
}
, and consequently

HF (x) :=

{
v ∈ X : ∀ (λ, µ) ∈ I(x)

m∑
i=1

λig
′
ix (v) +

k∑
j=1

µjh
′
jx (v) ≤ 0

}
.

We deduce from Theorem 4.3 and Theorem 4.6 the following optimality conditions for problem
(P ∗).

Theorem 4.8. Let x be a solution of (P ∗). Suppose that the functionsf and hj are epi-
differentiable atx, the functionsgi are epi-regular atx and there existr > 0 and λ > 0
such that

(4.5) d(g (x) ,Rm
− ) ≤ λ d(x,C)

for everyx ∈ x+ rBX .
Then for anyv ∈ X such that∀ (λ, µ) ∈ Rm

+×Rk satisfyingλigi (x) = 0 and
∑m

i=1 λig
′
ix (v)+∑k

j=1 µjh
′
jx (v) ≤ 0 we have

f
′

x(v) ≤ 0.

Remark 4.9. The condition (4.5) ensures the regularity ofx.

Theorem 4.10.Suppose thatdim (X) <∞ and thatf is Lipschitz atx.
x will be a solution of (P ∗) if for any v ∈ X\ {0} such that∀ (λ, µ) ∈ Rm

+ × Rk, verifying
λigi (x) = 0 and

m∑
i=1

λig
′
ix (v) +

k∑
j=1

µjh
′
jx (v) ≤ 0,

we have
f

′

x(v) < 0.
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