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1. Introduction

Let (E, ‖·‖) be a normed linear space over the real or complex number fieldK. On
Kn endowed with the canonical linear structure we consider a norm‖·‖n and the unit
ball

B (‖·‖n) := {λ = (λ1, . . . , λn) ∈ Kn| ‖λ‖n ≤ 1} .

As an example of such norms we should mention the usualp−norms

(1.1) ‖λ‖n,p :=

{
max {|λ1| , . . . , |λn|} if p = ∞;

(
∑n

k=1 |λk|p)
1
p if p ∈ [1,∞).

TheEuclidean normis obtained forp = 2, i.e.,

‖λ‖n,2 =

(
n∑

k=1

|λk|2
) 1

2

.

It is well known that onEn := E × · · · × E endowed with the canonical linear
structure we can define the followingp−norms:

(1.2) ‖X‖n,p :=

{
max {‖x1‖ , . . . , ‖xn‖} if p = ∞;

(
∑n

k=1 ‖xk‖p)
1
p if p ∈ [1,∞);

whereX = (x1, . . . , xn) ∈ En.
For a given norm‖·‖n onKn we define the functional‖·‖h,n : En → [0,∞) given

by

(1.3) ‖X‖h,n := sup
(λ1,...,λn)∈B(‖·‖n)

∥∥∥∥∥
n∑

j=1

λjxj

∥∥∥∥∥ ,
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whereX = (x1, . . . , xn) ∈ En.
It is easy to see that:

(i) ‖X‖h,n ≥ 0 for anyX ∈ En;

(ii) ‖X + Y ‖h,n ≤ ‖X‖h,n + ‖Y ‖h,n for anyX, Y ∈ En;

(iii) ‖αX‖h,n = |α| ‖X‖h,n for eachα ∈ K andX ∈ En;

and therefore‖·‖h,n is asemi-normon En. This will be called thehypo-semi-norm
generated by the norm‖·‖n onXn.

We observe that‖X‖h,n = 0 if and only if
∑n

j=1 λjxj = 0 for any(λ1, . . . , λn) ∈
B (‖·‖n) . If there existsλ0

1, . . . , λ
0
n 6= 0 such that(λ0

1, 0, . . . , 0) , (0, λ0
2, . . . , 0) , . . . ,

(0, 0, . . . , λ0
n) ∈ B (‖·‖n) then the semi-norm generated by‖·‖n is anormonEn.

If by Bn,p with p ∈ [1,∞] we denote the balls generated by thep−norms‖·‖n,p

onKn, then we can obtain the followinghypo-p-normsonXn :

(1.4) ‖X‖h,n,p := sup
(λ1,...,λn)∈Bn,p

∥∥∥∥∥
n∑

j=1

λjxj

∥∥∥∥∥ ,

with p ∈ [1,∞] .
Forp = 2, we have the Euclidean ball inKn, which we denote byBn,

Bn =

{
λ = (λ1, . . . , λn) ∈ Kn

∣∣∣∣∣
n∑

i=1

|λi|2 ≤ 1

}
that generates thehypo-Euclidean normonEn, i.e.,

(1.5) ‖X‖h,e := sup
(λ1,...,λn)∈Bn

∥∥∥∥∥
n∑

j=1

λjxj

∥∥∥∥∥ .
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Moreover, ifE = H, H is a Hilbert space overK, then thehypo-Euclidean norm
onHn will be denoted simply by

(1.6) ‖(x1, . . . , xn)‖e := sup
(λ1,...,λn)∈Bn

∥∥∥∥∥
n∑

j=1

λjxj

∥∥∥∥∥ ,

and its properties will be extensively studied in the present paper.
Both the notation in (1.6) and the necessity of investigating its main properties are

motivated by the recent work of G. Popescu [9] who introduced a similar norm on
the Cartesian product of Banach algebraB (H) of all bounded linear operators onH
and used it to investigate various properties ofn−tuple of operators in Multivariable
Operator Theory. The study is also motivated by the fact that the hypo-Euclidean
norm is closely related to the quadratic form

∑n
j=1 |〈x, xj〉|2 (see the representation

Theorem2.2) that plays a key role in many problems arising in the Theory of Fourier
expansions in Hilbert spaces.

The paper is structured as follows: in Section2 we establish the equivalence of
the hypo-Euclidean norm with the usual Euclidean norm onHn, provide a repre-
sentation result and obtain some lower bounds for it. In Section3, on utilising the
classical results of Boas-Bellman and Bombieri as well as some recent similar results
obtained by the author, we give various upper bounds for the hypo-Euclidean norm.
These are complemented in Section4 with other inequalities betweenp−norms and
the hypo-Euclidean norm. Section5 is devoted to the presentation of some condi-
tional reverse inequalities between the hypo-Euclidean norm and the norm of the
sum of the vectors involved. In Section6, the natural connection between the hypo-
Euclidean norm and the operator norm‖(·, . . . , ·)‖e introduced by Popescu in [9] is
investigated. A representation result is obtained and some applications for opera-
tor inequalities are pointed out. Finally, in Section7, a new norm for operators is
introduced and some natural inequalities are obtained.
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2. Fundamental Properties

Let (H; 〈·, ·〉) be a Hilbert space overK and n ∈ N, n ≥ 1. In the Cartesian
productHn := H × · · · × H, for the n−tuples of vectorsX = (x1, . . . , xn),
Y = (y1, . . . , yn) ∈ Hn, we can define the inner product〈·, ·〉 by

(2.1) 〈X, Y 〉 :=
n∑

j=1

〈xj, yj〉 , X, Y ∈ Hn,

which generates the Euclidean norm‖·‖2 onHn, i.e.,

(2.2) ‖X‖2 :=

(
n∑

j=1

‖xj‖2

) 1
2

, X ∈ Hn.

The following result connects the usual Euclidean norm‖·‖with the hypo-Euclidean
norm‖·‖e .

Theorem 2.1.For anyX ∈ Hn we have the inequalities

(2.3) ‖X‖2 ≥ ‖X‖e ≥
1√
n
‖X‖2 ,

i.e.,‖·‖2 and‖·‖e are equivalent norms onHn.

Proof. By the Cauchy-Bunyakovsky-Schwarz inequality we have

(2.4)

∥∥∥∥∥
n∑

j=1

λjxj

∥∥∥∥∥ ≤
(

n∑
j=1

|λj|2
) 1

2
(

n∑
j=1

‖xj‖2

) 1
2
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for any (λ1, . . . , λn) ∈ Kn. Taking the supremum over(λ1, . . . , λn) ∈ Bn in (2.4)
we obtain the first inequality in (2.3).

If by σ we denote the rotation-invariant normalised positive Borel measure on the
unit sphere∂Bn

(
∂Bn = (λ1, . . . , λn) ∈ Kn

∣∣∑n
i=1 |λi|2 = 1

)
whose existence and

properties have been pointed out in [10], then we can state that∫
∂Bn

|λk|2 dσ (λ) =
1

n
and(2.5) ∫

∂Bn

λkλjdσ (λ) = 0 if k 6= j, k, j = 1, . . . , n.

Utilising these properties, we have

‖X‖2
e = sup

(λ1,...,λn)∈Bn

∥∥∥∥∥
n∑

k=1

λkxk

∥∥∥∥∥
2

= sup
(λ1,...,λn)∈Bn

[
n∑

k,j=1

λkλj 〈xk, xj〉

]

≥
∫

∂Bn

[
n∑

k,j=1

λkλj 〈xk, xj〉

]
dσ (λ) =

n∑
k,j=1

∫
∂Bn

[
λkλj 〈xk, xj〉

]
dσ (λ)

=
1

n

n∑
k=1

‖xk‖2 =
1

n
‖X‖2

2 ,

from where we deduce the second inequality in (2.3).

The following representation result for the hypo-Euclidean norm plays a key role
in obtaining various bounds for this norm:
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Theorem 2.2.For anyX ∈ Hn with X = (x1, . . . , xn) , we have

(2.6) ‖X‖e = sup
‖x‖=1

(
n∑

j=1

|〈x, xj〉|2
) 1

2

.

Proof. We use the following well known representation result for scalars:

(2.7)
n∑

j=1

|zj|2 = sup
(λ1,...,λn)∈Bn

∣∣∣∣∣
n∑

j=1

λjzj

∣∣∣∣∣
2

,

where(z1, . . . , zn) ∈ Kn.
Utilising this property, we thus have

(2.8)

(
n∑

j=1

|〈x, xj〉|2
) 1

2

= sup
(λ1,...,λn)∈Bn

∣∣∣∣∣
〈

x,
n∑

j=1

λjxj

〉∣∣∣∣∣
for anyx ∈ H.

Now, taking the supremum over‖x‖ = 1 in (2.8) we get

sup
‖x‖=1

(
n∑

j=1

|〈x, xj〉|2
) 1

2

= sup
‖x‖=1

[
sup

(λ1,...,λn)∈Bn

∣∣∣∣∣
〈

x,
n∑

j=1

λjxj

〉∣∣∣∣∣
]

= sup
(λ1,...,λn)∈Bn

[
sup
‖x‖=1

∣∣∣∣∣
〈

x,
n∑

j=1

λjxj

〉∣∣∣∣∣
]

= sup
(λ1,...,λn)∈Bn

∥∥∥∥∥
n∑

j=1

λjxj

∥∥∥∥∥ ,

since, in any Hilbert space we have thatsup‖u‖=1 |〈u, v〉| = ‖v‖ for eachv ∈ H.
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Corollary 2.3. If X = (x1, . . . , xn) is ann−tuple of orthonormal vectors, i.e., we
recall that ‖xk‖ = 1 and 〈xk, xj〉 = 0 for k, j ∈ {1, . . . , n} with k 6= j, then
‖X‖e ≤ 1.

The proof is obvious by Bessel’s inequality.
The next proposition contains two lower bounds for the hypo-Euclidean norm

that are sometimes better than the one in (2.3), as will be shown by some examples
later.

Proposition 2.4. For anyX = (x1, . . . , xn) ∈ Hn\ {0} we have

(2.9) ‖X‖e ≥


1

‖X‖2

∥∥∥∑n
j=1 ‖xj‖xj

∥∥∥ ,

1√
n

∥∥∥∑n
j=1 xj

∥∥∥ .

Proof. By the definition of the hypo-Euclidean norm we have that, if(λ0
1, . . . , λ

0
n) ∈

Bn, then obviously

‖X‖e ≥

∥∥∥∥∥
n∑

j=1

λ0
jxj

∥∥∥∥∥ .

The choice

λ0
j :=

‖xj‖
‖X‖2

, j ∈ {1, . . . , n} ,

which satisfies the condition(λ0
1, . . . , λ

0
n) ∈ Bn will produce the first inequality

while the selection

λ0
j =

1√
n

, j ∈ {1, . . . , n} ,

will give the second inequality in (2.9).
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Remark1. Forn = 2, the hypo-Euclidean norm onH2

‖(x, y)‖e = sup
(λ,µ)∈B2

‖λx + µy‖ = sup
‖z‖=1

[
|〈z, x〉|2 + |〈z, y〉|2

] 1
2

is bounded below by

B1 (x, y) :=
1√
2

(
‖x‖2 + ‖y‖2) 1

2 ,

B2 (x, y) :=
‖‖x‖x + ‖y‖ y‖(
‖x‖2 + ‖y‖2) 1

2

and

B3 (x, y) :=
1√
2
‖x + y‖ .

If H = C endowed with the canonical inner product〈x, y〉 := xȳ wherex, y ∈ C,
then

B1 (x, y) =
1√
2

(
|x|2 + |y|2

) 1
2 ,

B2 (x, y) =
||x|x + |y| y|(
|x|2 + |y|2

) 1
2

and

B3 (x, y) =
1√
2
|x + y| , x, y ∈ C.

The plots of the differencesD1 (x, y) := B1 (x, y) − B2 (x, y) andD2 (x, y) :=
B1 (x, y)−B3 (x, y) which are depicted in Figure1 and Figure2, respectively, show
that the boundB1 is not always better thanB2 or B3. However, since the plot of
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D3 (x, y) := B2 (x, y) − B3 (x, y) (see Figure3) appears to indicate that, at least in
the case ofC2, it may be possible that the boundB2 is always better thanB3, hence
we can ask in general which bound from (2.6) is better for a givenn ≥ 2? This is an
open problem that will be left to the interested reader for further investigation.
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Figure 1: The behaviour ofD1 (x, y)
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Figure 2: The behaviour ofD2 (x, y)
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Figure 3: The behaviour ofD3 (x, y)
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3. Upper Bounds via the Boas-Bellman and Bombieri Type
Inequalities

In 1941, R.P. Boas [3] and in 1944, independently, R. Bellman [1] proved the follow-
ing generalisation of Bessel’s inequality that can be stated for any family of vectors
{y1, . . . , yn}(see also [8, p. 392] or [5, p. 125]):

(3.1)
n∑

j=1

|〈x, yj〉|2 ≤ ‖x‖2

max
1≤j≤n

‖yj‖2 +

( ∑
1≤j 6=k≤n

|〈yk, yj〉|2
) 1

2


for any x, y1 . . . , yn vectors in the real or complex inner product space(H; 〈·, ·〉) .
This result is known in the literature as theBoas-Bellman inequality.

The following result provides various upper bounds for the hypo-Euclidean norm:

Theorem 3.1.For anyX = (x1, . . . , xn) ∈ Hn, we have

(3.2) ‖X‖2
e ≤


max
1≤j≤n

‖xj‖2 +

( ∑
1≤j 6=k≤n

|〈xk, xj〉|2
) 1

2

,

max
1≤j≤n

‖xj‖2 + (n− 1) max
1≤j 6=k≤n

|〈xk, xj〉| ;

(3.3) ‖X‖2
e ≤

[
max
1≤j≤n

‖xj‖2
n∑

j=1

‖xj‖2

+ max
1≤j 6=k≤n

{‖xj‖ ‖xk‖}
∑

1≤j 6=k≤n

|〈xj, xk〉|

] 1
2

http://jipam.vu.edu.au
mailto:sever.dragomir@vu.edu.au
http://jipam.vu.edu.au


Hypo-Euclidean Norm

S.S. Dragomir

vol. 8, iss. 2, art. 52, 2007

Title Page

Contents

JJ II

J I

Page 15 of 43

Go Back

Full Screen

Close

and

(3.4) ‖X‖4
e ≤


max
1≤j≤n

‖xj‖2
n∑

j=1

‖xj‖2 + (n− 1) ‖X‖2
e max

1≤j 6=k≤n
|〈xj, xk〉| ,

‖X‖2
e max

1≤j≤n
‖xj‖2 + max

1≤j 6=k≤n
{‖xj‖ ‖xk‖}

∑
1≤j 6=k≤n

|〈xj, xk〉| .

Proof. Taking the supremum over‖x‖ = 1 in (3.1) and utilising the representation
(2.6), we deduce the first inequality in (3.2).

In [4], we proved amongst others the following inequalities

(3.5)

∣∣∣∣∣
n∑

j=1

cj 〈x, yj〉

∣∣∣∣∣
2

≤ ‖x‖2 ×


max
1≤j≤n

|cj|2
n∑

j=1

‖yj‖2 ,

n∑
j=1

|cj|2 max
1≤j≤n

‖yj‖2 ,

+ ‖x‖2 ×


max

1≤j 6=k≤n
{|cjck|}

∑
1≤j 6=k≤n

|〈yj, yk〉| ,

(n− 1)
n∑

j=1

|cj|2 max
1≤j 6=k≤n

|〈yj, yk〉| ,

for any y1, . . . , yn, x ∈ H andc1, . . . , cn ∈ K, where (3.5) should be seen as all
possible configurations.

The choicecj = 〈x, yj〉, j ∈ {1, . . . , n} will produce the following four inequal-
ities:

(3.6)

[
n∑

j=1

|〈x, yj〉|2
]2

≤ ‖x‖2 ×


max
1≤j≤n

|〈x, yj〉|2
n∑

j=1

‖yj‖2 ,

n∑
j=1

|〈x, yj〉|2 max
1≤j≤n

‖yj‖2 ,
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+ ‖x‖2 ×


max

1≤j 6=k≤n
{|〈x, yj〉| |〈x, yk〉|}

∑
1≤j 6=k≤n

|〈yj, yk〉| ,

(n− 1)
n∑

j=1

|〈x, yj〉|2 max
1≤j 6=k≤n

|〈yj, yk〉| .

Taking the supremum over‖x‖ = 1 and utilising the representation (2.6) we easily
deduce the rest of the four inequalities.

A different generalisation of Bessel’s inequality for non-orthogonal vectors is the
Bombieri inequality(see [2] or [8, p. 397] and [5, p. 134]):

(3.7)
n∑

j=1

|〈x, yj〉|2 ≤ ‖x‖2 max
1≤j≤n

{
n∑

k=1

|〈yj, yk〉|

}
,

for any x ∈ H, wherey1, . . . , yn are vectors in the real or complex inner product
space(H; 〈·, ·〉) .

Note that, the Bombieri inequality was not stated in the general case of inner
product spaces in [2]. However, the inequality presented there easily leads to (3.7)
which, apparently, was firstly mentioned as is in [8, p. 394].

On utilising the Bombieri inequality (3.7) and the representation Theorem2.2,
we can state the following simple upper bound for the hypo-Euclidean norm‖·‖e .

Theorem 3.2.For anyX = (x1, . . . , xn) ∈ Hn, we have

(3.8) ‖X‖2
e ≤ max

1≤j≤n

{
n∑

k=1

|〈xj, xk〉|

}
.

In [6] (see also [5, p. 138]), we have established the following norm inequalities:

(3.9)

∥∥∥∥∥
n∑

j=1

αjzj

∥∥∥∥∥
2

≤ n
1
p
+ 1

t
−1

n∑
k=1

|αk|2
 n∑

k=1

(
n∑

j=1

|〈zj, zk〉|q
)u

q

 1
u

,
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where 1
p

+ 1
q

= 1, 1
t

+ 1
u

= 1 and1 < p ≤ 2, 1 < t ≤ 2 andαj ∈ C, zj ∈ H,

j ∈ {1, . . . , n} .
An interesting particular case of (3.9) obtained forp = q = 2, t = u = 2 is

incorporated in

(3.10)

∥∥∥∥∥
n∑

j=1

αjzj

∥∥∥∥∥
2

≤
n∑

k=1

|αk|2
(

n∑
j,k=1

|〈zj, zk〉|2
) 1

2

.

Other similar inequalities for norms are the following ones [6] (see also [5, pp.
139-140]):

(3.11)

∥∥∥∥∥
n∑

j=1

αjzj

∥∥∥∥∥
2

≤ n
1
p

n∑
k=1

|αk|2 max
1≤j≤n


[

n∑
k=1

|〈zj, zk〉|q
] 1

q

 ,

provided that1 < p ≤ 2 and 1
p

+ 1
q

= 1, αj ∈ C, zj ∈ H, j ∈ {1, . . . , n} . In the
particular casep = q = 2, we have

(3.12)

∥∥∥∥∥
n∑

j=1

αjzj

∥∥∥∥∥
2

≤
√

n
n∑

k=1

|αk|2 max
1≤j≤n

[
n∑

k=1

|〈zj, zk〉|2
] 1

2

.

Also, if 1 < m ≤ 2, then [6]:

(3.13)

∥∥∥∥∥
n∑

j=1

αjzj

∥∥∥∥∥
2

≤ n
1
m

n∑
k=1

|αk|2
{

n∑
j=1

[
max
1≤k≤n

|〈zj, zk〉|l
]} 1

l

,

where 1
m

+ 1
l

= 1. Form = l = 2, we get

(3.14)

∥∥∥∥∥
n∑

j=1

αjzj

∥∥∥∥∥
2

≤
√

n
n∑

k=1

|αk|2
[

n∑
j=1

(
max
1≤k≤n

|〈zj, zk〉|2
)] 1

2

.
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Finally, we can also state the inequality [6]:

(3.15)

∥∥∥∥∥
n∑

j=1

αjzj

∥∥∥∥∥
2

≤ n
n∑

k=1

|αk|2 max
1≤j,k≤n

|〈zj, zk〉| .

Utilising the above norm-inequalities and the definition of the hypo-Euclidean
norm, we can state the following result which provides other upper bounds than the
ones outlined in Theorem3.1and3.2:

Theorem 3.3.For anyX = (x1, . . . , xn) ∈ Hn, we have

(3.16) ‖X‖2
e ≤



n
1
p
+ 1

t
−1

 n∑
k=1

(
n∑

j=1

|〈xj, xk〉|q
)u

q


1
u

where 1
p

+ 1
q

= 1,

1
t
+ 1

u
= 1 and 1 < p ≤ 2, 1 < t ≤ 2;

n
1
p max

1≤j≤n


[

n∑
j=1

|〈xj, xk〉|q
] 1

q

 where 1
p

+ 1
q

= 1

and 1 < p ≤ 2;

n
1
m

{
n∑

j=1

[
max
1≤k≤n

|〈xj, xk〉|l
]} 1

l

where 1
m

+ 1
l

= 1

and 1 < m ≤ 2;

n max
1≤k≤n

|〈xk, zj〉| ;
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and, in particular,

(3.17) ‖X‖2
e ≤



[
n∑

j,k=1

|〈xj, xk〉|2
] 1

2

;

√
n max

1≤j≤n

[
n∑

k=1

|〈xj, xk〉|2
] 1

2

;

√
n

[
n∑

j=1

(
max
1≤k≤n

{
|〈xj, xk〉|2

})] 1
2

.
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4. Various Inequalities for the Hypo-Euclidean Norm

For ann−tupleX = (x1, . . . , xn) of vectors inH, we consider the usualp−norms:

‖X‖p :=

(
n∑

j=1

‖xj‖p

) 1
p

,

wherep ∈ [1,∞), and denote withS the sum
∑n

j=1 xj.

With these notations we can state the following reverse of the inequality‖X‖2 ≥
‖X‖e , that has been pointed out in Theorem2.1.

Theorem 4.1.For anyX = (x1, . . . , xn) ∈ Hn, we have

(4.1) (0 ≤) ‖X‖2
2 − ‖X‖2

e ≤ ‖X‖2
1 − ‖S‖2 .

If

‖X‖2
(2) :=

n∑
j,k=1

∥∥∥∥xj + xk

2

∥∥∥∥2

,

then also

(0 ≤) ‖X‖2
2 − ‖X‖2

e ≤ ‖X‖2
(2) − ‖S‖2(4.2)

( ≤ n ‖X‖2
2 − ‖S‖2).

Proof. We observe, for anyx ∈ H, that∣∣∣∣∣
n∑

j=1

〈x, xj〉

∣∣∣∣∣
2

=
n∑

j=1

〈x, xj〉
n∑

k=1

〈x, xk〉 =

∣∣∣∣∣
n∑

j=1

〈x, xj〉
n∑

k=1

〈x, xk〉

∣∣∣∣∣(4.3)

=

∣∣∣∣∣
n∑

k=1

|〈x, xk〉|2 +
∑

1≤j 6=k≤n

〈x, xj〉 〈xk, x〉

∣∣∣∣∣
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≤
n∑

k=1

|〈x, xk〉|2 +

∣∣∣∣∣ ∑
1≤j 6=k≤n

〈x, xj〉 〈xk, x〉

∣∣∣∣∣
≤

n∑
k=1

|〈x, xk〉|2 +
∑

1≤j 6=k≤n

|〈x, xj〉| |〈xk, x〉| .

Taking the supremum over‖x‖ = 1, we get

(4.4) sup
‖x‖=1

∣∣∣∣∣
n∑

j=1

〈x, xj〉

∣∣∣∣∣
2

≤ sup
‖x‖=1

n∑
k=1

|〈x, xk〉|2 +
∑

1≤j 6=k≤n

sup
‖x‖=1

|〈x, xj〉| · sup
‖x‖=1

|〈xk, x〉| .

However,

sup
‖x‖=1

∣∣∣∣∣
n∑

j=1

〈x, xj〉

∣∣∣∣∣
2

= sup
‖x‖=1

∣∣∣∣∣
〈

x,
n∑

j=1

xj

〉∣∣∣∣∣
2

= ‖S‖2 ,

sup
‖x‖=1

|〈x, xj〉| = ‖xj‖ and sup
‖x‖=1

|〈x, xk〉| = ‖xk‖

for j, k ∈ {1, . . . , n} , and by (4.4) we get

‖S‖2 ≤ ‖X‖2
e +

∑
1≤j 6=k≤n

‖xj‖ ‖xj‖

= ‖X‖2
e +

n∑
j,k=1

‖xj‖ ‖xk‖ −
n∑

k=1

‖xk‖2

= ‖X‖2
e + ‖X‖2

1 − ‖X‖2
2 ,
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which is clearly equivalent with (4.1).
Further on, we also observe that, for anyx ∈ H we have the identity:∣∣∣∣∣

n∑
j=1

〈x, xj〉

∣∣∣∣∣
2

= Re

[
n∑

k,j=1

〈x, xj〉 〈xk, x〉

]
(4.5)

=
n∑

k=1

|〈x, xk〉|2 +
∑

1≤j 6=k≤n

Re [〈x, xj〉 〈xk, x〉] .

Utilising the elementary inequality for complex numbers

(4.6) Re (uv̄) ≤ 1

4
|u + v|2 , u, v ∈ C,

we can state that∑
1≤k 6=j≤n

Re [〈x, xj〉 〈xk, x〉] ≤
1

4

∑
1≤k 6=j≤n

|〈x, xj〉+ 〈x, xk〉|2

=
∑

1≤k 6=j≤n

∣∣∣∣〈x,
xj + xk

2

〉∣∣∣∣2 ,

and by (4.5) we get

(4.7)

∣∣∣∣∣
n∑

j=1

〈x, xj〉

∣∣∣∣∣
2

≤
n∑

k=1

|〈x, xk〉|2 +
∑

1≤k 6=j≤n

∣∣∣∣〈x,
xj + xk

2

〉∣∣∣∣2
for anyx ∈ H.
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Taking the supremum over‖x‖ = 1 in (4.7) we deduce∥∥∥∥∥
n∑

j=1

xj

∥∥∥∥∥
2

≤ ‖X‖2
e +

∑
1≤k 6=j≤n

∥∥∥∥xj + xk

2

∥∥∥∥2

= ‖X‖2
e +

n∑
k,j=1

∥∥∥∥xj + xk

2

∥∥∥∥2

−
n∑

k=1

‖xk‖2

which provides the first inequality in (4.2).
By the convexity of‖·‖2 we have

n∑
j,k=1

∥∥∥∥xj + xk

2

∥∥∥∥2

≤ 1

2

n∑
j,k=1

[
‖xj‖2 + ‖xk‖2] = n

n∑
k=1

‖xk‖2

and the last part of (4.2) is obvious.

Remark2. Forn = 2, X = (x, y) ∈ H2 we have the upper bounds

B1 (x, y) := ‖x‖2 + ‖y‖2 − ‖x + y‖2

= 2 (‖x‖ ‖y‖ − Re 〈x, y〉)

and
B2 (x, y) := ‖x‖2 + ‖y‖2

for the difference‖X‖2
2−‖X‖2

e , X ∈ H2 as provided by (4.1) and (4.2) respectively.
If H = R thenB1 (x, y) = 2 (|xy| − xy) , B2 (x, y) = x2 + y2. If we consider the
function∆ (x, y) = B2 (x, y)−B1 (x, y) then the plot of∆ (x, y) depicted in Figure
4 shows that the bounds provided by (4.1) and (4.2) cannot be compared in general,
meaning that sometimes the first is better than the second and vice versa.
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Figure 4: The behaviour of∆ (x, y)

From a different view-point we can state the following result:

Theorem 4.2.For anyX = (x1, . . . , xn) ∈ Hn, we have

(4.8) ‖S‖2 ≤ ‖X‖e

‖X‖e +

(
n∑

k=1

‖S − xk‖2

) 1
2


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and

(4.9) ‖S‖2

≤ ‖X‖e

‖X‖e +

max
1≤k≤n

‖S − xk‖2 +

( ∑
1≤k 6=l≤n

|〈S − xk, S − xl〉|2
) 1

2


1
2

 ,

respectively.

Proof. Utilising the identity (4.5) above we have

(4.10)

∣∣∣∣∣
n∑

j=1

〈x, xj〉

∣∣∣∣∣
2

=
n∑

k=1

|〈x, xk〉|2 + Re

〈
x,

∑
1≤j 6=k≤n

〈x, xk〉xj

〉
for anyx ∈ H.

By the Schwarz inequality in the inner product space(H, 〈·, ·〉), we have that

Re

〈
x,

∑
1≤j 6=k≤n

〈x, xk〉xj

〉
≤ ‖x‖

∥∥∥∥∥ ∑
1≤j 6=k≤n

〈x, xk〉xj

∥∥∥∥∥(4.11)

= ‖x‖

∥∥∥∥∥
n∑

j,k=1

〈x, xk〉xj −
n∑

k=1

〈x, xk〉xk

∥∥∥∥∥
= ‖x‖

∥∥∥∥∥
〈

x,

n∑
k=1

xk

〉
n∑

j=1

xj −
n∑

k=1

〈x, xk〉xk

∥∥∥∥∥
= ‖x‖

∥∥∥∥∥
n∑

k=1

〈x, xk〉 (S − xk)

∥∥∥∥∥ .
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Utilising the Cauchy-Bunyakovsky-Schwarz inequality we have

(4.12)

∥∥∥∥∥
n∑

k=1

〈x, xk〉 (S − xk)

∥∥∥∥∥ ≤
(

n∑
k=1

|〈x, xk〉|2
) 1

2
(

n∑
k=1

‖S − xk‖2

) 1
2

and then by (4.10) – (4.12) we can state the inequality:

(4.13)

∣∣∣∣∣
n∑

j=1

〈x, xj〉

∣∣∣∣∣
2

≤

(
n∑

k=1

|〈x, xk〉|2
) 1

2

( n∑
k=1

|〈x, xk〉|2
) 1

2

+

(
n∑

k=1

‖S − xk‖2

) 1
2


for anyx ∈ H, ‖x‖ = 1. Taking the supremum over‖x‖ = 1 we deduce the desired
result (4.8).

Now, following the above argument, we can also state that

(4.14)

∣∣∣∣∣
〈

x,
n∑

j=1

xj

〉∣∣∣∣∣
2

≤
n∑

k=1

|〈x, xk〉|2 + ‖x‖

∥∥∥∥∥
n∑

k=1

〈x, xk〉 (S − xk)

∥∥∥∥∥
for anyx ∈ H.

Utilising the inequality

(4.15)

∥∥∥∥∥
n∑

j=1

αjzj

∥∥∥∥∥
2

≤
n∑

j=1

|αj|2
max

1≤j≤n
‖zj‖2 +

( ∑
1≤j 6=k≤n

|〈zj, zk〉|2
) 1

2

 ,
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whereαj ∈ C, zj ∈ H, j ∈ {1, . . . , n} , that has been obtained in [4], see also [5, p.
128], we can state that

(4.16)

∥∥∥∥∥
n∑

k=1

〈x, xk〉 (S − xk)

∥∥∥∥∥
≤

(
n∑

k=1

|〈x, xk〉|2
) 1

2

max
1≤k≤n

‖S − xk‖2 +

( ∑
1≤k 6=l≤n

|〈S − xk, S − xl〉|2
) 1

2


1
2

for anyx ∈ H.
Now, by the use of (4.14) – (4.16) we deduce the desired result (4.9). The details

are omitted.

Remark3. On utilising the inequality:

(4.17)

∥∥∥∥∥
n∑

j=1

αjzj

∥∥∥∥∥
2

≤
n∑

j=1

|αj|2
[

max
1≤k≤n

‖zk‖2 + (n− 1) max
1≤k 6=l≤n

|〈zk, zl〉|
]

,

whereαj ∈ C, zj ∈ H, j ∈ {1, . . . , n} , that has been obtained in [4], (see also
[5, p. 130]) in place of (4.15) above, we can state the following inequality for the
hypo-Euclidean norm as well:

(4.18) ‖S‖2

≤ ‖X‖e

[
‖X‖e +

{
max
1≤k≤n

‖S − xk‖2 + (n− 1) max
1≤k 6=l≤n

|〈S − xk, S − xl〉|2
} 1

2

]
for anyX = (x1, . . . , xn) ∈ Hn.

Other similar results may be stated by making use of the results from [6]. The
details are left to the interested reader.
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5. Reverse Inequalities

Before we proceed with establishing some reverse inequalities for the hypo-Euclidean
norm, we recall some reverse results of the Cauchy-Bunyakovsky-Schwarz inequal-
ity for real or complex numbers as follows:

If γ, Γ ∈ K (K = C, R) andαj ∈ K, j ∈ {1, . . . , n} with the property that

0 ≤ Re [(Γ− αj) (αj − γ̄)](5.1)

= (Re Γ− Re αj) (Re αj − Re γ) + (Im Γ− Im αj) (Im αj − Im γ)

or, equivalently,

(5.2)

∣∣∣∣αj −
γ + Γ

2

∣∣∣∣ ≤ 1

2
|Γ− γ|

for eachj ∈ {1, . . . , n} , then (see for instance [5, p. 9])

(5.3) n
n∑

j=1

|αj|2 −

∣∣∣∣∣
n∑

j=1

αj

∣∣∣∣∣
2

≤ 1

4
· n2 |Γ− γ|2 .

In addition, ifRe (Γγ̄) > 0, then (see for example [5, p. 26]):

n
n∑

j=1

|αj|2 ≤
1

4
·

{
Re
[(

Γ̄ + γ̄
)∑n

j=1 αj

]}2

Re (Γγ̄)
(5.4)

≤ 1

4
· |Γ + γ|2

Re (Γγ̄)

∣∣∣∣∣
n∑

j=1

αj

∣∣∣∣∣
2
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and

(5.5) n
n∑

j=1

|αj|2 −

∣∣∣∣∣
n∑

j=1

αj

∣∣∣∣∣
2

≤ 1

4
· |Γ− γ|2

Re (Γγ̄)

∣∣∣∣∣
n∑

j=1

αj

∣∣∣∣∣
2

.

Also, if Γ 6= −γ, then (see for instance [5, p. 32]):

(5.6)

(
n

n∑
j=1

|αj|2
) 1

2

−

∣∣∣∣∣
n∑

j=1

αj

∣∣∣∣∣ ≤ 1

4
n · |Γ− γ|2

|Γ + γ|
.

Finally, from [7] we can also state that

(5.7) n
n∑

j=1

|αj|2 −

∣∣∣∣∣
n∑

j=1

αj

∣∣∣∣∣
2

≤ n
[
|Γ + γ| − 2

√
Re (Γγ̄)

] ∣∣∣∣∣
n∑

j=1

αj

∣∣∣∣∣ ,
providedRe (Γγ̄) > 0.

We notice that a simple sufficient condition for (5.1) to hold is that

(5.8) Re Γ ≥ Re αj ≥ Re γ and Im Γ ≥ Im αj ≥ Im γ

for eachj ∈ {1, . . . , n} .
We can state and prove the following conditional inequalities for the hypo-Euclidean

norm‖·‖e :

Theorem 5.1.Letϕ, φ ∈ K andX = (x1, . . . , xn) ∈ Hn such that either:

(5.9)

∣∣∣∣〈x, xj〉 −
ϕ + φ

2

∣∣∣∣ ≤ 1

2
|φ− ϕ|
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or, equivalently,

(5.10) Re [(φ− 〈x, xj〉) (〈xj, x〉 − ϕ̄)] ≥ 0

for eachj ∈ {1, . . . , n} and for anyx ∈ H, ‖x‖ = 1. Then

(5.11) ‖X‖2
e ≤

1

n
‖S‖2 +

1

4
n |φ− ϕ|2 .

Moreover, ifRe (φϕ̄) > 0, then

(5.12) ‖X‖2
e ≤

1

4n
· |φ + ϕ|2

Re (φϕ)
‖S‖2

and

(5.13) ‖X‖2
e ≤

1

n
‖S‖2 +

[
|φ + ϕ| − 2

√
Re (φϕ̄)

]
‖S‖ .

If φ 6= −ϕ, then

(5.14) ‖X‖e ≤
1

n
‖S‖+

1

4
n · |φ− ϕ|2

|φ + ϕ|
,

whereS =
∑n

j=1 xj.

Proof. We only prove the inequality (5.11).
Let x ∈ H, ‖x‖ = 1. Then, on applying the inequality (5.3) for αj = 〈x, xj〉 ,

j ∈ {1, . . . , n} andΓ = φ, γ = ϕ, we can state that

(5.15)
n∑

j=1

|〈x, xj〉|2 ≤
1

n

∣∣∣∣∣
〈

x,
n∑

j=1

xj

〉∣∣∣∣∣
2

+
1

4
n |φ− ϕ|2 .
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Now if in (5.15) we take the supremum over‖x‖ = 1, then we get the desired
inequality (5.11).

The other inequalities follow by (5.4), (5.7) and (5.6) respectively. The details
are omitted.

Remark4. Due to the fact that∣∣∣∣〈x, xj〉 −
ϕ + φ

2

∣∣∣∣ ≤ ∥∥∥∥xj −
ϕ + φ

2
· x
∥∥∥∥

for anyj ∈ {1, . . . , n} andx ∈ H, ‖x‖ = 1, then a sufficient condition for (5.9) to
hold is that ∥∥∥∥xj −

ϕ + φ

2
· x
∥∥∥∥ ≤ 1

2
|φ− ϕ|

for eachj ∈ {1, . . . , n} andx ∈ H, ‖x‖ = 1.
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6. Applications for n−Tuples of Operators

In [9], the author has introduced the following norm on the Cartesian productB(n) (H) :=
B (H)×· · ·×B (H) , whereB (H) denotes the Banach algebra of all bounded linear
operators defined on the complex Hilbert spaceH :

(6.1) ‖(T1, . . . , Tn)‖e := sup
(λ1,...,λn)∈Bn

‖λ1T1 + · · ·+ λnTn‖ ,

where(T1, . . . , Tn) ∈ B(n) (H) andBn :=
{
(λ1, . . . , λn) ∈ Cn

∣∣∑n
i=1 |λi|2 ≤ 1

}
is

the Euclidean closed ball inCn. It is clear that‖·‖e is a norm onB(n) (H) and for
any(T1, . . . , Tn) ∈ B(n) (H) we have

(6.2) ‖(T1, . . . , Tn)‖e = ‖(T ∗
1 , . . . , T ∗

n)‖e ,

whereT ∗
i is the adjoint operator ofTi, i ∈ {1, . . . , n} .

It has been shown in [9] that the following inequality holds true:

(6.3)
1√
n

∥∥∥∥∥
n∑

j=1

TjT
∗
j

∥∥∥∥∥
1
2

≤ ‖(T1, . . . , Tn)‖e ≤

∥∥∥∥∥
n∑

j=1

TjT
∗
j

∥∥∥∥∥
1
2

for anyn−tuple(T1, . . . , Tn) ∈ B(n) (H) and the constants1√
n

and1 are best possi-
ble.

In the same paper [9] the author has introduced theEuclidean operator radiusof
ann−tuple of operators(T1, . . . , Tn) by

(6.4) we (T1, . . . , Tn) := sup
‖x‖=1

(
n∑

j=1

|〈Tjx, x〉|2
) 1

2
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and proved thatwe (·) is a norm onB(n) (H) and satisfies the double inequality:

(6.5)
1

2
‖(T1, . . . , Tn)‖e ≤ we (T1, . . . , Tn) ≤ ‖(T1, . . . , Tn)‖e

for eachn−tuple(T1, . . . , Tn) ∈ B(n) (H) .
As pointed out in [9], the Euclidean numerical radius also satisfies the double

inequality:

(6.6)
1

2
√

n

∥∥∥∥∥
n∑

j=1

TjT
∗
j

∥∥∥∥∥
1
2

≤ we (T1, . . . , Tn) ≤

∥∥∥∥∥
n∑

j=1

TjT
∗
j

∥∥∥∥∥
1
2

for any(T1, . . . , Tn) ∈ B(n) (H) and the constants1
2
√

n
and1 are best possible.

We are now able to establish the following natural connections that exists between
the hypo-Euclidean norm of vectors in a Cartesian product of Hilbert spaces and the
norm‖·‖e for n−tuples of operators in the Banach algebraB (H) .

Theorem 6.1.For any(T1, . . . , Tn) ∈ B(n) (H) we have

‖(T1, . . . , Tn)‖e = sup
‖y‖=1

‖(T1y, . . . , Tny)‖e(6.7)

= sup
‖y‖=1,‖x‖=1

(
n∑

j=1

|〈Tjy, x〉|2
) 1

2

.

Proof. By the definition of the‖·‖e−norm onB(n) (H) and the hypo-Euclidean
norm onHn, we have:

‖(T1, . . . , Tn)‖e = sup
(λ1,...,λn)∈Bn

[
sup
‖y‖=1

‖(λ1T1 + · · ·+ λnTn) y‖

]
(6.8)
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= sup
‖y‖=1

[
sup

(λ1,...,λn)∈Bn

‖λ1T1y + · · ·+ λnTny‖

]
= sup

‖y‖=1

‖(T1y, . . . , Tny)‖e .

Utilising the representation of the hypo-Euclidean norm onHn from Theorem2.2,
we have

(6.9) ‖(T1y, . . . , Tny)‖e = sup
‖x‖=1

(
n∑

j=1

|〈Tjy, x〉|2
) 1

2

.

Making use of (6.8) and (6.9) we deduce the desired equality (6.7).

Remark5. Utilising Theorem2.1, we have

(6.10)

(
n∑

j=1

‖Tjy‖2

) 1
2

≥ ‖(T1y, . . . , Tny)‖e ≥
1√
n

(
n∑

j=1

‖Tjy‖2

) 1
2

for anyy ∈ H, ‖y‖ = 1.
Since

n∑
j=1

‖Tjy‖2 =

〈
n∑

j=1

T ∗
j Tjy, y

〉
, ‖y‖ = 1

hence, on taking the supremum over‖y‖ = 1 in (6.10) and on observing that

sup
‖y‖=1

〈
n∑

j=1

T ∗
j Tjy, y

〉
= w

(
n∑

j=1

T ∗
j Tj

)
=

∥∥∥∥∥
n∑

j=1

T ∗
j Tj

∥∥∥∥∥ =

∥∥∥∥∥
n∑

j=1

TjT
∗
j

∥∥∥∥∥ ,

we deduce the inequality (6.3) that has been established in [9] by a different argu-
ment.
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We observe that, due to the representation Theorem6.1, some inequalities ob-
tained for the hypo-Euclidean norm can be utilised in obtaining various new in-
equalities for the operator norm‖·‖e by employing a standard approach consisting
in taking the supremum over‖y‖ = 1, as described in the above remark.

The following different lower bound for the Euclidean operator norm‖·‖e can be
stated:

Proposition 6.2. For any(T1, . . . , Tn) ∈ B(n) (H) , we have

(6.11) ‖(T1, . . . , Tn)‖e ≥
1√
n
‖T1 + · · ·+ Tn‖ .

Proof. Utilising Proposition2.4and Theorem6.1we have:

‖(T1, . . . , Tn)‖e = sup
‖y‖=1

‖(T1y, . . . , Tny)‖e

≥ 1√
n

sup
‖y‖=1

‖T1y + · · ·+ Tny‖

=
1√
n
‖T1 + · · ·+ Tn‖

which is the desired inequality (6.11).

We can state the following results concerning various upper bounds for the oper-
ator norm‖(., . . . , .)‖e:
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Theorem 6.3.For any(T1, . . . , Tn) ∈ B(n) (H) , we have the inequalities:

(6.12) ‖(T1, . . . , Tn)‖2
e ≤



max
1≤j≤n

{
‖Tj‖2}+

[ ∑
1≤j 6=k≤n

w2 (T ∗
k Tj)

] 1
2

;

max
1≤j≤n

{
‖Tj‖2}+ (n− 1) max

1≤j 6=k≤n
{w (T ∗

k Tj)} ;max
1≤j≤n

{
‖Tj‖2}∥∥∥∥∥ n∑

j=1

T ∗
j Tj

∥∥∥∥∥
2

+ max
1≤j 6=k≤n

{‖Tj‖ ‖Tk‖}
∑

1≤j 6=k≤n

w
(
TkT

∗
j

)] 1
2

.

The proof follows by Theorem3.1and Theorem6.1and the details are omitted.
On utilising the inequalities (3.8) and (3.17) we can state the following result as

well:

Theorem 6.4.For any(T1, . . . , Tn) ∈ B(n) (H) , we have:

(6.13) ‖(T1, . . . , Tn)‖2
e ≤



max
1≤j≤n

{
n∑

k=1

w (T ∗
k Tj)

}
;[

n∑
j,k=1

w2 (T ∗
k Tj)

] 1
2

;

n max
1≤j≤n

[
n∑

k=1

w2 (T ∗
k Tj)

] 1
2

;

n

[
n∑

j=1

max
1≤k≤n

{w2 (T ∗
k Tj)}

] 1
2

.
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The results from Section5 can be also naturally used to provide some reverse
inequalities that are of interest.

Theorem 6.5.Let (T1, . . . , Tn) ∈ B(n) (H) andϕ, φ ∈ K such that

(6.14)

∥∥∥∥Tjy −
ϕ + φ

2
· x
∥∥∥∥ ≤ 1

2
|φ− ϕ| for any ‖x‖ = ‖y‖ = 1

and for eachj ∈ {1, . . . , n} . Then

(6.15) ‖(T1, . . . , Tn)‖2
e ≤

1

n

∥∥∥∥∥
n∑

j=1

Tj

∥∥∥∥∥
2

+
1

n
|φ− ϕ|2 .

In addition, ifRe (φϕ̄) > 0, then

(6.16) ‖(T1, . . . , Tn)‖2
e ≤

1

4n
· |φ + ϕ|2

Re (φϕ̄)

∥∥∥∥∥
n∑

j=1

Tj

∥∥∥∥∥
2

and

(6.17) ‖(T1, . . . , Tn)‖2
e ≤

1

n

∥∥∥∥∥
n∑

j=1

Tj

∥∥∥∥∥
2

+
[
|φ + ϕ| − 2

√
Re (φϕ̄)

] ∥∥∥∥∥
n∑

j=1

Tj

∥∥∥∥∥ .

If φ 6= −ϕ, then also

(6.18) ‖(T1, . . . , Tn)‖e ≤
1√
n

∥∥∥∥∥
n∑

j=1

Tj

∥∥∥∥∥
2

+
1

4

√
n · |φ− ϕ|2

|φ + ϕ|
.
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Proof. For anyx, y ∈ H with ‖x‖ = ‖y‖ = 1 we have∣∣∣∣〈x, Tjy〉 −
ϕ + φ

2

∣∣∣∣ =

∣∣∣∣〈x, Tjy −
ϕ + φ

2
x

〉∣∣∣∣
≤ ‖x‖

∥∥∥∥Tjy −
ϕ + φ

2
x

∥∥∥∥
≤ 1

2
|φ− ϕ|

for eachj ∈ {1, . . . , n} .
Now, on applying Theorem5.1 for xj = Tjy, we can write from (5.11) the fol-

lowing inequality

‖(T1y, . . . , Tny)‖e ≤
1

n

∥∥∥∥∥
n∑

j=1

Tjy

∥∥∥∥∥+
1

4
n |φ− ϕ|2

for eachy with ‖y‖ = 1.
Taking the supremum over‖y‖ = 1 and utilising Theorem6.1, we deduce (6.15).
The other inequalities follow by a similar procedure on making use of the in-

equalities (5.12) – (5.14) and the details are omitted.

Remark6. The inequality (6.14) is equivalent with

0 ≤ Re [(φ− 〈x, Tjy〉) (〈Tjy, x〉 − ϕ̄)](6.19)

= (Re (φ)− Re 〈x, Tjy〉) (Re 〈Tjy, x〉 − Re (ϕ))

+ (Im (φ)− Im 〈x, Tjy〉) (Im 〈Tjy, x〉 − Im (ϕ))

for eachj ∈ {1, . . . , n} and‖x‖ = ‖y‖ = 1. A sufficient condition for (6.19) to
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hold is then:

(6.20)

 Re (ϕ) ≤ Re 〈x, Tjy〉 ≤ Re (φ)

Im (ϕ) ≤ Im 〈x, Tjy〉 ≤ Im (φ)

for anyx, y ∈ H with ‖x‖ = ‖y‖ = 1 andj ∈ {1, . . . , n} .
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7. A Norm on B (H)

For an operatorA ∈ B (H) we define

(7.1) δ (A) := ‖(A, A∗)‖e = sup
(λ,µ)∈B2

‖λA + µA∗‖ ,

whereB2 is the Euclidean unit ball inC2.
The properties of this functional are embodied in the following theorem:

Theorem 7.1.The functionalδ is a norm onB (H) and satisfies the double inequality:

(7.2) ‖A‖ ≤ δ (A) ≤ 2 ‖A‖

for anyA ∈ B (H) .
Moreover, we have the inequalities

(7.3)

√
2

2

∥∥A2 + (A∗)2
∥∥ 1

2 ≤ δ (A) ≤
∥∥A2 + (A∗)2

∥∥ 1
2 ,

and

(7.4)

√
2

2
‖A + A∗‖ ≤ δ (A) ≤

[
‖A‖2 + w

(
A2
)] 1

2

for anyA ∈ B (H) , respectively.

Proof. First of all, observe, by Theorem5.1, that we have the representation

(7.5) δ (A) = sup
‖x‖=1,‖y‖=1

[
|〈Ay, x〉|2 + |〈A∗y, x〉|2

] 1
2

for eachA ∈ B (H) .
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Obviously δ (A) ≥ 0 for eachA ∈ B (H) and of δ (A) = 0 then, by (7.5),
〈Ay, x〉 = 0 for anyx, y ∈ H with ‖x‖ = ‖y‖ = 1 which implies thatA = 0. Also,
by (7.5), we observe that

δ (αA) = sup
‖x‖=1,‖y‖=1

[
|〈αAy, x〉|2 + |〈ᾱA∗y, x〉|2

] 1
2

= |α| sup
‖x‖=1,‖y‖=1

[
|〈Ay, x〉|2 + |〈A∗y, x〉|2

] 1
2

= |α| δ (A)

for anyα ∈ R andA ∈ B (H) .
Now, if A, B ∈ B (H) , then

δ (A + B) = sup
(λ,µ)∈B2

‖λA + µA∗ + λB + µB∗‖

≤ sup
(λ,µ)∈B2

‖λA + µA∗‖+ sup
(λ,µ)∈B2

‖λB + µB∗‖

= δ (A) + δ (B) ,

which proves the triangle inequality.
Also, we observe that

δ (A) ≥ sup
‖x‖=1,‖y‖=1

|〈Ay, x〉| = ‖A‖

and

δ (A) ≤ sup
‖x‖=1,‖y‖=1

[|〈Ay, x〉|+ |〈A∗y, x〉|]

≤ sup
‖x‖=1,‖y‖=1

|〈Ay, x〉|+ sup
‖x‖=1,‖y‖=1

|〈A∗y, x〉|

= 2 ‖A‖
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and the inequality (7.2) is proved.
The inequality (7.3) follows from (6.3) for n = 2, T1 = A andT2 = A∗ while

(7.4) follows from Proposition6.2 and the second inequality in (6.12) for the same
choices.

Remark7. It is easy to see that
√

2

2

∥∥A2 + (A∗)2
∥∥ 1

2 ≤ ‖A‖

and ∥∥A2 + (A∗)2
∥∥ 1

2 ,
[
‖A‖2 + w

(
A2
)] 1

2 ≤ 2 ‖A‖
for eachA ∈ B (H) . Also, we notice that ifA is self-adjoint, then the equality
case holds in the second part of (7.3) and in both sides of (7.4). However, it is an
open question for the author which of the lower bounds‖A‖ ,

√
2

2
‖A + A∗‖ of the

norm δ (A) are better and when. The same question applies for the upper bounds∥∥A2 + (A∗)2
∥∥ 1

2 and
[
‖A‖2 + w (A2)

] 1
2 , respectively.
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