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ABSTRACT. The concept of hypo-Euclidean norm for an-tuple of vectors in inner product
spaces is introduced. Its fundamental properties are established. Upper bounds via the Boas-
Bellman [1]-[3] and Bombieri[[R] type inequalities are provided. Applicationsrfettuples of
bounded linear operators defined on Hilbert spaces are also given.
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1. INTRODUCTION

Let (E,||-||) be a normed linear space over the real or complex number Kel®n K"
endowed with the canonical linear structure we consider a fjefmand the unit ball

B([[-[l,) = {A= (A1, ., A) € K"[[JA]l, < 1}
As an example of such norms we should mention the ysuabrms
max {|\],...,|[\|} if p=oc;
W=
(k=1 )

TheEuclidean normis obtained fop = 2, i.e.,

n 2
1ALl = (ZI/\HQ) :

k=1

(1.1)

=

if pell,o00).
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2 S.S. RAGOMIR

Itis well known that onE™ := F x - - - x E endowed with the canonical linear structure we can
define the followingp—norms

max [l all} if p=oc;
Xy =1
(i llael?)

(1.2)

3=

it p e [1,00);

whereX = (z1,...,2,) € E™
For a given nornj|-||,, on K™ we define the functiondl-||,, ,, : E™ — [0, c0) given by

n

> N

j=1

(13) HXHh,n = sup
s da)EB(I11,)

Y

whereX = (zy,...,2,) € E™.
It is easy to see that:
() [|X]l,,, > 0foranyX € £"
@) X+ Y, < X + V1], forany X,y e B
(i) [[aX]|,,, = lal[|X]],, foreacha € KandX € E™;
and thereforg|- |, , is asemi-normon E™. This will be called thehypo-semi-norngenerated
by the norm||-||, on X™.
We observe thatX||, , = 0ifand only if 37, Ajz; = 0 forany (Ay, ..., \.) € B(|l-]l,.) -
If there exists)\y, ..., \Y # 0 such that(\?,0,...,0), (0,)9,...,0),..., (0,0,...,)%) €
B (||-]|,,) then the semi-norm generated by, is anormon £".
If by B, , with p € [1, oo] we denote the balls generated by thenorms|-||, onK", then
we can obtain the followingypop-normson X" :

(1.4) HXHhmm = ( sup

with p € [1, 00] .
Forp = 2, we have the Euclidean ball if", which we denote b,,,

zn: NP < 1}
i—1

Bn:{A:(Al,...,)\n)eK”

that generates theypo-Euclidean norron £, i.e.,

(15) Xl = s

Moreover, if B = H, H is a Hilbert space oveK, then thehypo-Euclidean norman H™ will
be denoted simply by

(1.6) |(z1,...,2,)|l,:=  sup

and its properties will be extensively studied in the present paper.

Both the notation in(1]6) and the necessity of investigating its main properties are motivated
by the recent work of G. Popescu [9] who introduced a similar norm on the Cartesian product
of Banach algebr&® (H) of all bounded linear operators dih and used it to investigate var-
ious properties of.—tuple of operators in Multivariable Operator Theory. The study is also
motivated by the fact that the hypo-Euclidean norm is closely related to the quadratic form
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S0 [z, x;)|” (see the representation Theor2.2) that plays a key role in many problems
arising in the Theory of Fourier expansions in Hilbert spaces.

The paper is structured as follows: in Sectign 2 we establish the equivalence of the hypo-
Euclidean norm with the usual Euclidean norm Bri, provide a representation result and
obtain some lower bounds for it. In Sect{gn 3, on utilising the classical results of Boas-Bellman
and Bombieri as well as some recent similar results obtained by the author, we give various
upper bounds for the hypo-Euclidean norm. These are complemented in $éction 4 with other
inequalities betweep—norms and the hypo-Euclidean norm. Secfibn 5 is devoted to the pre-
sentation of some conditional reverse inequalities between the hypo-Euclidean norm and the
norm of the sum of the vectors involved. In Sectjgn 6, the natural connection between the
hypo-Euclidean norm and the operator ndf(n ..., )|, introduced by Popescu inl[9] is in-
vestigated. A representation result is obtained and some applications for operator inequalities
are pointed out. Finally, in Secti¢pf 7, a new norm for operators is introduced and some natural
inequalities are obtained.

2. FUNDAMENTAL PROPERTIES

Let (H; (-, -)) be a Hilbert space ovék andn € N, n > 1. In the Cartesian produdi” :=
H x --- x H, for then—tuples of vectors = (z1,...,2,), Y = (y1,...,y,) € H", we can
define the inner produgt, -) b

(2.1) (X,Y) :zi(xj,yj>, X, Y e H",

J=1

which generates the Euclidean nojrj, on H", i.e.,

(2.2) x|, = (Z 1 ) . XeH
The following result connects the usual Euclidean ndrfhwith the hypo-Euclidean norm
Il

Theorem 2.1. For any X € H™ we have the inequalities

(2.3) Xl = [1XT]e = \/— XT3

i.e., |||, and||-||, are equivalent norms oA ".

Proof. By the Cauchy-Bunyakovsky-Schwarz inequality we have

< (jﬁ;w)é (Z)

forany(\,...,\,) € K" Taking the supremum ovép,, ..., \,) € B, in (2.4) we obtain the
firstinequality in (2.B).

If by o we denote the rotation-invariant normalised positive Borel measure on the unit sphere
OB, (0B, = (A1,...,\) € K" |30, IAi)° = 1) whose existence and properties have been

n

> N

=1

(2.4)
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pointed out in[[10], then we can state that

(2.5) / ]Ak\2do(>\):l and
OBy n

/ MAjdo (N) =0 if k#34 kji=1,...n
OB,

Utilising these properties, we have

IX]I: = sup

= sup [i >\k/\_j (xy, xﬁ]

IBS 2 1 2
= = lll* = < 113,
k=1

from where we deduce the second inequality in|(2.3). O

The following representation result for the hypo-Euclidean norm plays a key role in obtaining
various bounds for this norm:

Theorem 2.2.Forany X € H™ with X = (x4, ..., z,), we have

(2.6) 1XIl, = sup (Z|<x,xj>|2>

2
[l=]I=1

Proof. We use the following well known representation result for scalars:

n 2

(2.7) Z 12,7 =  sup

(/\1 ----- )\n)EBn

j=1
where(zy, ..., z,) € K.
Utilising this property, we thus have

28 (Sieaie) = o |(=350m)
j=1 j=1
foranyz € H.

Now, taking the supremum ovér:|| = 1 in (2.§) we get

1
n 2 a ]
2
sup | D _[(@ap)l* | = sup | sup (@) A
llz]=1 (2:; lz]|=1 | (A1,...,.An)EBR ]z:;
=  sup sup [z, Y A\
(A1, An)€EBy | [l2]=1 j=1

n

= sup Azl
(AL An)EBy ]2_; Y
since, in any Hilbert space we have thap,,_; [(u,v)| = |[v|| for eachv € H. O
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Corollary 2.3. If X = (xy,...,x,) is ann—tuple of orthonormal vectors, i.e., we recall that
|zx|| = 1 and(xy, z;) = 0fork,j € {1,...,n} withk # 7, then|| X, < 1.

The proof is obvious by Bessel’s inequality.
The next proposition contains two lower bounds for the hypo-Euclidean norm that are some-
times better than the one in (2.3), as will be shown by some examples later.

Proposition 2.4. Forany X = (z1,...,x,) € H"\ {0} we have
2 [l

Y

1
1XT
(2.9) X1 =

1

NG

Z?:l Lj

Proof. By the definition of the hypo-Euclidean norm we have that\ff, ..., \%) € B, then
obviously

X0, > |1 Ay
j=1
The choice |
2\ = |xj||, je{l,...,n},
T Xl

which satisfies the conditiof\!, ..., \?) € B, will produce the first inequality while the se-
lection

1
0 o .
)\j__\/ﬁ’ je{l,...,n},
will give the second inequality i (2.9). O

Remark 2.5. Forn = 2, the hypo-Euclidean norm oH?

SIS

(@, y)]l,= sup [Az+pyll = sup [[(z,2)° +[(z, )]

(Ap) EB2 llz]l=1
is bounded below by
1 2 2\ 3
By (z,y) .= — (||z||” + 2
1 (z,y) ﬂ(H I+ llvl%)
T+ |Yyl|y
By (e, o= M2l + Iyl
()™ + llyl”)
and .
Bs(x,y) = — |z +y|.
3 (2,y) \/5|| yll
If H = C endowed with the canonical inner prodyet y) := zy wherez,y € C, then
1 2 2\ 5
By (x,y) = — (|z|” + 2
1 (2,y) \/5(|| %)
x| T+
By (a,y) = Iz 4 101y
(" + 1y[*)®
and .
B3(x7y>:_2’x+y’7 xvye(c-
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The plots of the difference®; (z,y) := B (z,y) — By (z,y) and Dy (z,y) = By (x,y) —

Bs (x, y) which are depicted in Figufe 2.1 and Fig[ire| 2.2, respectively, show that the Bund
is not always better thaB, or B;. However, since the plot dD; (z,y) := Bs (z,y) — Bs (x,y)

(see Figure 2]3) appears to indicate that, at least in the caS& @fmay be possible that the
boundB; is always better thai;, hence we can ask in general which bound frpm|(2.6) is better
for a givenn > 27 This is an open problem that will be left to the interested reader for further
investigation.

Figure 2.2: The behaviour D, (z,y)
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Figure 2.3: The behaviour dD; (z,y)

3. UPPER BOUNDS VIA THE BOAS-BELLMAN AND BOMBIERI TYPE INEQUALITIES

In 1941, R.P. Boad [3] and in 1944, independently, R. Bellman [1] proved the following
generalisation of Bessel's inequality that can be stated for any family of vegtors ., y,, } (see
also [8, p. 392] or[5, p. 125)):

(3.1) S )l < llal* | mas s +< 3 \<yk,yj>12)

1<j#k<n

S

foranyz,y; ..., y, vectors in the real or complex inner product spéke -, -)) . This result is
known in the literature as th®oas-Bellman inequality
The following result provides various upper bounds for the hypo-Euclidean norm:

Theorem 3.1.Forany X = (z1,...,z,) € H", we have

2
2
max ||x;||” + Tk, T; ,
(32) ||X||§ < 1<j<n || ]H (1<J;€<n|< k ]>| >
max fla;* + (n = 1) ma |z, 2]
1
n 2
2 2 2
< . :
(33 (Xl = | max [l ZH%H + dax {flz; || [l } > ey w) ]
Jj=1 1<j#k<n
and
max [|z; | ZH%H + (n = 1) IX17 max [z, 2l
B4 X< T I

||X|| max II%II + max Al leellt > [ @)l

1<j#k<n \<iZh<n
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Proof. Taking the supremum ovéiz|| = 1 in (3.1) and utilising the representatidn (2.6), we
deduce the first inequality if (3.2).
In [4], we proved amongst others the following inequalities

n
2 max [c;|* Y [ly;ll*,
1<4< P
<lz|?x{ 7

(3.5)

Z € <:U7 yj>
j=1

n
2 2
;MI max ly;ll”

max {[cierl} > [{yuk)l,

) 1<j#k<n 1<j#k<n
+ ||z]]” x ) noo
(n=1) 2l max |5 wl
foranyy,,...,yn,x € H andey,...,c, € K, where [3.5) should be seen as all possible

configurations.
The choice; = (z,y;,), j € {1,...,n} will produce the following four inequalities:

] 2 max [, y)|" 3 Il
(3.6) [Z|<x,yj>r2] <af?x ¢
j=1

” 2 2
Zl|<9€7?/j>| max ||y;|”,
J:

1<i<n
max z,y;)| [(z, -, ,
[, Ul il 3 Voo
I 1) S ) P e el
o kY

Taking the supremum ovélrz|| = 1 and utilising the representatidn (2.6) we easily deduce the
rest of the four inequalities. O

A different generalisation of Bessel’s inequality for non-orthogonal vectors iBtimebieri
inequality(seel[2] or[8, p. 397] and [5, p. 134]):

(3.7) > eyl < IIw\|21rgja<§{Z |<yj7yk>|}7
J=1 7 k=1

for anyx € H, wherey,...,y, are vectors in the real or complex inner product space
(H; ()

Note that, the Bombieri inequality was not stated in the general case of inner product spaces
in [2]. However, the inequality presented there easily lead$ 19 (3.7) which, apparently, was
firstly mentioned as is in [8, p. 394].

On utilising the Bombieri inequality (3.7) and the representation Theprem 2.2, we can state
the following simple upper bound for the hypo-Euclidean ndgrif) .

Theorem 3.2.Forany X = (z4,...,z,) € H", we have

2
338) X < max {Z |<xj,sck>|} .

In [6] (see alsol[b, p. 138]), we have established the following norm inequalities:

1
n
E Q2
j=1

2 n n n % “
(3.9) <Y oy Z(Dwzmq) |

k=1 k=1 \j=1
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wherel +1=1,{+ i =1landl <p<21<t<2anda; €C,z € H je{l,...,n}.
An interesting particular case ¢f (3.9) obtainedfor ¢ = 2, ¢t = u = 2 is incorporated in

SIS

2 n n 2
(3.10) <) e (Z |<zj,zk>!2> -
k=1

J,k=1

n
E 0%
j=1

Other similar inequalities for norms are the following ories [6] (see also [5, pp. 139-140]):

n

2 n
1
<ne ) lanf 1255, [; {25, Zk)!q] :

k=1

(3.11)

n
E Q25
j=1

provided thatl <p <2and, + . =1,0; € C,z € H,j € {1,...,n}. Inthe particular case
p =g =2, we have

(3.12)

Also, if 1 < m < 2, then [6]:

3

(3.13)

2 n T
2|l < E || max |(z;, )|
= < [1<ksn 7 ’
j:

wherel +1 =1 Form = [ = 2, we get

ol

(3.14) i %5

2 n n
<Vl [ (m < >r)]

k=1 j=1

Finally, we can also state the inequality [6]:

(3.15) <nZ|ak| mmax |zj,zk>|

n
E :ozjz]
j=1

Utilising the above norm-inequalities and the definition of the hypo-Euclidean norm, we can
state the following result which provides other upper bounds than the ones outlined in Theorem
3.1 and 3.p:
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Theorem 3.3.Forany X = (z1,...,z,) € H", we have
(

=

Jj=

l+l_1 n n . q “ ) )
net > (25, 71) | where L +1 =1,
k=1 1 p q

T+i=landl<p<2 1<t<2

1
n q
n X [Z |<$j,$k>|q] where [+ ¢ =1
>Jxn =1
(3.16) X < ]
and 1 < p < 2;
n T

and 1 <m < 2;

n max |{zx, ;)] ;

and, in particular,

(3.17) IXIE < { Vi max {z |<xj,:ck>|2] "

1<i<n [

v [z (e {r<xj,xk>|2})] )

4. VARIOUS INEQUALITIES FOR THE HYPO-EUCLIDEAN NORM

For ann—tuple X = (x4, ..., z,) of vectors inH, we consider the usual-norms:

1
1X1l, = (Z H%Hp> :
j=1

wherep € [1, 00), and denote witt' the sumd 7", ;.
With these notations we can state the following reverse of the inequidlity > [|.X ||, , that
has been pointed out in Theorém|2.1.

Theorem 4.1.Forany X = (z1,...,z,) € H", we have

(4.1) 0 <) [1X15 = [IX12 < I1X1; = IS
If
n 2
2 Tj+ T
”X||(2) = Z ’ 5 )
4.k=1

then also
(4.2) O <) IX15 = IX)12 < 1X15) — 1S

(<nlXI; = 1IS1°):

J. Inequal. Pure and Appl. Math8(2) (2007), Art. 52, 22 pp. http://jipam.vu.edu.au/
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Proof. We observe, for any € H, that

2

n

Z <x>xj>

j=1

n n

=Y Az (w,m) =

j=1 k=1

Z<(I?,5Cj> <13,;Uk>
=1 k=1
=D Kea)P+ D (zay) (ax, )
k=1 1<j#k<n
n
2
< Nz 4| > (1) (ax, )
k=1 1<j#k<n

<D W+ Y Ky (w2

1<j#k<n

(4.3)

Taking the supremum ovére|| = 1, we get

2

(4.4)  sup Z(m,x]) < sup Z| z, 20) > + Z sup |(z,z;)| - sup [(zk,x)].
lell=1 | 5= Jel=1 = 1< lall=1 Jel=1
However,
" 2
Sup Z<£L‘,$]’> = sup ij - HSH27
lell=1 5= ll=l|=1
sup [(o.25)| = s and - sup [(r,)] = o]

for j,k € {1,...,n}, and by [(4.4) we get

2 2
ISIP < IXIE+ > gl Nl

1<j7$k<n

= [IX1; + Z [l el = Z A

7,k=1
= [1X12 + 117 = 115
which is clearly equivalent with (4.1).
Further on, we also observe that, for ang H we have the identity:

n 2

(4.5) Z (r,xz;)| =Re Z (@, xj) (xy, x>]
=> Kaz)P+ D Rel(w,z;) (ax,2)].
k=1 1<j#k<n

Utilising the elementary inequality for complex numbers

(4.6) Re (ut) < = Ju+v|°, u,v € C,

»&IH
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we can state that

1 2
> Rel(r, ) (@r,2)] < 5 > Hwa) + (o))
1<k#j<n 1<k#j<n
C 5 [(mmy
- ‘ I 2 I
1<k#j<n
and by [4.5) we get
n 2 n l"‘i‘l’k 2
@) S| < Slwalfs 3 (055
j=1 k=1 1<k#j<n
foranyz € H.
Taking the supremum ovélre|| = 1 in (4.7) we deduce
n 2 2
T+ T
A < IXP LTtk
S <ixize Y [71
=1 1<k#j<n
_ T+ T 2 u
2 j 2
= IXI2+ 30 | E5E]| = D
k,j=1 k=1

which provides the first inequality if (4.2).
By the convexity of|-||* we have

n 2 n n
T+ T 1 2 2 2
SIS <520 Ul + lael®) = n >l
dk=1 Jk=1 k=1
and the last part of (4.2) is obvious. O

Remark 4.2. Forn = 2, X = (z,y) € H* we have the upper bounds
By (z,y) = ||z[* + llyl* = l|= + yII*
= 2([[z[| Iyl — Re (z, ))
and ) ,
By (z,y) = |lz|” + llyll
for the difference|| X |5 — || X||>, X € H? as provided byl) an.2) respectively. If
H = Rthen B (z,y) = 2(|lzvy| — zy), B2 (z,y) = z* + y*. If we consider the function
A (x,y) = Bs (z,y) — By (z,y) then the plot ofA (z,y) depicted in Figurg 4]1 shows that the

bounds provided by (4.1) and (#.2) cannot be compared in general, meaning that sometimes the
first is better than the second and vice versa.

From a different view-point we can state the following result:
Theorem 4.3.Forany X = (xy,...,x,) € H", we have

2

(4.8) IS < 1L, 11Xl + (Z IS5 = mkll2>
k=1

and

(4.9) 1IS|1> < |1X]), | 1], + ggkagnus—mkn%( > |<s—xk,s—xz>12) ,

1<k#I<n

J. Inequal. Pure and Appl. Math8(2) (2007), Art. 52, 22 pp. http://jipam.vu.edu.au/
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Figure 4.1: The behaviour ah (z,y)

respectively.

Proof. Utilising the identity [4.5) above we have

By the Schwarz inequality in the inner product spage (-,

n 2
(4.10) > la )
7j=1
foranyz € H.
(4.11) Re <9c, Z (x, )
1<j#k<n

Z| z, 24) | +Re<x

> < ||z

Z <I,Ik> ‘Tj>

1<j#k<n

-)), we have that

Z (x, k) x;

1<j#k<n
n n
Z (T, k) 2y — Y (T, 28) T
73,k=1 k=1
(v m} IRED I
=1 p=

n

Z x, k) (S — )
k=1

Utilising the Cauchy-Bunyakovsky-Schwarz inequality we have

< (St ) (zus—mkn)

J. Inequal. Pure and Appl. Math8(2) (2007), Art. 52, 22 pp.
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and then by[(4.10) —E(Z_T}LZ) we can state the inequality:

Z T, ;) (ZI T, Tk) ) (ZI(Mk>I2> + <Z||S—wk||2>

foranyx € H, ||z|| = 1. Taking the supremum ovelr|| = 1 we deduce the desired result

@.9).

Now, following the above argument, we can also state that

(4.14) ‘<x, zn:xj>

foranyz € H.
Utilising the inequality

2
>z <Z|%| max 211" +< > \<Zj,2k>|) :
j=1

1<j#k<n
wherea; € C, z; € H, j € {1,...,n}, that has been obtained in [4], see also [5, p. 128], we
can state that

NI

(4.13)

< Z| zai)|” + |z Z<$>$k> (5 — )

k=1

N[

(4.15)

(4.16) || (,2x) (S —az)
k=1
< (Z \<x,xk>r2) max |8 — a]* + ( > S —anS - xm?)
k=1 1<k#I<n
foranyz € H.
Now, by the use of (4.14) £ (4.]L6) we deduce the desired r¢sult (4.9). The details are omitted.

O

Remark 4.4. On utilising the inequality:

n
E :O‘jzj
i=1

wherea; € C, z; € H, j € {1,...,n}, that has been obtained in [4], (see also [5, p. 130])
in place of (4.1p) above, we can state the following inequality for the hypo-Euclidean norm as

well:
1
2]

Other similar results may be stated by making use of the results from [6]. The details are left
to the interested reader.

(4.17)

<Z\ajr s (0= 1) el

(4.18) |||

1<k#l<n

< |x], [nxu {15 — a4 (0 1) e 145 - .5 )l

forany X = (z1,...,2,) € H".
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5. REVERSE INEQUALITIES

Before we proceed with establishing some reverse inequalities for the hypo-Euclidean norm,
we recall some reverse results of the Cauchy-Bunyakovsky-Schwarz inequality for real or com-
plex numbers as follows:

If v,'e K(K=C,R)andeo; € K, j € {1,...,n} with the property that

(1) 0<Rel(l— ay) (a;—7)
= (ReI' = Req;) (Rea; —Revy) + (ImI' = Ime;) (Imor; — Im )
or, equivalently,

v+ T
0~ —5—| < 5T =

(5.2) :

foreachj € {1,...,n}, then (see for instance [5, p. 9]

(5.3) nY lagl® ~ Zaj
j=1 j=1
In addition, ifRe (I'y) > 0, then (see for examplel[5, p. 26]):

(5.4) nz:;m] 3}1 {Re [(F ;g()fy:; 1043]}

< -0 —qf.

»-l&l>—‘

2
1 T+ |
< < ST Qj
4 Re(T'¥) ]; !
and
n 1 N 2 n 2
(55) n (o7 o S — — Qs
;| ]| Z J 4 e(Fv) ; J
Also, if I' # —~, then (see for instance [5, p. 32]):
. 2 T — W|2
(5.6) TLZ |aj| Zaj = Z |F—}— |
=1 i

Finally, from [7] we can also state that

(5.7) nZ|ozj|2 -
j=1 j=1

providedRe (I'y) > 0.
We notice that a simple sufficient condition fpr (5.1) to hold is that

Sn[|F+7|—2 Re rﬂ

(5.8) Rel' > Rea; > Rey and ImI'>Ima; > Imvy

foreachj € {1,...,n}.
We can state and prove the following conditional inequalities for the hypo-Euclidean norm

Il -
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Theorem 5.1. Letyp, ¢ € Kand X = (z4,...,x,) € H" such that either:

o+

(5.9) :

1
< 2l —
’_2|¢ |

<.T, xj) -
or, equivalently,

(5.10) Re (¢ — (z,z;)) ((zj,2) = @)] =2 0

foreachj € {1,...,n} and foranyz € H, ||z|| = 1. Then
2 1 2 1 2
(5.11) X112 < < 1ISIP + nlo — ol

Moreover, ifRe (¢@) > 0, then

1 e+l
(5.12) IX0E < 4 Kooy IS
and

o _ 1 o2 =

(5.13) IXI2 <~ ISIP + [lo + ¢l = 2v/Re (69)] IS
If ¢ # —¢, then

L 1 |¢—¢f
5.14 Xl < —|S —n-
(5.14) X1, < S+ g oo

whereS = 3", z;

Proof. We only prove the inequality (5.1.1).
Letz € H, ||z|| = 1. Then, on applying the inequality (5.3) far = (z,z;),j € {1,...,n}
andI’ = ¢, v = ¢, we can state that

(5.15) Z\xm <_‘< Zx]>

Now if in (5.15) we take the supremum ovgr|| = 1, then we get the desired inequality
(G.11).
The other inequalities follow by (5.4), (5.7) arid (5.6) respectively. The details are omitted.
L]

1 2
+Z”!¢—SO| :

Remark 5.2. Due to the fact that

o+
2

<x7$j> -

<

foranyj € {1,...,n} andz € H, ||z|| = 1, then a sufficient condition fof (5.9) to hold is that

1
T §|¢ |

foreachj € {1,...,n} andz € H, ||z|| = 1.
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6. APPLICATIONS FOR n—TUPLES OF OPERATORS

In [9], the author has introduced the following norm on the Cartesian pra@i¢{ ) :=
B(H)x---x B(H),whereB (H) denotes the Banach algebra of all bounded linear operators
defined on the complex Hilbert spaék:

(6.1) \(Th,...,T)]|, = sup MY+ N
()\1 ..... )\n)EBn

where(Ty,...,T,) € B™ (H) andB, := {(\,...,\,) € C"|>0L, |A[° < 1} is the Eu-

clidean closed ball if©". It is clear that|-||, is a norm onB™ (H) and for any(T3, ..., T;,) €
B™ (H) we have
(6.2) (T Ta)lle = IICTT - TR s

whereT; is the adjoint operator df;, i € {1,...,n}.
It has been shown in [9] that the following inequality holds true:

1 o * . *

for anyn—tuple(Ty,...,T,) € B™ (H) and the constant% and1 are best possible.
In the same papelr[9] the author has introducedaheidean operator radiusf ann—tuple
of operatorgTy,...,T,) by

1 1
2 2

(6.3) < |(Th,.... T, <

2

(6.4) we (Th,.., T,) = sup (irmx,m?)

[lz]l=1

and proved thatv, (-) is a norm onB™ (H) and satisfies the double inequality:

€

1
(6.5) S 1T )l S we (T, To) < (T To) |

for eachn—tuple(T1,...,T,) € B™ (H).
As pointed out in[[9], the Euclidean numerical radius also satisfies the double inequality:

1 : * . *

forany(Ty,...,T,) € B™ (H) and the constan% and1 are best possible.

We are now able to establish the following natural connections that exists between the hypo-
Euclidean norm of vectors in a Cartesian product of Hilbert spaces and the [pfyrrfor
n—tuples of operators in the Banach algebréH ) .

1
2

(6.6) <w,(Th,....T,) <

Theorem 6.1.For any(Ty,...,T,) € B™ (H) we have

(6.7) (T, Tl = sup I(Tvy, - Tay) .
y:
n 3
= sup (D [Ty, o)
Iwl=1liel=1 \ 55
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Proof. By the definition of the|-||, —norm onB™ (H) and the hypo-Euclidean norm di",
we have:

(6.8) ||(T1a e 7Tn)|| = sSup

e

sup [[(MTh+ -+ NT) |
llyll=1

= sup sup IMTy+ -+ N Tyl
llyll=1 | (M

= sup [[(Thy, ..., Ty, -
lyll=1

Utilising the representation of the hypo-Euclidean normfhfrom Theorenj 22, we have

(6.9) (T, ..., Twy)ll, = sup (Z [(Tyy, x>\2> :
Z||= j 1
Making use of[(6.8) and (6.9) we deduce the desired equflity (6.7). O

Remark 6.2. Utilising Theorenj 2.1, we have

(6.10) (ZH y!l) > (T, - .., Thy)l (ZH y!l)

foranyy € H, ||y|| = 1.

Since
S Tl = <Z TTyy> =1
j=1 j=1

hence, on taking the supremum O‘H@Iﬂ = 1in (6.1Q) and on observing that

yll= j=1

we deduce the mequalltm.S) that has been establishéed in [9] by a different argument.

We observe that, due to the representation Thegrem 6.1, some inequalities obtained for the
hypo-Euclidean norm can be utilised in obtaining various new inequalities for the operator
norm||-||, by employing a standard approach consisting in taking the supremunfigyer 1,
as described in the above remark.

The following different lower bound for the Euclidean operator ndffif) can be stated:

Proposition 6.3. For any (11, ..., T,,) € B™ (H) we have

(6.11) (Ty,....T)|l, > —=|Ti + -+ Tnl| -

|
\/_
Proof. Utilising Propositior) 2.4 and Theorgm B.1 we have:

(T, o)l = HSlnlp 1Ty Tay)
y

> — sup [Ty + -+ Thyl|

f lyll=1

=— Ty +--+T,
\/ﬁll 1 Tl
which is the desired inequality (6]11). O
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We can state the following results concerning various upper bounds for the operator norm

[ECTPR 1|
Theorem 6.4.For any (7, . ..

(6.12) I(Th,. ..

,T,) € B™ (H), we have the inequalities:

1

2

max {| 7"} + | 3

1<jsn 1<j#k<n

max {HTH b+ (n—1) max {w(T;T))};

1<j<n 1<j#k<n

w? (T3 T5)

Y

2

1<j<n

1
2

+ max (T 1T}

2.

1<j#k<n

w (1.1})

\

The proof follows by Theorein 3.1 and Theorem| 6.1 and the details are omitted.
On utilising the inequalities (3.8) and (3]17) we can state the following result as well:

Theorem 6.5. For any (11, . ..

(6.13) (T, ..

2
Tl <

,T,) € B™ (H), we have:

{ w(Té‘Tj)};

( n

2.

k=1

max
1<j<n

The results from Sectidn 5 can be also naturally used to provide some reverse inequalities

that are of interest.

Theorem 6.6.Let (T3, ...,T),)
(6.14) 1y - 250
andforeachj € {1,...,n}.T
(6.15) (T, . ..

In addition, ifRe (¢¢) > 0, then

(6.16) (T3, ...
and
6.17)  |(Ty,..., T <

J. Inequal. Pure and Appl. Matj8(2) (2007),

€ B™ (H) andy, ¢ € K such that
1
o < 310l torany il = Iyl =1
hen
o _ 1% 1 2
JTH)HeS_ ZT_VJ +ﬁ’¢_gp| .
7=1
1 |¢+90|
T 2
’ 77»)||e — 4n
=1
1 n 2 n
SIS T|| + [lo+ el —2vRe (7)) | ST
j=1 =1
Art. 52, 22 pp. http://jipam.vu.edu.au/
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If ¢ # —¢, then also

!d) ol
(6.18) (T, .... T, 3 ol
Proof. For anyz,y € H with ||z|| = ||y|| = 1 we have
(2, Ty) ~ 212| = KasTy— W;%‘
< o |7y~ 2520
S%W—M

foreachj € {1,...,n}.
Now, on applying Theorefn §.1 far; = T}y, we can write from[(5.1]1) the following inequal-
ity

1
(Tvy, ..., T)ll, < Tyy +Zn|¢—s@|2

for eachy with ||y|| = 1.

Taking the supremum ovédjy|| = 1 and utilising Theorerp 6|1, we deduc¢e (6.15).

The other inequalities follow by a similar procedure on making use of the inequdlitie$ (5.12)
— (5.14) and the details are omitted. O

Remark 6.7. The inequality[(6.14) is equivalent with
(6.19) 0 <Rel(¢ - (z,Ty)) (Tiy, x) — P)]
= (Re(¢) — Re(z,T;y)) (Re (Tjy, x) — Re (¢))
+ (Im (¢) — Im (z, Tjy)) (Im (Tjy, x) — Im (¢))
for eachj € {1,...,n} and|jz|| = |ly|| = 1. A sufficient condition for[(6.1]9) to hold is then:

Re () < Re(z, Tjy) < Re(¢)
(6.20)
Im (¢) < Im (z, Tjy) < Im(¢)

foranyz,y € H with ||z|| = ||y|| = 1andj € {1,...,n}.

7. ANORMON B (H)
For an operatodl € B (H) we define
(7.1) 6 (A) == [[(A, A", = sup [AA+pA*||,

(A,p)€EB2

whereB, is the Euclidean unit ball if?.
The properties of this functional are embodied in the following theorem:

Theorem 7.1. The functional is a norm onB ( H) and satisfies the double inequality:
(7.2) [A]l < 6(A) <2]A]
foranyA € B(H).
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Moreover, we have the inequalities

(7.3) ? 42 4+ (A F < 5() < [|4% + (A
and
(7.4) gHAJrA*H < 6(A) < [JAF +w (4%)]°

foranyA € B (H), respectively.
Proof. First of all, observe, by Theorem 5.1, that we have the representation

(7.5) §(A) = s [[{Ay, 2)|* + [(A*y, z) "] 2
z||=1,||y||=
foreachA € B(H).
Obviouslyd (4) > 0 for eachA € B (H) and ofd (A) = 0 then, by [7.5)(Ay, z) = 0 for
anyz,y € H with ||z|| = ||y|| = 1 which implies thatd = 0. Also, by (7.5), we observe that

S(ad)= sup [[{ady,a) + [(ad%y, 2)[2]?

[[z]|=1,llyl|=1

=lal sup [[(Ay.2)[* + [(A%y,2)["]

Jall =1, lyl=1
= |af0(4)

foranya € RandA € B (H).
Now, if A, B € B(H),then

d(A+B)= sup [N+ pA"+ B+ uB*|

(ST

(Avu)€B2
< sup (A +pAT[+ sup [|AB+ pB|
(M) EB2 (Am)€B2
=0(A)+0(B),

which proves the triangle inequality.
Also, we observe that
6(A4)=  sup  [{Ay,z)| = [|A]
lzll=1,llyll=1
and
6(A) < sup  [[(Ay,z)|+ (A", z)|]

ll=lI=1,llyl|=1

< sup  [(Ay,z)|+  sup  [{(ATy, )|
lzl|=1,]jyl|=1 lzll=1, lyll=1

=24

and the inequality| (7]2) is proved.
The inequality [(7.B) follows fron (6]3) for = 2, T; = A andT, = A* while (7.4) follows

from Propositioti 6J3 and the second inequality in (5.12) for the same choices. O
Remark 7.2. It is easy to see that
V2

51424 (A?)|F <114
and

1

147 + (A7 [IAIP +w (4%)] < 24
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for eachA € B (H). Also, we notice that ifA is self-adjoint, then the equality case holds in
the second part of (7.3) and in both sideq of|(7.4). However, it is an open question for the author
which of the lower boundgA|| , \/75 ||A + A*|| of the normy (A) are better and when. The same

1

question applies for the upper bour]f4* + (A*)QH% and [||A||* +w (A?)]?, respectively.
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