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ABSTRACT. The generalized geometric mean operator
1 x
Gue () = exp s | K(ow)log )y,
K(z) Jo

with K (z) := [ k(z,y)dy is considered. A characterization of the weights) andv(z) so
that the inequality

</OOO (Grf(x)u(z) dm)l/q <C (/OOO f(x)pv(m)dl,)l/p7 F>0.

holds is given for alh < p, ¢ < oo both for allG x wherek(z, y) satisfies the Oinarov condition

and for Riemann-Liouville operators. The corresponding stable boun@s=ef(|G || ;» .«
are pointed out.
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2 MARIA NASSYROVA, LARS-ERIK PERSSON AND VLADIMIR STEPANOV

1. INTRODUCTION

LetR, :=[0,00) and letk(z,y) > 0 be a locally integrable kernel defined Bn x R, and

such that
/ k(x,y)dy =1
Ry

foralmost allz € R,.
Denote

K f(z) = / ke y)f)dy,  F(y) > 0.

If Kf(z) < oo, then there exists a limit

(1.2) Gref(v) = lim [K f* ()]
and
(12) Gref(z) = exp /0 k(z,y)log f(y)dy.

For0 < p < oo and a weight functiom(z) > 0 we put

1fllzz == (/OOO ‘f($)|pv(x)dx> 1/p

and make use of the abbreviatipfi|| .» whenv(z) = 1.
Suppose:(z) > 0 andv(x) > 0 are weight functions and < p, ¢ < co. This paper deals
with P — L¢ inequalities of the form

(13) ( / ) <GKf>qu) e ( / ) fpv)l/p, =

where a constartt' is independent orf and we always assume thats the least possible, that
isC = ||Gk||r—r2, where

G ¢
(1.4) HGKHLﬁHLZ := sup m
f=0 Hf”Lg

For the classical cadgz, y) = %X[va} (y) with the Hardy averaging operator

(15) 1w = [ sy

the inequality[(1.B) was characterized|in [6] (see &l$o [7]).

In Sectior{ 2 of this paper we present a general scheme on how inequalities of the type (1.3)
can be characterized via the limiting procedure in similar characterization (in suitable forms)
of some corresponding Hardy-type inequalities. In Se¢tjon 3 we characterize the weights
andv(z) so that[(1.B) with) < p < ¢ < co holds when

16) Gacfa) = exp o [ ko) o Fl)dy

with

K(z):= /0 k(xz,y)dy < co, x>0,

and K (0) = 0, K(oc0) = oo, and wherk (z, y) satisfies the Oinarov condition (see Theorem
[3.1). The corresponding characterization for the ¢aseq < p < oo can be found in Section
4| (see Theorein 4.1). A fairly precise result in the ca¢e,y) = (z —y)”, v > 0, i.e. when
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WEIGHTED INEQUALITIES WITH GEOMETRIC MEAN OPERATOR 3

Gk is generated by the Riemann-Liouville convolutional operator, can be found in Sgftion 5
(see Theorem 5.1). In particular, this investigation shows that inequalities of th¢ type (1.3) can
be proved also when the Oinarov condition is violated (becausé far~ < 1 this kernel
does not satisfy this condition). In order to prove these results we need new characterizations
of weighted inequalities with the Riemann-Liouville operator which are of independent interest
(see Theorem 5.3 and 5.5).

Finally note that the operatdr (1.6) was studied in a similar connection, by E.R. Love [3],
where a sufficient condition was proved for the inequality](1.3) to be valid in thegrcase= 1
and special weights.

2. GENERAL SCHEMES

We begin with some general remarks. By using the elementary property

(2.1) Gr(f*) = (G f)*, —o0<s<oo,
we see that

(2.2) IGucllig—rs = NGxllrry, = 11Gxl” o
where

qa/p
(2.3) w = {GK <1>] u.
v

Moreover, from|[(1.]l) and (2.2)

1 1/
(2.4) 1Gkllp—rs = fim B e g

The last formula generates the “precise” scheme for characterizationof (1.3) provided the norm
of the associated integral operafgrhas very accurate two-sided estimates of the norm

(2.5) ap, ) F(w,p,q) < [|Kllp_ g < c2(p,q)F(w,p,q)
in the sense that there exist the limits
1/a
(26) Cz(p7Q7F):hm |:ci (£72>F<w7£72>i| ) 2.21727
al0 o o
and

¢i(p,q, F) € (0,00), i=1,2.
A natural consequence ¢f (2.2) and {2.4) is then the two-sided estimate

(27) Cl(p7Q7F) S ||GK||LP—>LZJ S 62(p7q7 F)a

which characterize$ (1.3) with the least possible constants provided the estimates in (2.5) are
also the best.

This scheme was realized in [6] whekeis the Hardy averaging operatér ([L.5) anet p <
q < oo. For this purpose a new non-Muckenhoupt form[of|(2.5) was used. We generalize this
result here for the Riemann-Liouville kernel in Section 4.

Unfortunately, the above scheme does not work for a more general operator or even for
the Hardy operator, iff < p, because the estimafe (2.5) happens to be vulnerable, when the
parameterg andq tend tooo, so that the limits:;(p, ¢, F') become eithed or co. However, if
the functionalF’ is homogeneous in the sense that

(2.8) [F (w, B, 2)} e = F(w,p,q), «a>0,

a «

J. Inequal. Pure and Appl. Math3(4) Art. 48, 2002 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

4 MARIA NASSYROVA, LARS-ERIK PERSSON AND VLADIMIR STEPANOV

then an alternative “stable” scheme for (2.7) works, provided the lower bound

(2.9) c3(p, @) F(w,p,q) < |Gkllpo_pa

can be established. The right hand sid€ of|(2.7) follows from the upper boundfrdm|[(Z.5), (2.2)
and Jensen’s inequality

(2.10) Grf(zr) < Kf(2),

because (2]8) implies

s/p
(2.11) {F (w,s, %q)] = F(w,p,q), s>1.

To realize the “stable” scheme for the Hardy averaging operator, When; < p < oo and
p > 1 an alternative (non-Mazya-Rozin) functionfalwas found in[[6] in the form

o0 x4/ (=) Va=1/p
(2.12) F(w,p,q) = (/0 (i/o w) w($)d1:>

which obviously satisfie$ (2.1.1).

The idea to us.2) and (2|10) for the upper bound estimate of the|f@x#,» .. orig-
inated from the paper by Pick and Opic [8], where the authors obtained two-sided estimates of
|Grllp_pa, 0 < g < p < co. However, they realiz.5) in Muckenhoupt or Mazya-Rozin
form with unstable factors and, therefore, the estinjaté (2.7) was rather uncertain.

Throughout the paper, expressions of the farmeo, co/oc0, 0/0 are taken to be equal to
zero; and the inequalitdt < B meansA < ¢B with a constant > 0 independent of weight
functions. Moreover, the relationship ~ B is interpreted asA < B < Aor A = ¢B.
Everywhere the constant in explored inequalities are considered to be the least possible one.
In the casey < p the auxiliary parameteris defined byl /r = 1/q — 1/p.

3. HARDY-TYPE OPERATORS. CASE( < p < g < 00

In the sequel we let(z,y) > 0 be locally integrable iR, x R, and satisfies the following
(Oinarov) condition: there exists a constdnt 1 independent on, y, z such that

(3.1) é(k(x,z) +k(z,y) < k(z,y) <d(k(z,2) + k(z,y)), z>z>y=>0.
We assume that
(3.2) K(z) = /Of’f k(xz,y)dy < co, x>0,
andK(0) =0, K(o0) = o0.
Without loss of generality we may and shall also assumefthaty) is nondecreasing im

and nonincreasing if.
We consider the following Hardy-type operator

i | e w2020

and the corresponding geometric mean operaior

i | o fy

(3.3) Kf(z):=

Gk f(r) = exp
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Our main goal in this section is to find necessary and sufficient conditions on the weights
u(x) andv(z) so that the inequality

(3.4 </OOO(GKf(fE))qU(fE)d$)1/q§C</Ooof(év)pv($)d$>l/p, =)

holds for0 < p < ¢ < oo, and to point out the corresponding stable estimate€’ of
|Gkl ;p_..q- In view of our discussion in the previous section we first need to have the two-
sided estimates ofK]||;,_ ;. in suitable form. First we observe that it follows fromI([1,
Theorem 2.1]) by changing variables— % Yy — i and by using the duality principle (see [11,
Section 2.3]) that fot < p < ¢ < oo we have

(3.5) ca(d)A < K| g < cs5(p, g, d)A,
whered is defined by[(3]1),
(36) A =max (A(),Al)
with
t 1/q

(3.7) Ag:=supt™ /P (/ w)

t>0 0
and

(38)  Ar=sup </Otk(t,y)ﬂdy) o </Ot (/Oxk(x,y)ﬂdy)q ;’g))qu) Uq.

Itis easy to see tha, satisfies[(2.8) of (2.11), but nat . Itis also known, that neithek, < oo
nor A; < oo alone is sufficient for|K||,,_,;« < oo in general (see counterexampleslin [4],
[10] and [5]). For this reason we need to require some additional conditions of a kéine)

for the property

(3.9) Ao~ KL, »

and we will soon discuss this question in detail (see Propositign 3.3). Now we are ready to state
our main theorem of this section:

Theorem 3.1.Let0 < p < ¢ < oo and the kernek(z, y) > 0 be such thaf (3]9) holds. Then
(3.4) holds if and only i\, < co. Moreover,

(3.10) Ag < ||Gxllpp_ps

Proof. The sufficiency including the upper estimate [in (3.10) follows frm](2[2), {2.10) and
(3.9). Moreover, we note that, by (2.2),

00 1/q 00 1/p
(3.11) ([ @) <ol ([ )

By applying this estimate witlf,(x) = t~'/Px(o 4(z) for fixedt > 0 (obviously, || f[|, = 1) we

see that
t 1/q
o ( / w) < 1Cxllzp s
0

By taking the supremum ovemwe have also proved the necessity including the lower estimate
in (3.10) and the proof is complete. O

< Ag.

~Y
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Remark 3.2. For the case wheh(z, y) = 1 we have thatik coincide with the usual geometric
mean operator

Gf(z) = expi /O log f(y)dy

and thus we see that Theorfm|3.1 may be regarded as a genuine generalization of Theorem 2 in
[6] (see alsa[l7]).

As mentioned before we shall now discuss the question of for which kéktriels/) does the
condition [3.9) hold. We need the following notation:

K, (z) = / k(e y) dy,

1/q
(3.12) ayg = sup K, ()7 [ sup xl/p,k‘(t,x)} :
t>0 O<z<t
) 1/q
. o = b x, x) 9 (x ,
(3.13) sup t'/ ( / k(1)K (z)7d ( q/p))
t>0 t
and
oo 1/
(3.14) g := sup t'/¥’ (/ 2Pk (x,t)1d (—K(m)q)> q.
t>0 t

Proposition 3.3. Let1 < p < ¢ < . If a kernelk(x,y) > 0 is such that for all weights
(3.9) is true, thenyy + oy < co. Conversely, ity + a, < oo, then [3.9) holds. In particular, if
s < ag, then [3.9) is equivalent with the conditions < oo anda; < oc.

Proof. It is known ([11], (see also [2, Theorem 2.13])) that
(315) ||K||LP—>L?U = max (A07A1)7

Ay = sup (/OO k(x,t)? w() d:c) v t1/P’
>0 t 7 K(x) 7

Aj :=su /OO w(z) dx l/qK ()Y
b t>g) t K<x>q P .

It follows from a more general result ([5, Theorem 4]) that

where

(3.16) Ao ~ 1Kl 1o za

for all weightsw, if and only if oy < co. Moreover, if [3.9) is true for all weights, then [3.15)
implies

(3.17) Ag S Ao
and forw(z) = x%/P~Lit bringsa; < co. We observe that the inequality

(3.18) Ao S pAo
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is always true. Indeed, by applying Minkowski’s integral inequality we find that
t 1/q t x q 1/q
w(z) )
w = k(z,y)d dx
(L) = (L renar) 55
t 0o U}(I) )1/‘1
< k(x,y)!———dx d
< /0 ( /y (z,9) K(2)7 y

t
< Ao/ yfl/p/dy
0

= Agpt/?

and [3.18) follows. Thus| (3.9) impligs (3]16). Consequenily< oo and, thusgy + oy < oo.
Now, suppose that, + o, < oo. Then [3.1I6) holds and it is sufficient to proye (3.17). To
this end we note that

/too k(z, t)q;(”((qux
~ it t)/t ;: dx+/m;{”(§))q (/ die(s, t)>d
k:(tt/ (/md( )dx—i— (st)q< ;;lf)
= k(t, 1) /too ( ! )(/wx)dx) / dk(s, 1)1 / dx/ood<
([ vl s i) [

cis [ v )

< Aladt=a/P'
and [3.17) follows. Now{ (3]5)[ (3.6), (3.]16) annd (3.17) imply [3.9). The proof is compleie.

4. HARDY-TYPE OPERATORS. CASE( < g < p < 00

7)

Put

@ s ([ [ ) ")

A crucial condition for this case corresponding to the condition| (3.9) for the Case <
q < o is the following:
(4.2) Bo ~ K|l 1p_ 19 -
We now state our main result in this Section.

Theorem 4.1.Let0 < ¢ < p < oo and the kernek(z,y) > 0 be such thaf (4]2) holds. Also we
assume that

1/r

1
1
(4.3) K?x) /o k(x,xt)log Zdt <ag<oo, x>0.
Then (3.4) holds if and only B, < co. Moreover,

J. Inequal. Pure and Appl. Math3(4) Art. 48, 2002 http://jipam.vu.edu.au/
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Proof. The sufficiency including the upper estimate|in [4.4) follows by uding (4.2),](2.10) and
(4.2). Next we show that

(4.5) DS Gkl »

([ 5) e

For this purpose we consider

o0 r/(pq)
folz) = 27/0) ( / _w(i/)dy) .
. Y

D" = ||foll,-

where
1/r

Then

We have

1Gxll o g, 1ol
= |Gkl g, D7

> ( | (GKfo>qw) "
[ (o [ s

e ([0 ) wa]
([ (o [ )™ ([ 220 "]

4.6) = J.

1/q

Moreover,

1 =1 S log Z
K(x)/o k(z,y) log ydy og$+K($)/0 k(z,y) ngdy

=lo x—i/lk(:c xt) lo 1dt
- g K(l’) 0 ) g t
> logz — as,
whereas is a constant fronj (4]13). Then
_ %) (e%e] 7“/10 ,
4.7) J1> exp{ 043/7”(]}/ (/ w(z)dz) w(z)z" P de ~ D",
(pg) ) Jo \Jo 2

the last estimate is obtained by partial integration. Nowj| (4.5) follows by just combining (4.6)
and [4.7).
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It remains to show thab > B,. We have

/Otw(x)dx _ q/Ot (/0 qudz> %ds
~f (f tvgj)ds) 14
:q%:{(Z:E§Q%>unm@m}zqmmmz

(by Hélder's inequality with conjugate exponegtﬁndg)
q q

q/r

t t w(s) r/q , t s q/p
< r/d'+r/(2p) - )
<ol [/ ([ ) s ) ([ )

oo t B r/a
e ([ ([ ) m
0 0 Z 5
00 oo r/a e
_ / (/ w(s) dS) Zr/q’+r/(2p) (/ tT/(2p)T/th> dz
0 . s z
o 00 r/q
~ / (/ w(;) d5> 24y = D",
0 z §

Thus the lower bound i (4.4) and also the necessity is proved; so the proof is compléie.

Next we shall analyze and discuss for which kerrfels, y) the crucial conditions] (4]2)
holds. First we note that it follows for the cabe< ¢ < p < oo from a well-known result ([11],
see also [2, Theorem 2.19]) that

(4.8) 1K 2o g, = Bo + By,

where
e ([ ([ i) o)
N Rt

Moreover, it is established in ([5, Theorem 13]) that

B, < ByBy
for all weightsw for which By < oo, if and only if,

This implies

1/r

and

t —1/r
(4.9) Bo := sup K, (t)"/¥ (/ k(t,x)" d (xT/p/>) < o0.
t>0 0
Therefore
(4.10) 1Kl »_pa ~ Bo
under the conditiorf (4]9).

Partly guided by our investigation in the previous section we shall now continue by comparing
the constanB, andB,.
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Proposition 4.2. Let1 < g < p < co. Then
(@) By < Bo,
(b) By < 1By, if

1/p

o) T p/r
@11) B = ( /O ( /0 k(x,t)rtr/q’dt) xp/qK(a:)-p“H/q)d(K(@)) < 0.

Proof. (a) We have

B = /OOO (/Ot (/Oxk(w,y)dy>q ;”((;C))qu)r/qt—r/th

(applying Minkowski’s integral inequality)

< /000 (/Ot </ytk(x,y)q%§))qu) v dy)Tt—T/th
L (Eorino) o)

)
(applying Holder’s inequality, € <l, %))

q’

< [T ([ rrga) ) ([ o)
=(1—ar)" /0 b ( /y b k(x,y)q;((j))qu) . ( /y h t’"‘l_o”’_r/th) Yo" dy

_ (1—ar)'™"

r(a—1/q¢)
(b) Indeed, following the proof of Propositi¢n 3.3, we find

B; < /OOO </too k(z,t)? (/tm w) d (—K(:c)—‘I)y/th/Q’dt

(by Minkowski’s integral inequality)

< /OOO (/Ox k(x,t)" (/t’“’ w)r/q tr/q’dt> q/rd (K(x)q)>r/q
/OOO G /0 w> (/oxk(x’t)wq,dt) " (—K(x)q)>r/q
) q/ooo (é /Ow w) (/Oz k(xat)rtr/q/dt) " xK(ﬂﬁ)_(q“)dK(a;))

(by Hélder’s inequality applied with conjugate exponeﬁq"qtmdg)

) 1 x T/q
<qls [ (— / w) de = ¢/ B;
0 T Jo

and the proof follows.

Br.

VAN

r/q
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Remark 4.3. It is easy to see that the conditionis (4.3), (4.9) dnd (4.11) are satisfied with
k(x,y) = 1, i.e. whenGx = G (the standard geometric mean operator) and we conclude
that Theorem 4|1 may be seen as a generalization of Theoreml4 in [6] (s€€ also [7]).

We finish this Section by showing that the kernel, investigated!in [4], satisfies the condition
@.3).
Example 4.1. Let the kernek(z, y) be given by

(4.12) ka.y) = ¢ (4).

X
wherep(t) > 0 is decreasing function oft), 1) satisfying
(4.13) p(ts) < d(p(t) +¢(s), 0<ts<l.

Then @) is obviously valid.
If [, @(t)dt < oo, then the kernet(z, y) of the form ) satisfie.S). Indeed,

! 1 ! 1
/ k(x,zt)log —dt = / ©(t) log —dt
0 t 0 t
00 92—k 1
= Z/ o(t) log —dt
=0 2—k—1 t

(o] 29—k

|
< 9—h-1 / log —dt
<D e(@* [ log-

—k
k=0 2

<3 (@) (k4 1)2

<2ed g (27F7) 272

k=1
o0 o—k/2

= 23/2¢q 9—k/2 / dx
; gp ( ) 2(7k71)/2

2—k/2

< 23/2¢q / z) dx
< k; ey P

1
< 23/20d/ o(t)dt
0

1
= 23/20d/ k(z,xt)dt
0

—23/2cd1/ k(x, z)dz,
0

T

wherec = sup;. k2772,
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5. RIEMANN -LI1OUVILLE OPERATORS

Let~ > 0 and consider the following Riemann-Liouville operators:
v o[ -
51) Rofle) = [ =0 o)y,
0
and corresponding geometric mean operators

6. fw) = oxw | L [ (=i og fa]

In this section we shall study the question of characterization of the weightsandv ()
so that the inequality

(5.2) (/OOO (G f () u (2) da:) v <C (/OOO f(a:)pv(x)dx) 1/,,7 0<p,q< oo

holds and also to point out the corresponding stable estimat€s-oflG. || »_, .-

We note that in the case < v < 1 the kernelk(z,y) = (z—y)" " in ) does not
satisfy the Oinarov conditiorj (3.1) so the results in Theorems 3.1 and 4.1 cannot be applied.
However, this kernel has this property for the case 1 so the question above can be solved
by simply applying Theorenjs 3.1 ahd 4.1. Here we unify both cases in the next theorem and
give a separate proof to this operator which gives a better estimate of the upper bound.

Theorem 5.1. (a)Let0 < p < ¢ < oo. Then|(5.R) holds if and only &, < co. Moreover,

(5.3) Ay < ||G’Y||L€—>LZ, < '761/pA0, 1<y <oo.
and
(5.4) Ag < |Gyl ppe SAo, O0<y <L
(b) Let0 < g < p < oco. Then|[(5.R) holds if and only B, < co. Moreover,
(5.5) HG’YHL5—>LZ ~ By.

The factors of equivalence in (5.4) and (5.5) depeng,onand~ only.

Remark 5.2. By applying Theorem 5|1 with = 1 we obtain Theorems 2 and 4 in [6] (see
also [7]) even with the same constants in the upper estiméte in (5.3).

Partly guided by the technique usedin [6], we postpone the proof of Thgorém 5.1 and first
prove two auxiliary results of independent interest, namely a characterization of the inequality

00 1/q 0 1/p
(5.6) ([T®ara) <e([Tr) " 120

in a form suitable for our purpose.
The following two theorems may be seen as a unification and generalization of the results
from ([6, Theorems 1 and 3]) and ([9, Theorems 1 and 2]).

Theorem 5.3. (@)Lety > 1andl < p < ¢ < oo. Then
(5.7) Ay < HR’YHLP—>qu < ’YP/AO-
(b) Let0 <y < landl/y <p<gq<oo.Then

-1 1/p’
(58) AQ S ||R’Y||LP—>LZ, S Y [<p2iy — 1) (21/]7 + 22/17) + 21—’Yp/ AO-

Remark 5.4. The lower boundy, < |R,||,,_, ;. holds forally > 0 and0 < p,g < cc.
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Theorem 5.5. (@)Lety > 1,0 < g <p<oocandp > 1. Then

v " _1)r —1/r
(5.9) m(p/)w p T gBy < IR o2 < v¢"/9p'By.

(b) Let0 <y < 1,0< ¢ <p<ooandpy > 1. Then

~ (2(]/7” . 1)1/p <2qr/p2 _ 1) 1/r
93+1/r Bo

1/q

p— 1 1/p , r q/r
(5.10) < 7By (m — 1) gt+1/e (1 + 2”?) + (]3) 44 q (p)*

Proof of Theorerp 5]3For the lower bounds oh (5.7) arid (5.8) we repl#de (5.6) by the test
function f;(x) = xjo,9(x), t > 0. Then forp, ¢ < oo

s ([ > ([4)"

IRl o g, = Ao

Hence,

forall v > 0,0 <p,qg < oo. Forp < ¢qg=o00,p=gq=o000rq < p= oo the arguments are the
same.
Clearly,

(5.11) Ry f(x) <~vHf(z), v>1

and the upper bound ifi ($.7) follows from Theorem 1.in [6].
For the upper bound if (5.8) we follow the scheme from the proof of Theorem 1 in [9]. Put

J = (/OOO (x—l,y /OI (x — y)”_lf(y)dyyw(m)dw) "

and note that, by Minkowski’s inequality,

(5.12) J < Jy+ Jy+ Ja,
where
ok+1 T q
w(z)dx _
s= 3 [ (e )
kez, V2" v 2t
2k+1 2k q
a._ w(x)dx / Y p
n=X [ (e i)
and
ok+1 ok—1 q
w(z)dx
J3 =Z/ ) (/ (z ) 1f(y)dy)
ez /2" v 0
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Applying Hélder’s inequality we find

2k+1 2k+1

q/p /
w(z)dr x L q/p
H<y / 17 / : jq (/ (z —y) dy)
LeZ Qk 2k x Qk
p— 1 q/p/ ok+1 q/p ok+1
< ( ) Z / f? / w(z)dz | 27%/P
py—1 heZ 2k 2k
p— 1 q/p/ ok+1 q/p ok+1
< 94/p ( ) Z / Vid 2(k+1)q/p/ w(x)de
py—1 = 2k 0
_ q/p' o q/p
(5.13) < 94/p (M) Al (/ fp> :
py—1 0

where the last step follows by the elementary inequality,! < (3 a;)’, B > 1 and the
definition of A,.

Similarly, we obtain

p—1 a/pv’ 00 a/p
(5.14) JI < 4a/p ( 1> Al ( / fp) .
py — 0

For the upper bound of; we note that

Ji < 2= / (Hf)w
0

so that, by Theorem 1 in[6],

00 q/p
(5.15) Ji < 20078 ()1 ( / fp) .
0

By combining [(5.1B),[(5.14) and (5.]15) we obtain the upper boundl of (5.8) and the proof is
complete.

(a) For the lower bound we write

C (/OOO f”) " > 5 (/OOO (% /01/2 (x—y)™" f(y)dy>qw(fv)dx> N
> 5 ( [ (1 [ f)qw<x>dx> )
([ ) ons)

By applying Theorem 3 iri |6] we find

f)/
‘|R7HLP_>L;ZU 2 270 (p, q) Bo,

where
1/r

00 1 T r/q
By = / (—/ w(2s) ds) dx =27 VB,
0 T Jo

andc (p, q) = 274 (p")"/? p=V/rp=1/"' 4 and the lower bound i.9) is proved. Using
(5.11) and again Theorem 3 in [6] we obtain the upper bound of (5.9).
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(b) Itis shown in Theorem 2 in [9] that

Rollorg, = S E

=2

?

where

1
2k+1 /T

_ [ ST (/ w(igdm>r/q

kEZ

We show that
(2(1/7“ - 1)1/p (2(]1”/}?2 _ 1) 1/r
B

91+1/r 0-

-3 [ (G 0) e

keZ

T'/q 2k
<Z2 (k=1)r/q </ w) / dx
2k—1

keZ

(L)

k€EZ

m r/q
Cor) ke 77:;(12 /2 } m;;])g
_zpzzw<z{z [ w}e

keZ m<k

E >

Indeed,

(by applying Holder’s inequality wit#} and?)

om r/q r/p
S 27‘/1022 kr/p (Z 2= mq/p </ U}) > (Z 2mq/7‘)

kEZ m<k m<k
or/p+a/p 2m r/a )
S gl ( / w) S gty
2q/r - /p meZ 2m—t k>m
22r/p ( >r/q
_ 2= mr/p / w
) 2 "
9r(1+1/p)
< E".
(29/7 — 1)7"/” (2ar/P* — 1)
Conversely,
2k
E" < 2 (k—=1)r/p /
2k+1
<2”/”ZQ kr/p / w / dx
kEZ 0
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2k+1

ot/ L
< QT/PTTa / (—/ w) dx
% ok T 0

(5.16) — or/ptr/agr.
Using the decomposition (5.]12) it is shown in Theorem 2 in [9] that

p - 1 1/pl / / o0 1/(]
J< ( ) ol/p <1+21/p)E+21‘”’ (/ (Hf)%)
py—1 0
Now the upper bound iri (5.1L0) follows frofn (5]16) and Theorem 3lin [6].

O
We are now ready to complete this section by presenting

Proof of Theorerm 5]1Both sides of[(5]3) follow from Theorem %(&) and [2.4). The lower
bound in [(5.4) follows by using the test functions from the proof of Thegrein 3.1 and the upper
bound is a consequence ¢f (2.2), (2.10) dnd]|(5.8). Similarly, the pro¢if)dé based upon
Theoren 5. and we use the same test function for the lower bound as in the proof of Theorem
(4.7 with subsequent application of the inequalBy< B,. The proof is complete. O
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