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ABSTRACT. The generalized geometric mean operator

GKf(x) = exp
1

K(x)

∫ x

0

k(x, y) log f(y)dy,

with K(x) :=
∫ x

0
k(x, y)dy is considered. A characterization of the weightsu(x) andv(x) so

that the inequality(∫ ∞
0

(GKf(x))q
u (x) dx

)1/q

≤ C

(∫ ∞
0

f(x)pv(x)dx

)1/p

, f ≥ 0,

holds is given for all0 < p, q < ∞ both for allGK wherek(x, y) satisfies the Oinarov condition
and for Riemann-Liouville operators. The corresponding stable bounds ofC = ‖GK‖Lp

v→Lq
u

are pointed out.
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1. I NTRODUCTION

Let R+ := [0,∞) and letk(x, y) ≥ 0 be a locally integrable kernel defined onR+ ×R+ and
such that ∫

R+

k(x, y)dy = 1

for almost allx ∈ R+.
Denote

Kf(x) :=

∫ ∞

0

k(x, y)f(y)dy, f(y) ≥ 0.

If Kf(x) < ∞, then there exists a limit

(1.1) GKf(x) := lim
α↓0

[Kfα(x)]1/α

and

(1.2) GKf(x) = exp

∫ ∞

0

k(x, y) log f(y)dy.

For0 < p < ∞ and a weight functionv(x) ≥ 0 we put

‖f‖Lp
v

:=

(∫ ∞

0

|f(x)|pv(x)dx

)1/p

and make use of the abbreviation‖f‖Lp whenv(x) ≡ 1.
Supposeu(x) ≥ 0 andv(x) ≥ 0 are weight functions and0 < p, q < ∞. This paper deals

with Lp
v − Lq

u inequalities of the form

(1.3)

(∫ ∞

0

(GKf)q u

)1/q

≤ C

(∫ ∞

0

fpv

)1/p

, f ≥ 0,

where a constantC is independent onf and we always assume thatC is the least possible, that
is C = ‖GK‖Lp

v→Lq
u
, where

(1.4) ‖GK‖Lp
v→Lq

u
:= sup

f≥0

‖GKf‖Lq
u

‖f‖Lp
v

.

For the classical casek(x, y) = 1
x
χ[0,x](y) with the Hardy averaging operator

(1.5) Hf(x) :=
1

x

∫ x

0

f(y)dy

the inequality (1.3) was characterized in [6] (see also [7]).
In Section 2 of this paper we present a general scheme on how inequalities of the type (1.3)

can be characterized via the limiting procedure in similar characterization (in suitable forms)
of some corresponding Hardy-type inequalities. In Section 3 we characterize the weightsu(x)
andv(x) so that (1.3) with0 < p ≤ q < ∞ holds when

(1.6) GKf(x) = exp
1

K(x)

∫ x

0

k(x, y) log f(y)dy

with

K(x) :=

∫ x

0

k(x, y)dy < ∞, x > 0,

andK(0) = 0, K(∞) = ∞, and whenk (x, y) satisfies the Oinarov condition (see Theorem
3.1). The corresponding characterization for the case0 < q < p < ∞ can be found in Section
4 (see Theorem 4.1). A fairly precise result in the casek (x, y) = (x− y)γ, γ > 0, i.e. when
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WEIGHTED INEQUALITIES WITH GEOMETRIC MEAN OPERATOR 3

GK is generated by the Riemann-Liouville convolutional operator, can be found in Section 5
(see Theorem 5.1). In particular, this investigation shows that inequalities of the type (1.3) can
be proved also when the Oinarov condition is violated (because for0 < γ < 1 this kernel
does not satisfy this condition). In order to prove these results we need new characterizations
of weighted inequalities with the Riemann-Liouville operator which are of independent interest
(see Theorem 5.3 and 5.5).

Finally note that the operator (1.6) was studied in a similar connection, by E.R. Love [3],
where a sufficient condition was proved for the inequality (1.3) to be valid in the casep = q = 1
and special weights.

2. GENERAL SCHEMES

We begin with some general remarks. By using the elementary property

(2.1) GK(f s) = (GKf)s , −∞ < s < ∞,

we see that

(2.2) ‖GK‖Lp
v→Lq

u
= ‖GK‖Lp→Lq

w
= ‖GK‖s/p

Ls→L
sq/p
w

,

where

(2.3) w :=

[
GK

(
1

v

)]q/p

u.

Moreover, from (1.1) and (2.2)

(2.4) ‖GK‖Lp
v→Lq

u
= lim

α↓0
‖K‖1/α

Lp/α→L
q/α
w

.

The last formula generates the “precise” scheme for characterization of (1.3) provided the norm
of the associated integral operatorK has very accurate two-sided estimates of the norm

(2.5) c1(p, q)F (w, p, q) ≤ ‖K‖Lp→Lq
w
≤ c2(p, q)F (w, p, q)

in the sense that there exist the limits

(2.6) ci(p, q, F ) = lim
α↓0

[
ci

( p

α
,
q

α

)
F
(
w,

p

α
,
q

α

)]1/α

, i = 1, 2,

and
ci(p, q, F ) ∈ (0,∞) , i = 1, 2.

A natural consequence of (2.2) and (2.4) is then the two-sided estimate

(2.7) c1(p, q, F ) ≤ ‖GK‖Lp→Lq
w
≤ c2(p, q, F ),

which characterizes (1.3) with the least possible constants provided the estimates in (2.5) are
also the best.

This scheme was realized in [6] whereK is the Hardy averaging operator (1.5) and0 < p ≤
q < ∞. For this purpose a new non-Muckenhoupt form of (2.5) was used. We generalize this
result here for the Riemann-Liouville kernel in Section 4.

Unfortunately, the above scheme does not work for a more general operator or even for
the Hardy operator, ifq < p, because the estimate (2.5) happens to be vulnerable, when the
parametersp andq tend to∞, so that the limitsci(p, q, F ) become either0 or∞. However, if
the functionalF is homogeneous in the sense that

(2.8)
[
F
(
w,

p

α
,
q

α

)]1/α

= F (w, p, q), α > 0,
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4 MARIA NASSYROVA, LARS-ERIK PERSSON, AND VLADIMIR STEPANOV

then an alternative “stable” scheme for (2.7) works, provided the lower bound

(2.9) c3(p, q)F (w, p, q) ≤ ‖GK‖Lp→Lq
w

can be established. The right hand side of (2.7) follows from the upper bound from (2.5), (2.2)
and Jensen’s inequality

(2.10) GKf(x) ≤ Kf(x),

because (2.8) implies

(2.11)

[
F

(
w, s,

sq

p

)]s/p

= F (w, p, q), s > 1.

To realize the “stable” scheme for the Hardy averaging operator, when0 < q < p < ∞ and
p > 1 an alternative (non-Mazya-Rozin) functionalF was found in [6] in the form

(2.12) F (w, p, q) =

(∫ ∞

0

(
1

x

∫ x

0

w

)q/(p−q)

w(x)dx

)1/q−1/p

which obviously satisfies (2.11).
The idea to use (2.2) and (2.10) for the upper bound estimate of the norm‖GK‖Lp

v→Lq
u

orig-
inated from the paper by Pick and Opic [8], where the authors obtained two-sided estimates of
‖GH‖Lp

v→Lq
u
, 0 < q < p < ∞. However, they realized (2.5) in Muckenhoupt or Mazya-Rozin

form with unstable factors and, therefore, the estimate (2.7) was rather uncertain.
Throughout the paper, expressions of the form0 · ∞, ∞/∞, 0/0 are taken to be equal to

zero; and the inequalityA . B meansA ≤ cB with a constantc > 0 independent of weight
functions. Moreover, the relationshipA ≈ B is interpreted asA . B . A or A = cB.
Everywhere the constantC in explored inequalities are considered to be the least possible one.
In the caseq < p the auxiliary parameterr is defined by1/r = 1/q − 1/p.

3. HARDY-TYPE OPERATORS. CASE 0 < p ≤ q < ∞

In the sequel we letk(x, y) ≥ 0 be locally integrable inR+ × R+ and satisfies the following
(Oinarov) condition: there exists a constantd ≥ 1 independent onx, y, z such that

(3.1)
1

d
(k(x, z) + k(z, y)) ≤ k(x, y) ≤ d(k(x, z) + k(z, y)), x ≥ z ≥ y ≥ 0.

We assume that

(3.2) K(x) :=

∫ x

0

k(x, y)dy < ∞, x > 0,

andK(0) = 0, K(∞) = ∞.
Without loss of generality we may and shall also assume thatk(x, y) is nondecreasing inx

and nonincreasing iny.
We consider the following Hardy-type operator

(3.3) Kf(x) :=
1

K(x)

∫ x

0

k(x, y)f(y)dy, f(y) ≥ 0, x ≥ 0,

and the corresponding geometric mean operatorGK:

GKf(x) = exp
1

K(x)

∫ x

0

k(x, y) log f(y)dy.
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WEIGHTED INEQUALITIES WITH GEOMETRIC MEAN OPERATOR 5

Our main goal in this section is to find necessary and sufficient conditions on the weights
u(x) andv(x) so that the inequality

(3.4)

(∫ ∞

0

(GKf(x))q u (x) dx

)1/q

≤ C

(∫ ∞

0

f(x)pv(x)dx

)1/p

, f ≥ 0,

holds for 0 < p ≤ q < ∞, and to point out the corresponding stable estimates ofC =
‖GK‖Lp

v→Lq
u
. In view of our discussion in the previous section we first need to have the two-

sided estimates of‖K‖Lp→Lq
w

in suitable form. First we observe that it follows from ([1,
Theorem 2.1]) by changing variablesx → 1

x
, y → 1

y
and by using the duality principle (see [11,

Section 2.3]) that for1 < p ≤ q < ∞ we have

(3.5) c4(d)A ≤ ‖K‖Lp→Lq
w
≤ c5(p, q, d)A,

whered is defined by (3.1),

(3.6) A = max (A0,A1)

with

(3.7) A0 := sup
t>0

t−1/p

(∫ t

0

w

)1/q

and

(3.8) A1 := sup
t>0

(∫ t

0

k(t, y)p′dy

)−1/p(∫ t

0

(∫ x

0

k(x, y)p′dy

)q
w(x)

K(x)q
dx

)1/q

.

It is easy to see thatA0 satisfies (2.8) or (2.11), but notA1. It is also known, that neitherA0 < ∞
nor A1 < ∞ alone is sufficient for‖K‖Lp→Lq

w
< ∞ in general (see counterexamples in [4],

[10] and [5]). For this reason we need to require some additional conditions of a kernelk(x, y)
for the property

(3.9) A0 ≈ ‖K‖Lp→Lq
w

,

and we will soon discuss this question in detail (see Proposition 3.3). Now we are ready to state
our main theorem of this section:

Theorem 3.1. Let 0 < p ≤ q < ∞ and the kernelk(x, y) ≥ 0 be such that (3.9) holds. Then
(3.4) holds if and only ifA0 < ∞. Moreover,

(3.10) A0 ≤ ‖GK‖Lp
v→Lq

u
. A0.

Proof. The sufficiency including the upper estimate in (3.10) follows from (2.2), (2.10) and
(3.9). Moreover, we note that, by (2.2),

(3.11)

(∫ ∞

0

(GKf)q w

)1/q

≤ ‖GK‖Lp
v→Lq

u

(∫ ∞

0

fp

)1/p

.

By applying this estimate withft(x) = t−1/pχ[0,t](x) for fixed t > 0 (obviously,‖ft‖p = 1) we
see that

t−1/p

(∫ t

0

w

)1/q

≤ ‖GK‖Lp
v→Lq

u
.

By taking the supremum overt we have also proved the necessity including the lower estimate
in (3.10) and the proof is complete. �
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6 MARIA NASSYROVA, LARS-ERIK PERSSON, AND VLADIMIR STEPANOV

Remark 3.2. For the case whenk (x, y) ≡ 1 we have thatGK coincide with the usual geometric
mean operator

Gf(x) = exp
1

x

∫ x

0

log f(y)dy

and thus we see that Theorem 3.1 may be regarded as a genuine generalization of Theorem 2 in
[6] (see also[7]).

As mentioned before we shall now discuss the question of for which kernelsk (x, y) does the
condition (3.9) hold. We need the following notation:

Kp(x) :=

∫ x

0

k(x, y)p′dy,

α0 := sup
t>0

Kp(t)
1/p′
[

sup
0<x<t

x1/p′k(t, x)

]1/q

,(3.12)

α1 := sup
t>0

t1/p′
(∫ ∞

t

k(x, t)qK(x)−qd
(
xq/p

))1/q

,(3.13)

and

(3.14) α2 := sup
t>0

t1/p′
(∫ ∞

t

xq/pk(x, t)qd
(
−K(x)−q

))1/q

.

Proposition 3.3. Let 1 < p ≤ q < ∞. If a kernelk(x, y) ≥ 0 is such that for all weightsw
(3.9) is true, thenα0 + α1 < ∞. Conversely, ifα0 + α2 < ∞, then (3.9) holds. In particular, if
α2 . α1, then (3.9) is equivalent with the conditionsα0 < ∞ andα1 < ∞.

Proof. It is known ([11], (see also [2, Theorem 2.13])) that

(3.15) ‖K‖Lp→Lq
w

= max (A0, A1) ,

where

A0 := sup
t>0

(∫ ∞

t

k(x, t)q w(x)

K(x)q
dx

)1/q

t1/p′ ,

A1 := sup
t>0

(∫ ∞

t

w(x)

K(x)q
dx

)1/q

Kp(t)
1/p′ .

It follows from a more general result ([5, Theorem 4]) that

(3.16) A0 ≈ ‖K‖Lp→Lq
w

for all weightsw, if and only if α0 < ∞. Moreover, if (3.9) is true for all weightsw, then (3.15)
implies

(3.17) A0 . A0

and forw(x) = xq/p−1 it bringsα1 < ∞. We observe that the inequality

(3.18) A0 . pA0
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is always true. Indeed, by applying Minkowski’s integral inequality we find that(∫ t

0

w

)1/q

=

(∫ t

0

(∫ x

0

k(x, y)dy

)q
w(x)

K(x)q
dx

)1/q

≤
∫ t

0

(∫ ∞

y

k(x, y)q w(x)

K(x)q
dx

)1/q

dy

≤ A0

∫ t

0

y−1/p′dy

= A0pt
1/p

and (3.18) follows. Thus, (3.9) implies (3.16). Consequently,α0 < ∞ and, thus,α0 + α1 < ∞.
Now, suppose thatα0 + α2 < ∞. Then (3.16) holds and it is sufficient to prove (3.17). To

this end we note that∫ ∞

t

k(x, t)q w(x)

K(x)q
dx

≈ k(t, t)q

∫ ∞

t

w(x)

K(x)q
dx +

∫ ∞

t

w(x)

K(x)q

(∫ x

t

dk(s, t)q

)
dx

= k(t, t)q

∫ ∞

t

w(x)

(∫ ∞

x

d

(
−1

K(y)q

))
dx +

∫ ∞

t

dk(s, t)q

(∫ ∞

s

w(x)dx

K(x)q

)
= k(t, t)q

∫ ∞

t

d

(
−1

K(y)q

)(∫ y

t

w(x)dx

)
+

∫ ∞

t

dk(s, t)q

∫ ∞

s

w(x)dx

∫ ∞

x

d

(
−1

K(y)q

)
≤ Aq

0

(∫ ∞

t

yq/pd

(
−1

K(y)q

))
k(t, t)q +

∫ ∞

t

dk(s, t)q

∫ ∞

s

d

(
−1

K(y)q

)∫ y

s

w(x)dx

≤ Aq
0

∫ ∞

t

yq/pk(y, t)qd

(
−1

K(y)q

)
≤ Aq

0α
q
2t
−q/p′ .

and (3.17) follows. Now (3.5), (3.6), (3.16) and (3.17) imply (3.9). The proof is complete.�

4. HARDY-TYPE OPERATORS. CASE 0 < q < p < ∞

Put

(4.1) B0 :=

(∫ ∞

0

(
1

t

∫ t

0

w

)r/q

dt

)1/r

.

A crucial condition for this case corresponding to the condition (3.9) for the case0 < p ≤
q < ∞ is the following:

(4.2) B0 ≈ ‖K‖Lp→Lq
w

.

We now state our main result in this Section.
Theorem 4.1.Let0 < q < p < ∞ and the kernelk(x, y) ≥ 0 be such that (4.2) holds. Also we
assume that

(4.3)
x

K(x)

∫ 1

0

k(x, xt) log
1

t
dt ≤ α3 < ∞, x > 0.

Then (3.4) holds if and only ifB0 < ∞. Moreover,

(4.4) ‖GK‖Lp
v→Lq

u
≈ B0.
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Proof. The sufficiency including the upper estimate in (4.4) follows by using (2.2), (2.10) and
(4.2). Next we show that

(4.5) D . ‖GK‖Lp→Lq
w

,

where

D :=

(∫ ∞

0

(∫ ∞

x

w(y)

yq
dy

)r/q

xr/q′dx

)1/r

.

For this purpose we consider

f0(x) = xr/(pq′)

(∫ ∞

x

w(y)

yq
dy

)r/(pq)

.

Then

Dr/p = ‖f0‖p .

We have

‖GK‖Lp→Lq
w
‖f0‖p

= ‖GK‖Lp→Lq
w

Dr/p

≥
(∫ ∞

0

(GKf0)
q w

)1/q

=

[∫ ∞

0

(
exp

1

K(x)

∫ x

0

k(x, y)

× log

{
yr/(pq′)

(∫ ∞

y

w(z)

zq
dz

)r/(pq)
}

dy

)q

w(x)dx

]1/q

≥

[∫ ∞

0

(
exp

1

K(x)

∫ x

0

k(x, y) log ydy

)rq/(pq′)(∫ ∞

x

w(z)

zq
dz

)r/p

w(x)dx

]1/q

=: J.(4.6)

Moreover,

1

K(x)

∫ x

0

k(x, y) log ydy = log x +
1

K(x)

∫ x

0

k(x, y) log
y

x
dy

= log x− x

K(x)

∫ 1

0

k(x, xt) log
1

t
dt

≥ log x− α3,

whereα3 is a constant from (4.3). Then

(4.7) Jq ≥ exp

{
−α3rq

(pq′)

}∫ ∞

0

(∫ ∞

x

w(z)

zq
dz

)r/p

w(x)xr/(pq′)dx ≈ Dr,

the last estimate is obtained by partial integration. Now (4.5) follows by just combining (4.6)
and (4.7).
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It remains to show thatD ≥ B0. We have∫ t

0

w(x)dx = q

∫ t

0

(∫ s

0

zq−1dz

)
w(s)

sq
ds

= q

∫ t

0

(∫ t

z

w(s)

sq
ds

)
zq−1dz

= q

∫ t

0

{(∫ t

z

w(s)

sq
ds

)
zq−1+q/(2p)

}
z−q/(2p)dz

(by Hölder’s inequality with conjugate exponents
r

q
and

p

q
)

≤ q

(∫ t

0

(∫ t

z

w(s)

sq
ds

)r/q

zr/q′+r/(2p)dz

)q/r (∫ t

0

dz√
z

)q/p

.

This implies

Br
0 .

∫ ∞

0

(∫ t

0

(∫ ∞

z

w(s)

sq
ds

)r/q

zr/q′+r/(2p)dz

)
tr/(2p)−r/qdt

=

∫ ∞

0

(∫ ∞

z

w(s)

sq
ds

)r/q

zr/q′+r/(2p)

(∫ ∞

z

tr/(2p)−r/qdt

)
dz

≈
∫ ∞

0

(∫ ∞

z

w(s)

sq
ds

)r/q

zr/q′dz = Dr.

Thus the lower bound in (4.4) and also the necessity is proved; so the proof is complete.�

Next we shall analyze and discuss for which kernelsk (x, y) the crucial conditions (4.2)
holds. First we note that it follows for the case1 < q < p < ∞ from a well-known result ([11],
see also [2, Theorem 2.19]) that

(4.8) ‖K‖Lp→Lq
w
≈ B0 + B1,

where

B0 :=

(∫ ∞

0

(∫ ∞

t

k(x, t)q w(y)

K(x)q
dy

)r/q

tr/q′dt

)1/r

and

B1 :=

(∫ ∞

0

(∫ ∞

t

w(x)

K(x)q
dx

)r/p
Kp(t)

r/p′w(t)

K(t)q
dt

)1/r

.

Moreover, it is established in ([5, Theorem 13]) that

B1 ≤ β0B0

for all weightsw for whichB0 < ∞, if and only if,

(4.9) β0 := sup
t>0

Kp(t)
1/p′
(∫ t

0

k (t, x)r d
(
xr/p′

))−1/r

< ∞.

Therefore

(4.10) ‖K‖Lp→Lq
w
≈ B0

under the condition (4.9).
Partly guided by our investigation in the previous section we shall now continue by comparing

the constantB0 andB0.
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Proposition 4.2. Let1 < q < p < ∞. Then

(a) B0 . B0,
(b) B0 ≤ β1B0, if

(4.11) β1 :=

(∫ ∞

0

(∫ x

0

k(x, t)rtr/q′dt

)p/r

xp/qK(x)−p(1+1/q)d (K(x))

)1/p

< ∞.

Proof. (a) We have

Br
0 :=

∫ ∞

0

(∫ t

0

(∫ x

0

k(x, y)dy

)q
w(x)

K(x)q
dx

)r/q

t−r/qdt

(applying Minkowski’s integral inequality)

≤
∫ ∞

0

(∫ t

0

(∫ t

y

k(x, y)q w(x)

K(x)q
dx

)1/q

dy

)r

t−r/qdt

≤
∫ ∞

0

(∫ t

0

(∫ ∞

y

k(x, y)q w(x)

K(x)q
dx

)1/q

yαy−αdy

)r

t−r/qdt

(applying Hölder’s inequality,α ∈
(

1
q′
, 1

r′

)
)

≤
∫ ∞

0

(∫ t

0

(∫ ∞

y

k(x, y)q w(x)

K(x)q
dx

)r/q

yαrdy

)(∫ t

0

y−αr′dy

)r−1

t−r/qdt

= (1− αr′)
1−r

∫ ∞

0

(∫ ∞

y

k(x, y)q w(x)

K(x)q
dx

)r/q (∫ ∞

y

tr−1−αr−r/qdt

)
yαrdy

=
(1− αr′)1−r

r (α− 1/q′)
Br

0.

(b) Indeed, following the proof of Proposition 3.3, we find

Br
0 ≤

∫ ∞

0

(∫ ∞

t

k(x, t)q

(∫ x

t

w

)
d
(
−K(x)−q

))r/q

tr/q′dt

(by Minkowski’s integral inequality)

≤

∫ ∞

0

(∫ x

0

k(x, t)r

(∫ x

t

w

)r/q

tr/q′dt

)q/r

d
(
−K(x)−q

)r/q

≤

(∫ ∞

0

(
1

x

∫ x

0

w

)(∫ x

0

k(x, t)rtr/q′dt

)q/r

xd
(
−K(x)−q

))r/q

=

(
q

∫ ∞

0

(
1

x

∫ x

0

w

)(∫ x

0

k(x, t)rtr/q′dt

)q/r

xK(x)−(q+1)dK(x)

)r/q

(by Hölder’s inequality applied with conjugate exponentsr
q

and p
q
)

≤ qr/qβr
1

∫ ∞

0

(
1

x

∫ x

0

w

)r/q

dx = qr/qβr
1Br

0

and the proof follows.
�
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Remark 4.3. It is easy to see that the conditions (4.3), (4.9) and (4.11) are satisfied with
k(x, y) ≡ 1, i.e. whenGK = G (the standard geometric mean operator) and we conclude
that Theorem 4.1 may be seen as a generalization of Theorem 4 in [6] (see also [7]).

We finish this Section by showing that the kernel, investigated in [4], satisfies the condition
(4.3).

Example 4.1.Let the kernelk(x, y) be given by

(4.12) k(x, y) = ϕ
(y

x

)
,

whereϕ(t) ≥ 0 is decreasing function on(0, 1) satisfying

(4.13) ϕ(ts) ≤ d (ϕ(t) + ϕ(s)) , 0 < t, s < 1.

Then (3.1) is obviously valid.
If
∫ 1

0
ϕ(t)dt < ∞, then the kernelk(x, y) of the form (4.12) satisfies (4.3). Indeed,∫ 1

0

k(x, xt) log
1

t
dt =

∫ 1

0

ϕ(t) log
1

t
dt

=
∞∑

k=0

∫ 2−k

2−k−1

ϕ(t) log
1

t
dt

≤
∞∑

k=0

ϕ(2−k−1)

∫ 2−k

2−k−1

log
1

t
dt

.
∞∑

k=0

ϕ(2−k−1) (k + 1) 2−k−1

=
∞∑

k=1

ϕ(2−k)k2−k

≤ 2d
∞∑

k=1

ϕ
(
2−k/2

)
k2−k

≤ 2cd
∞∑

k=1

ϕ
(
2−k/2

)
2−k/2

= 23/2cd

∞∑
k=1

ϕ
(
2−k/2

) ∫ 2−k/2

2(−k−1)/2

dx

≤ 23/2cd

∞∑
k=1

∫ 2−k/2

2(−k−1)/2

ϕ (x) dx

≤ 23/2cd

∫ 1

0

ϕ(t)dt

= 23/2cd

∫ 1

0

k(x, xt)dt

= 23/2cd
1

x

∫ x

0

k(x, z)dz,

wherec = supk≥0 k2−k/2.
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5. RIEMANN -L IOUVILLE OPERATORS

Let γ > 0 and consider the following Riemann-Liouville operators:

(5.1) Rγf(x) :=
γ

xγ

∫ x

0

(x− y)γ−1 f(y)dy,

and corresponding geometric mean operators

Gγf(x) = exp

[
γ

xγ

∫ x

0

(x− y)γ−1 log f(y)dy

]
.

In this section we shall study the question of characterization of the weightsu (x) andv (x)
so that the inequality

(5.2)

(∫ ∞

0

(Gγf(x))q u (x) dx

)1/q

≤ C

(∫ ∞

0

f(x)pv(x)dx

)1/p

, 0 < p, q < ∞

holds and also to point out the corresponding stable estimates ofC = ‖Gγ‖Lp
v→Lq

u
.

We note that in the case0 < γ < 1 the kernelk(x, y) = (x− y)γ−1 in (5.1) does not
satisfy the Oinarov condition (3.1) so the results in Theorems 3.1 and 4.1 cannot be applied.
However, this kernel has this property for the caseγ ≥ 1 so the question above can be solved
by simply applying Theorems 3.1 and 4.1. Here we unify both cases in the next theorem and
give a separate proof to this operator which gives a better estimate of the upper bound.

Theorem 5.1. (a)Let0 < p ≤ q < ∞. Then (5.2) holds if and only ifA0 < ∞. Moreover,

(5.3) A0 ≤ ‖Gγ‖Lp
v→Lq

u
≤ γe1/pA0, 1 ≤ γ < ∞.

and

(5.4) A0 ≤ ‖Gγ‖Lp
v→Lq

u
. A0, 0 < γ < 1.

(b) Let0 < q < p < ∞. Then (5.2) holds if and only ifB0 < ∞. Moreover,

(5.5) ‖Gγ‖Lp
v→Lq

u
≈ B0.

The factors of equivalence in (5.4) and (5.5) depend onp, q andγ only.

Remark 5.2. By applying Theorem 5.1 withγ = 1 we obtain Theorems 2 and 4 in [6] (see
also [7]) even with the same constants in the upper estimate in (5.3).

Partly guided by the technique used in [6], we postpone the proof of Theorem 5.1 and first
prove two auxiliary results of independent interest, namely a characterization of the inequality

(5.6)

(∫ ∞

0

(Rγf)q w

)1/q

≤ C
(∫ ∞

0

fp

)1/p

, f ≥ 0,

in a form suitable for our purpose.
The following two theorems may be seen as a unification and generalization of the results

from ([6, Theorems 1 and 3]) and ([9, Theorems 1 and 2]).

Theorem 5.3. (a)Letγ ≥ 1 and1 < p ≤ q ≤ ∞. Then

(5.7) A0 ≤ ‖Rγ‖Lp→Lq
w
≤ γp′A0.

(b) Let0 < γ < 1 and1/γ < p ≤ q ≤ ∞. Then

(5.8) A0 ≤ ‖Rγ‖Lp→Lq
w
≤ γ

[(
p− 1

pγ − 1

)1/p′ (
21/p + 22/p

)
+ 21−γp′

]
A0.

Remark 5.4. The lower boundA0 ≤ ‖Rγ‖Lp→Lq
w

holds for allγ > 0 and0 < p, q ≤ ∞.
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Theorem 5.5. (a)Letγ ≥ 1, 0 < q < p < ∞ andp > 1. Then

(5.9)
γ

2γ+1/r+1/q
(p′)

1/q′
p−1/rr−1/r′qB0 ≤ ‖Rγ‖Lp→Lq

w
≤ γq1/qp′B0.

(b) Let0 < γ < 1, 0 < q < p < ∞ andpγ > 1. Then

γ
(
2q/r − 1

)1/p
(
2qr/p2 − 1

)1/r

23+1/r
B0

≤ ‖Rγ‖Lp→Lq
w

≤ γB0

( p− 1

pγ − 1

)1/p′

21+1/q
(
1 + 21/p′

)
+

((
r

p

)q/r

4q + q (p′)
q

)1/q
 .(5.10)

Proof of Theorem 5.3.For the lower bounds on (5.7) and (5.8) we replacef in (5.6) by the test
functionft(x) = χ[0,t](x), t > 0. Then forp, q < ∞

t1/pC ≥
(∫ ∞

0

(Rγft)
q w

)1/q

≥
(∫ t

0

w

)1/q

.

Hence,

‖Rγ‖Lp→Lq
w
≥ A0

for all γ > 0, 0 < p, q < ∞. Forp ≤ q = ∞, p = q = ∞ or q < p = ∞ the arguments are the
same.

Clearly,

(5.11) Rγf(x) ≤ γHf(x), γ ≥ 1

and the upper bound in (5.7) follows from Theorem 1 in [6].
For the upper bound in (5.8) we follow the scheme from the proof of Theorem 1 in [9]. Put

J :=

(∫ ∞

0

(
1

xγ

∫ x

0

(x− y)γ−1 f(y)dy

)q

w(x)dx

)1/q

and note that, by Minkowski’s inequality,

(5.12) J ≤ J1 + J2 + J3,

where

Jq
1 :=

∑
k∈Z

∫ 2k+1

2k

w(x)dx

xγq

(∫ x

2k

(x− y)γ−1 f(y)dy

)q

,

Jq
2 :=

∑
k∈Z

∫ 2k+1

2k

w(x)dx

xγq

(∫ 2k

2k−1

(x− y)γ−1 f(y)dy

)q

,

and

Jq
3 :=

∑
k∈Z

∫ 2k+1

2k

w(x)dx

xγq

(∫ 2k−1

0

(x− y)γ−1 f(y)dy

)q

.
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Applying Hölder’s inequality we find

Jq
1 ≤

∑
k∈Z

(∫ 2k+1

2k

fp

)q/p ∫ 2k+1

2k

w(x)dx

xγq

(∫ x

2k

(x− y)(γ−1)p′ dy

)q/p′

≤
(

p− 1

pγ − 1

)q/p′∑
k∈Z

(∫ 2k+1

2k

fp

)q/p(∫ 2k+1

2k

w(x)dx

)
2−kq/p

≤ 2q/p

(
p− 1

pγ − 1

)q/p′∑
k∈Z

(∫ 2k+1

2k

fp

)q/p(
2−(k+1)q/p

∫ 2k+1

0

w(x)dx

)

≤ 2q/p

(
p− 1

pγ − 1

)q/p′

Aq
0

(∫ ∞

0

fp

)q/p

,(5.13)

where the last step follows by the elementary inequality
∑

aβ
i ≤ (

∑
ai)

β, β ≥ 1 and the
definition ofA0.

Similarly, we obtain

(5.14) Jq
2 ≤ 4q/p

(
p− 1

pγ − 1

)q/p′

Aq
0

(∫ ∞

0

fp

)q/p

.

For the upper bound ofJ3 we note that

Jq
3 ≤ 2(1−γ)q

∫ ∞

0

(Hf)q w

so that, by Theorem 1 in [6] ,

(5.15) Jq
3 ≤ 2(1−γ)qAq

0 (p′)
q

(∫ ∞

0

fp

)q/p

.

By combining (5.13), (5.14) and (5.15) we obtain the upper bound of (5.8) and the proof is
complete.

(a) For the lower bound we write

C
(∫ ∞

0

fp

)1/p

≥ γ

(∫ ∞

0

(
1

xγ

∫ x/2

0

(x− y)γ−1 f(y)dy

)q

w(x)dx

)1/q

≥ γ

2γ−1

(∫ ∞

0

(
1

x

∫ x/2

0

f

)q

w(x)dx

)1/q

≥ γ

2γ

(∫ ∞

0

(
1

x

∫ x

0

f

)q

w(2x)dx

)1/q

.

By applying Theorem 3 in [6] we find

‖Rγ‖Lp→Lq
w
≥ γ

2γ
c (p, q) B0,

where

B0 :=

(∫ ∞

0

(
1

x

∫ x

0

w (2s) ds

)r/q

dx

)1/r

= 2−1/rB0

andc (p, q) = 2−1/q (p′)1/q′ p−1/rr−1/r′q and the lower bound in (5.9) is proved. Using
(5.11) and again Theorem 3 in [6] we obtain the upper bound of (5.9).
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(b) It is shown in Theorem 2 in [9] that

‖Rγ‖Lp→Lq
w
≥ γ

4
E,

where

E :=

∑
k∈Z

2kr/p′

(∫ 2k+1

2k

w(x)dx

xq

)r/q
1/r

.

We show that

E ≥

(
2q/r − 1

)1/p
(
2qr/p2 − 1

)1/r

21+1/r
B0.

Indeed,

Br
0 =

∑
k∈Z

∫ 2k

2k−1

(
1

x

∫ x

0

w

)r/q

dx

≤
∑
k∈Z

2−(k−1)r/q

(∫ 2k

0

w

)r/q ∫ 2k

2k−1

dx

=
∑
k∈Z

2−(k−1)r/p

(∑
m≤k

∫ 2m

2m−1

w

)r/q

= 2r/p
∑
k∈Z

2−kr/p

(∑
m≤k

{
2
−mq2

rp

∫ 2m

2m−1

w

}
2

mq2

rp

)r/q

(by applying Hölder’s inequality withr
q

and p
q
)

≤ 2r/p
∑
k∈Z

2−kr/p

(∑
m≤k

2−mq/p

(∫ 2m

2m−1

w

)r/q
)(∑

m≤k

2mq/r

)r/p

=
2r/p+q/p

(2q/r − 1)
r/p

∑
m∈Z

2−mq/p

(∫ 2m

2m−1

w

)r/q ∑
k≥m

2−kqr/p2

=
22r/p

(2q/r − 1)
r/p

(2qr/p2 − 1)

∑
m∈Z

2−mr/p

(∫ 2m

2m−1

w

)r/q

≤ 2r(1+1/p)

(2q/r − 1)
r/p

(2qr/p2 − 1)
Er.

Conversely,

Er ≤
∑
k∈Z

2−(k−1)r/p

(∫ 2k

2k−1

w

)r/q

≤ 2r/p
∑
k∈Z

2−kr/p

(∫ 2k

0

w

)r/q ∫ 2k+1

2k

dx
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≤ 2r/p+r/q
∑
k∈Z

∫ 2k+1

2k

(
1

x

∫ x

0

w

)r/q

dx

= 2r/p+r/qBr
0.(5.16)

Using the decomposition (5.12) it is shown in Theorem 2 in [9] that

J ≤
(

p− 1

pγ − 1

)1/p′

21/p′
(
1 + 21/p′

)
E + 21−γ

(∫ ∞

0

(Hf)q w

)1/q

.

Now the upper bound in (5.10) follows from (5.16) and Theorem 3 in [6].
�

We are now ready to complete this section by presenting

Proof of Theorem 5.1.Both sides of (5.3) follow from Theorem 5.3(a) and (2.4). The lower
bound in (5.4) follows by using the test functions from the proof of Theorem 3.1 and the upper
bound is a consequence of (2.2), (2.10) and (5.8). Similarly, the proof of(b) is based upon
Theorem 5.5 and we use the same test function for the lower bound as in the proof of Theorem
4.1 with subsequent application of the inequalityB0 ≤ B0. The proof is complete. �
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