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ABSTRACT. Da-weiZhang[J.M.A.A., 237 (1999): 721-725] obtained theinequa}(t;elB)2k <

tr A2" B2" for Hermitian matricesA and B, wherek is natural number. Here it is proved that
these results hold when the power index of the produdt@fmitian matricesA and B is a
nonnegative even number. In the meantime, it is pointed out that the relation benydéh™

andtr A™B™ is complicated when the power index is a nonnegative odd number, therefore

the above inequality cannot be generalized to all nonnegative integers. As an application, we
not only improve the results of Xiaojing Yang [J.M.A.A., 250 (2000), 372-374], Xinmin Yang
[J.M.A.A.,, 263 (2001): 327-333] and Fozi M. Dannan [J. Ineq. Pure and Appl. Math., 2(3)
(2001), Art. 34], but also give the complete resolution for the question of the trace inequality
about the powers of Hermitian and skew Hermitian matrices that is proposed by Zhengming Jiao.
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1. INTRODUCTION

Let C™*™ be the set of alh x n matrices over the complex number figld The modulus
of all diagonal entries of the matriX = (a;;) € C™*™ are arranged in decreasing order as
101(A)] > [02(A)| = -+ > |0.(A)], 1.e.,01(A), 02(A),- -+ ,5,(A) is an entire arrangement of
aj1, age, -+, any; all its singular values satisfy; (A) > 09(A) > --- > 0,(A). In particular,
when the eigenvalues of are real numbers, let its eigenvalues satisfyA) > A (A)--- >
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2 ZHONG PENG YANG AND XIAO XIA FENG

M (A); AT tr A denote its conjugate transpose matrix and trace respectively. Further, let
H(n), Hf (n), H*(n), S(n) be the subsets of allermitian, Hermitian semi-positive defi-
nite, Hermitian positive definite and skewermitian matrices. Finally, letA'/? represent the
quadratic root ofA € H; (n), andR, N denote the sets of all real numbers and nonnegative
integers. The complex numbef—1 € C satisfiesy/—1)% = —1.

Recently the trace inequality of two powerddrmitianmatrices was given in [1] as follows:

(1.1) tr(AB)? < tr A*B*, A,B€ H(n), keN.
Furthermore, the following two results were proved.in [2],
(1.2) 0 < tr(AB)* < (tr A)*(tr A)™ Ytr BY)™, m(>1) €N, A B € H{ (n);
and
(1.3)  0<tr(AB)* ™ <trAtrB(tr A2)™(tr B*)™, m(>1) €N, A B¢c Hf (n).

Another two results appeared [ [3, Theorem 1] and [4, Theorem 1]. Whéhe H™(n),
the following inequalities hold:

(1.4) tr(AB)™ < (tr A2™)Y2(tr B2 m e N;
and
(1.5) tr(AB)™ < (tr AB)™, m € N.

The above two result§ (1.1), (1.2), (1.3), (1.4) dnd](1.5) are related to the work of Bellman. In
1980, Bellmanl[5] proved:

(1.6) tr(AB)? <tr A’B* A,B € HJ (n),

and proposed the conjecture whether

(1.7) tr(AB)™ < tr A™"B™, meN, A Be Hf(n)
holds.

Since then, many authors have proved that the conjedture (1.7) is correct. In [6], it was
pointed out that the inequality (1.7) was also proposed by Lieb and Thiring in 1976, and a
similar inequality was proposed also in [7]. R.A. Brualdi [8] commented further work of the
inequality [1.7) that was constructed by Lieb and Thirind in [6] and [7].

Whether or not the inequality (1.7) was a conjecture at that time, the condition in [1] was dif-
ferent from that in[[2] —[[7], which dropped the demand of “semi-positive definite property” for
matrices inl[1], and examined the trace inequality on the gehtrahitianmatrix powers. Of
course, it increases inevitably the discussed difficulty. In 1992 Zhengmind Jiao [9] generalised
inequality (1.6) forA € H(n), B € S(n) andA, B € S(n), and also presented two questions
as follows:

(1.8) tr(AB)™ > tr A"B™, A€ H(n), B € S(n), meN?
and
(1.9) tr(AB)" <tr A™B™, A, Be€ S(n), meN?

We will prove that the inequality (Il1) holds when the power index is a nonnegative even
number. Thereby the results inl [2, 3] and [4] can be obtained and improved. Moreover, a
simpler proof for the inequality (I.7) may be presented. As an application of the obtained
result, we answer completely two questions mentioned in [9] in the form df (1.8) and (1.9).
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2. SOME LEMMAS
Lemma2.1.LetA, B € C™*", then

(2.1) Z|5 ((AB)™ \<Z/\ (A" ABB")™)

< Z/\Z- (AFA™BB™™), 1<t<n, meN.

=1

Proof. From [10, Theorem 8.9], it follows that
t t
(2.2) D Is(F) <D oi(F), 1<t<n, FeC™

and by [11, Theorem 1],
t p t p

(23) ZO’Z‘ <HGJ> SZHO_’L(GJ% 1 <t<mn, Gl,GQ,"~ 7Gpecm><n.
i=1 j=1 i=1 j=1

Moreover vial[7, Theorem 4], it is derived that
t
(2.4) ZAm (FG) gz (F™G™), 1<t<n, meN, F,GeHf(n).
=1 i=1

therefore throug? A, BB® € H{ (n), it is known that all the eigenvalues df’ ABB* ¢
C™*™ are real. Meanwhile

N ((A"ABB™)™) = A (A" ABB") = (N (A"ABB"))™, i=1,2,....m;
and from [2.2),[(2]3), andl (3.4), it holds that

t t

D 16 ((ABP™) [ <) oi ((AB)™™)

=1

that is, (2.1) holds. O

It is well known that eigenvalues of the produtB for A, B € H(n) are not real numbers,
but we can obtain the following lemma.

Lemma 2.2. LetA = (a;;), B = (b;;) € H(n)(S(n)), thentr AB € R.
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Proof. When A, B € H(n), according to[[10, pp. 219] itis known thatAB € R.
By the simple fact,

(2.5) F e S(n) ifandonlyif v/—1F € H(n),

it follows that\/—1A,v/—1B € H(n) holds whenA, B € S(n). Thus from the proved result,
at this time, it is easy to know

tr AB = tr (— (V=14) (V=1B)) = — tr (V—14) (V—1B) €

By [10, Theorem 6.5.3], the following Lemma holds.
Lemma 2.3.LetA, B € H{ (n), then

(2.6) 0<trAB <trA tr B;

and

(2.7) 0<trA™ < (trA)™, m e N.

Lemma 2.4.Let A, B € H(n), thentr(AB)™, tr A”B™ € Rforallm € N.

Proof. Whenm = 0, 1, obviously the result holds by LemraR.2. Wher> 2, via
(ABY" ' A)" = (A(BAB--- BAB)A)" = (AB)"'A € H(n),

and Lemma 2]2, it follows that(AB)™ = tr ((AB)"'A) B € R.
For A™, B™ € H(n)and from Lemma 2|2, it may be surmised thatl” B™ € R. O

Lemma 2.5.LetA € H(n), B € S(n), m € N, then
(2.8) tr(AB)™ = (—v—=1)" tr (A(V=1B))"
tr A" B™ = (—\/—_1)m tr A™ (\/—_13)m

and form = 2t(t € N), tr(AB)™, tr A™B™ are all real. Further, whenn = 2t + 1(t € N),
tr(AB)™, tr A™B™ are all zeros or pure imaginary numbers.

Proof. Without loss of generality, assume that> 2, similarly
tr(AB)™ = tr (A (—vV-1(vV=1B)))" = (=v=1)" tr (A (vV=1B))",
tr A"B™ = tr A™ (—/—=1(v—=1B))" = (—vV/=1)" tr A™ (vV—=1B)",
so that[(2.B) holds.
Whenm = 2t (t € N), (—v/=1)" = (=1)* € R, thus by[2.B) and Lemnja 2.4, one obtains
thattr(AB)™, tr AmB™ are all real. Whem = 2t +1 (t € N), (—/=1)" = (=1)3*+1/~1 ¢
R, then we have that(AB)™, tr A™B™ are all zeros or pure imaginary numbers [py|(2.8) and
LemmdZ.4. O
Similar to the proof of Lemmia 2.5, it also follows that:
Lemma 2.6.LetA, B € S(n), m € N, then

(2.9) tr(AB)™ = (=1)" tr ((V-14) (V-1B))",
tr A" B™ = (—=1)™tr (\/—_A) (\/—_B)
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3. MAIN RESULTS
Theorem 3.1.Let A, B € C"™*", then
(3.1) | tr(AB)*™| < tr (A" ABB")™ < tr (A"A)" (BB")", meN;

82)  |tr(AB)™| < tr (A"ABB™)"
<tr (4"4)" (BB™)"
<t ((A74)7) i (A7 4)" o (BBT)"
< (0 (474)") (rA"2)" " (BB m(> 1) €N

Proof. Taket = n in (2.7)), then we have that

S 6 ((AB)*™)

i=1

<16 ((aB)™)]

|tr(AB)*™"| =

<> A ((A"ABB™)™)
i=1
= tr (A" ABB")"
<3 ((ATA)" (BN = (AA)" (BBY)")
i=1
giving (3.1).
By A" A, BB" € H{ (n) and [2.6),[(2]7), whem > 1 one can get
tr (ATA)™ (BBT)™ < tr (ATA) (ATA)" " tr (BBT)™
<t ((A74)7) 1 (A7) 1 (BBT)"
< (i (A74)7) i (A7 4)" (u BBT)",
therefore[(3.R) is correct, by (3.1). O
Theorem 3.2.Let A, B € H(n), then
(3.3) tr(AB)*™ < |tr(AB)*™| < tr (A’B*)" < tr A" B*", m € N.

Proof. From Lemma 24, itis obtained tha{ AB)™, tr A™ B™ are all real, then byr(AB)*™ <
|tr(AB)?™| and A = A, B = B, moreover applyind (3]1)] (3.3) holds. O

Because* (k € N) is a nonnegative even number, conclus(l.l') in [1] can be achieved

by (3.3). WhenA, B € H{ (n), the inequality|(1]7) is obtained by replacirg B of ith
iall

A2 B2 The above procedure indicates we can give a simple proof for the inequality (1.7).

Example 3.1.Let
1 =2 0 1
A:{_2 _2}, B:[1 _1]6}[(2),
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and so
3 | 16 —6 353 | —29 44
O R -
5 | =56 —60 555 | —481 765
(AB) _[ 40 —96}’ A'B _{—610 954}’
giving

tr(AB)* =28 >3 =tr A°B* tr(AB)° = —152 < 573 = tr A°B°.

Example 3.2. Let
-1 2 0 1
A:{ 22}, lel_l}eH@),

giving

s [-16 6 53 | 29 —44
O e U g
and so we obtain
tr(AB)? = —28 < -3 = tr A*B>.

We have generalized the index of the trace inequdlity] (1.1) on Hermitian matrix power ([1,
Theorem 1]) fron2*(k € N) to nonnegative even numbers . Examples 3.1 arjd 3.2 indicate that
it is complex when the power index is a positive odd number. Of course, they also show that the
result cannot hold when one gives up the “positive semi-definite” requirement pf (1.7)./ In [12,
Theorem 6.3.2], the statement “Marcus (1956) generalized this theorem as following form

tr(AB)" <trA"B™, meN, A Be€H(n)”

follows the proof of [(1.5).
Although we do not have access to the article of Marcus, Examplés 3. gnd 3.2 make us
unsure that the generalization is not correct.

Theorem 3.3.Let A, B € H(n), m € N, then

(3.4) tr(AB)zm < tr(AQBQ)m < tr A2m g2m < (tr A4m) 1/2 (tI‘ B4m)1/2;
(3.5) tr(AB)*™ < tr(A*B*)™ < (tr A*B*)™;
(3.6) tr(AB)*™ < tr (A*B*)"

S tr A2mB2m

< tr A% tr A2 ¢ B2m

< (i (42)") ()" (@ B)” . whenm > 1.
Proof. From [10, Problem 7.2.10], it is known that
(3.7) [t FG| < (r F2)? (e @)*, F,G € H(n).

Thus by [(3.8).[(3]7) and Lemma 2.4, the inequality|(3.4) results.
Notice thatAB*A € H{ (n) and (A?2B*)™ = A(AB*A)™ '(AB?), furthermore through
(2.7), it follows that

tr (Asz>m =tr (ABQA)m < (tr ABQA)m = (tr A2B2)m,
the inequality[(3.p) then follows by (3.3).
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Notice thatd2, (42)"/* € H{ (n), then vial(2.p) and (2]7), it follows that
2
tr A2 B¥™ < tr A tr A2 4 B < (tr (A2)1/2) (tr A2)m_1 (tr Bz)m,
the inequality[(3.6) then results by using (3.5). O

Corollary 3.4. LetA, B € H (n), m € N, then the inequalitie$ (1.4) and (1.5) hold. Moreover
whenm > 1, it follows that

(3.8) 0 < tr(AB)*™
< tr (A2B)"
< tr A?m B
< tr A? tr A2m=Y ¢y B2
< (tr A) (tr AQ)mfl (tr B*)™;

(3.9) 0 < tr(AB)™+
S tr A2m+1B2m+1
<trA trB tr A*™ tr B>
<trd trB (trA2)m (tr Bz)m.
Proof. Using A'/2, B'/? instead ofA, B in the inequalities| (3]4) andl (3.5), (1.4) afd {1.5) can

be obtained. Fromi € H{ (n) it follows that (A2)"/* = A and (3.8) is derived b.6).
Furthermore through (3.6}, (3.8), (2.6) ahd [2.7), it holds that

0 < tr(AB)*™H!

—tr ((A1/2)2 <B1/2)2>
<tr (A1/2)2(2m+1) (31/2)2(2m+1)
— tp A2m+1 g2mtl
< tr A2 g g2
= tr AA*™ tr BB*™
< tr A tr A>™ tr B tr B*™
=tr A tr B tr A>™ tr B*™
<trA trB (trAQ)m (tr BZ)m,
giving (3.9). O

As an application of the main results, in Corollary|3.4, the basic conclusions (1.2),[(1.B), (1.4)
and [1.5) of [2| B] and_[4] are summarized. At the same time, in Theprem 3.3, it is shown that
the trace inequality (1]2)/([2]) on semi-positive defirtitermitianmatrix power is extended to
generaHermitianmatrix, according to the form (3.6). By following Example]3.3, it is indicated
that the trace inequality (1.3) ([2]) on semi-positive definite Hermitian matrix power cannot be
generalised in a similar fashion to Theorem 3.3.

Example 3.3. Let
-1 2 0 1
A:{ 221, B:{l—l}EH(m’

2m—+1
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then from Examples 311 and B.2, it is shown that

s [ 56 60 , [5 2 , [ 1 -1
api=| o) =3 5] m= )

Thus it is easily seen that
tr(AB)® = tr(AB)**?*!
=152 > 1 x (—1) x 13% x 3?
=trAtrB (trA2)2 (trBQ)z.

IR

(6 6 > [ 90 —12
AB_{g —8]’ (AB)_{—IS 118}’

tr(AB)? = 208 > 4 = (tr AB)%.

Examplg 3.44 indicates that the res{ilt {1.5) ([4]) for positive definite matrix cannot be gener-
alized to generaHermitian matrix, but the generalized form, similar {o (8.5) in Theofem 3.3,
may be obtained.

Example 3.5. Let

Example 3.4. Let

and so from

it follows that

A:{_} :” B:B _f]eH(Q),

20

2
then fromA* = {O 9

} =21, B? =51, itfollows that
(tr (A2B?))? = 400 > 200 = tr A*B*.
Example 3.6. Let

A:{_‘? :” B:{g _f]eH(Q),

from

A 274 70 - 87592 26152
A'B _{—42 —6}’ A'B _{—19544 —5816]’
it is achieved that
(tr (A2B?))* = 71824 < 81776 = tr A*B.

Examples 3.5 ar|d 3.6 show that the two upper bound$™ B> and(tr A2B2)™ for tr(AB)?™
as given by|(3.3) and (3.5), are independent of each other, in whiegh3)?™ is the trace of
the product power on the twidermitian matricesA and B. The result of([4] can be derived by
replacing the matriced and B in Example$ 35 arld 3.6 with'/? and B'/2.

For the tracer(AB)™ of the product power on positive definitbermitian matricesA and
B, the upper bounds A™B™ and(tr AB)™ given by [1.7) and (1]5) cannot be compared with
each other; but from the upper boufid A2m)1/2 (tr BZm)l/2 ([3]) determined by4), via
(3.4) and Corollary 34, it follows that

tr A" B™ < (tr AQm) 1/2 (tr Bzm)l/2 )
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4. TRACE OF THE POWER ON HERMITIAN MATRIX AND SKEW HERMITIAN M ATRIX

Theorem 4.1.LetA € H(n), B € S(n),thenwhem = 4torm =4t +2,t € N, tr(AB)™
andtr A™B™ are all real numbers, and

(4.1) r(AB)™ < tr (A2BY)™? <tr A"B™, m=4t, teN;
4.2) r(AB)™ > tr (A°B*)"™? > tw AB™, m =4t +2, teN;

similarly whenm = 4t +10orm = 4t + 3, t € N, if tr(AB)™ # 0 or tr A™"B™ # 0, then
tr(AB)™ ¢ Ror tr A"B™ ¢ R, sotr(AB)™ andtr A B™ cannot be compared with each
other.

Proof. By Lemma 2.5, we have that both(AB)™ andtr A™B™ are real numbers when =
4t. Furthermore through (3.3}, (2.8), it follows that

twr(AB)" = (—v=1)" tr (A (V=1B))"
tr (A (V=1B))"

< tr (A2 (\/—_13)>

= V=1 tr (A2B%)”

— tr (A2B%)""?

< tr A" (v=1B)"

=/ —14t tr AY B
=trA"B™,

giving @1).
In the same way, whem = 4t + 2, tr(AB)™ andtr A™ B™ are all real numbers and it holds
that

tr(AB)" = (—v=1)""tr (4 (v=1B))""

> _tr A22t+1) (\/_—13)2(%“)

— ./ 4t+2 tr A4t+ZB4t+2 — tr AmBm

producing [(4.R).
Whenm = 4t + 1 orm = 4t + 3,t € N, the result is obtained by Lemrpa P.5. O

Example 4.1.Let

A:{_% _1]61{(2),3:{2\/__5 _\/__(”:\/—_1[8 _?]65(2).
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Hence

s 50 11 53 | 104 8
(AB)” =/ 1[_22 _5} and A°B° =+ 1{—64 _5].

It is known that bothtr(AB)? andtr A*B? are pure imaginary numbers by Lemma] 2.5, they
cannot be compared with each other, but their imaginary parts have the following relation

Im tr(AB)? = 45 < 99 = Im tr A*B®.

Let
-1 2
O:{ 9 11€H(2),
(2 1
D=v-1|] _1}65(2).
s_ =15 —42
(CD)" = b 70 29}’
—— [ 15 30
CD_V_l_—64 —35]’
and hence

Im tr(CD)* = 44 > —20 = Im tr C*D?.
Example 4.2. Let

A:{_é :ﬂeﬂ(z), B:\/—TH _”65(2).
Hence

s [ —435 543 sps [ 525 375
(4B)” = 1[—905 —e16 | AN AB =Vl o 670 |

Furthermore their imaginary parts satisfy:
Im tr(AB)® = —1051 < —145 = I'm tr A°B°.
LetC=—-Ae€ H(2),D =B € 5(2), then
Im tr(CD)®> = —Im tr(AB)° = 1051 > 145 = — Im tr A°B° = Im tr C°D°.

From Examplg 4]1 and 4.2, it is known that when= 4t + 1 orm = 4t +3,t € N,
in general, the imaginary parts of(AB)™ andtr A™B™ as pure imaginary numbers make
the positive and reverse direction of the questjon|(1.8) not to hold. It is seen from this that in
Theorenj 4.]1, the question (IL.8) that is proposed by [9] is completely resolved.

Theorem 4.2.Let A, B € S(n), if m = 2t, ¢t € N, then bothtr(AB)™ andtr A™B™ are real
numbers and

(4.3) tr(AB)™ < |tr(AB)™| < tr (A*B?)
holds.

Proof. By (2.5) and Lemma 2]6, it is known that bati{ AB)™ andtr A™ B™ are real numbers
and

(4.4) tr(AB)™ = tr ((v—14) (V=1B))",
tr AMB™ = tr (\/—_lA)m (\/—_13)m

m/2 <trA"B™,
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Moreover by |[(3.B), it follows that

t(AB)™ = tr ((v=14) (V=1B))*
o (

=tr (\/—14tA2tBQt> =tr A™B™,
giving (4.3). O
Example 4.3. Let

AZ\/—_l{_f 1}, B:m[g _?]65(2),

—1
and 51 —11 104 —8
(AB)SZ_[ 2 51’ ASB?’:_{ 64 5}
so that
tr(AB)® = 45 < 99 = tr A*B®.
Let

sz/—1[_é ?] D:\/—lﬁ _H € 5(2),
according to

2 15 —42 53 15 30
(¢D) _[70 29}’ ¢°D _{—130 —35}
it is known that
tr(CD)* = 44 > —20 = tr C*D?.
Via (2.9), we know that bothr(AB)™ andtr A™B™ are real numbers when = 2¢ + 1,

t € NandA, B € S(n). Thereby in Examplg 43, it is indicated that the positive and reverse
direction of the questiorj (1.9) certainly do not hold, in which the quesfion (1.9) is proposed
by [9]; whenm is a nonnegative even number, the question as pos€d By (1.9) is confirmed by
Theorenj 4., thus we completely resolve the quesfion (1.9) of [9].
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