

Journal of Inequalities in Pure and Applied Mathematics

http://jipam.vu.edu.au/

Volume 7, Issue 4, Article 135, 2006

A NOTE ON $|\bar{N}, p_n|_k$ SUMMABILITY FACTORS

S.M. MAZHAR

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE
KUWAIT UNIVERSITY
P.O. Box No. 5969, Kuwait - 13060.
sm mazhar@hotmail.com

Received 18 March, 2006; accepted 03 July, 2006

Communicated by H. Bor

ABSTRACT. In this note we investigate the relation between two theorems proved by Bor [2, 3] on $|\bar{N}, p_n|_k$ summability of an infinite series.

Key words and phrases: Absolute summability factors.

2000 Mathematics Subject Classification. 40D15, 40F05, 40G05.

1. Introduction

Let $\sum a_n$ be a given infinite series with $\{s_n\}$ as the sequence of its n-th partial sums. Let $\{p_n\}$ be a sequence of positive constants such that $P_n=p_0+p_1+p_2+\cdots+p_n\longrightarrow\infty$ as $n\longrightarrow\infty$.

Let

$$t_n = \frac{1}{P_n} \sum_{\nu=1}^n p_{\nu} s_{\nu}.$$

The series $\sum a_n$ is said to be summable $|\bar{N}, p_n|$ if $\sum_{1}^{\infty} |t_n - t_{n-1}| < \infty$. It is said to be summable $|\bar{N}, p_n|_k, \ k \ge 1$ [1] if

(1.1)
$$\sum_{1}^{\infty} \left(\frac{P_n}{p_n}\right)^{k-1} |t_n - t_{n-1}|^k < \infty,$$

and bounded $[\bar{N}, p_n]_k, k \geq 1$ if

(1.2)
$$\sum_{1}^{n} p_{\nu} |s_{\nu}|^{k} = O(P_{n}), \qquad n \longrightarrow \infty.$$

Concerning $|\bar{N}, p_n|$ summability factors of $\sum a_n$, T. Singh [6] proved the following theorem:

ISSN (electronic): 1443-5756

^{© 2006} Victoria University. All rights reserved.

2 S.M. MAZHAR

Theorem A. If the sequences $\{p_n\}$ and $\{\lambda_n\}$ satisfy the conditions

$$(1.3) \sum_{1}^{\infty} p_n |\lambda_n| < \infty,$$

$$(1.4) P_n|\Delta\lambda_n| \le Cp_n|\lambda_n|,$$

C is a constant, and if $\sum a_n$ is bounded $[\bar{N}, p_n]_1$, then $\sum a_n P_n \lambda_n$ is summable $|\bar{N}, p_n|$.

Earlier in 1968 N. Singh [5] had obtained the following theorem.

Theorem B. If $\sum a_n$ is bounded $[\bar{N}, p_n]_1$ and $\{\lambda_n\}$ is a sequence satisfying the following conditions

$$(1.5) \sum_{1}^{\infty} \frac{p_n |\lambda_n|}{P_n} < \infty,$$

(1.6)
$$\frac{P_n}{p_n} \Delta \lambda_n = O(|\lambda_n|),$$

then $\sum a_n \lambda_n$ is summable $|\bar{N}, p_n|$.

In order to extend these theorems to the summability $|\bar{N}, p_n|_k$, $k \ge 1$, Bor [2, 3] proved the following theorems.

Theorem C. Under the conditions (1.2), (1.3) and (1.4), the series $\sum a_n P_n \lambda_n$ is summable $|\bar{N}, p_n|_k, k \geq 1$.

Theorem D. If $\sum a_n$ is bounded $[\bar{N}, p_n]_k$, $k \ge 1$ and $\{\lambda_n\}$, is a sequence satisfying the conditions (1.4) and (1.5), then $\sum a_n \lambda_n$ is summable $|\bar{N}, p_n|_k$.

2. RESULTS

In this note we propose to examine the relation between Theorem C and Theorem D.

We recall that recently Sarigol and Ozturk [4] constructed an example to demonstrate that the hypotheses of Theorem A are not sufficient for the summability $|\bar{N}, p_n|$ of $\sum a_n P_n \lambda_n$. They proved that Theorem A holds true if we assume the additional condition

$$(2.1) p_{n+1} = O(p_n).$$

From (1.4) we find that

$$\left| \frac{\Delta \lambda_n}{\lambda_n} \right| = \left| 1 - \frac{\lambda_{n+1}}{\lambda_n} \right| \le \frac{Cp_n}{P_n},$$

Hence

$$\left| \frac{\lambda_{n+1}}{\lambda_n} \right| = \left| \frac{\lambda_{n+1}}{\lambda_n} - 1 + 1 \right|$$

$$\leq \left| 1 - \frac{\lambda_{n+1}}{\lambda_n} \right| + 1$$

$$\leq \frac{Cp_n}{P_n} + 1 \leq C.$$

Thus $|\lambda_{n+1}| \leq C|\lambda_n|$, and combining this with (2.1) we get

$$(2.2) p_{n+1}|\lambda_{n+1}| \le Cp_n|\lambda_n|.$$

Clearly (2.1) and (1.4) imply (2.2). However (2.2) need not imply (2.1) or (1.4). In view of

$$\Delta(P_n\lambda_n) = P_n\Delta\lambda_n - p_{n+1}\lambda_{n+1}$$

it is clear that if (2.2) holds, then the condition (1.4) is equivalent to the condition

$$(2.3) |\Delta(P_n\lambda_n)| \le Cp_n|\lambda_n|.$$

It can be easily verified that a corrected version of Theorem A and Theorem C and also a slight generalization of the result of Sarigol and Ozturk for k = 1 can be stated as

Theorem 2.1. Under the conditions (1.2), (1.3) (2.2) and (2.3) the series $\sum a_n P_n \lambda_n$ is summable $|\bar{N}, p_n|_k$, $k \ge 1$

We now proceed to show that Theorem 2.1 holds good without condition (2.2). Thus we have:

Theorem 2.2. Under the conditions (1.2), (1.3) and (2.3) the series $\sum a_n P_n \lambda_n$ is summable $|\bar{N}, p_n|_k, k \geq 1$.

To prove Theorem 2.2 we first prove the following lemma.

Lemma 2.3. Under the conditions of Theorem 2.2

(2.4)
$$\sum_{1}^{m} p_{n} |\lambda_{n}| |s_{n}|^{k} = O(1) \text{ as } m \longrightarrow \infty.$$

3. Proofs

Proof of Lemma 2.3. In view of (1.3) and (2.3)

$$\sum_{1}^{\infty} |\Delta(\lambda_n P_n)| \le C \sum_{1}^{\infty} p_n |\lambda_n| < \infty,$$

so it follows that $\{P_n\lambda_n\}\in BV$ and hence $P_n|\lambda_n|=O(1)$. Now

$$\sum_{1}^{m} p_{n} \lambda_{n} ||s_{n}|^{k} = \sum_{1}^{m-1} \Delta |\lambda_{n}| \sum_{\nu=1}^{n} p_{\nu} |s_{\nu}|^{k} + |\lambda_{m}| \sum_{\nu=1}^{m} p_{\nu} |s_{\nu}|^{k}$$

$$= O(1) \sum_{1}^{m-1} |\Delta \lambda_{n}| P_{n} + O(|\lambda_{m}| P_{m})$$

$$= O(1) \left(\sum_{1}^{m-1} |\Delta (P_{n} \lambda_{n})| + p_{n+1} |\lambda_{n+1}| \right) + O(1)$$

$$= O(1) \sum_{1}^{m-1} p_{n} |\lambda_{n}| + O(1) \sum_{1}^{m} p_{n+1} |\lambda_{n+1}| + O(1)$$

$$= O(1).$$

4 S.M. MAZHAR

Proof of Theorem 2.2. Let T_n denote the n^{th} (\bar{N}, p_n) means of the series $\sum a_n P_n \lambda_n$. Then

$$T_{n} = \frac{1}{P_{n}} \sum_{\nu=0}^{n} p_{\nu} \sum_{r=0}^{\nu} a_{r} P_{r} \lambda_{r}$$
$$= \frac{1}{P_{n}} \sum_{\nu=0}^{n} (P_{n} - P_{\nu-1}) a_{\nu} P_{\nu} \lambda_{\nu}.$$

so that for $n \ge 1$

$$T_{n} - T_{n-1} = \frac{p_{n}}{P_{n}P_{n-1}} \sum_{\nu=1}^{n} P_{\nu-1}a_{\nu}P_{\nu}\lambda_{\nu}$$

$$= \frac{p_{n}}{P_{n}P_{n-1}} \sum_{\nu=1}^{n-1} \Delta(P_{\nu-1}P_{\nu}\lambda_{\nu})s_{\nu} + p_{n}\lambda_{n}s_{n}$$

$$= L_{1} + L_{2}, \text{ say}.$$

Thus to prove the theorem it is sufficient to show that

$$\sum_{1}^{\infty} \left(\frac{P_n}{p_n}\right)^{k-1} |L_{\nu}|^k < \infty, \qquad \nu = 1, 2.$$

Now

$$|\Delta(P_{\nu-1}P_{\nu}\lambda_{\nu})| \le p_{\nu}P_{\nu}|\lambda_{\nu}| + P_{\nu}|\Delta(P_{\nu}\lambda_{\nu})|$$

$$< Cp_{\nu}P_{\nu}|\lambda_{\nu}|$$

in view of (2.3). So

$$\sum_{n=2}^{m+1} \left(\frac{P_n}{p_n}\right)^{k-1} |L_1|^k = O(1) \sum_{n=2}^{m+1} \frac{p_n}{P_n P_{n-1}^k} \left(\sum_{\nu=1}^{n-1} p_{\nu} P_{\nu} |\lambda_{\nu}| |s_{\nu}|\right)^k$$

$$= O(1) \sum_{n=2}^{m+1} \frac{p_n}{P_n P_{n-1}^k} \left(\sum_{\nu=1}^{n-1} (P_{\nu} |\lambda_{\nu}|)^k |s_{\nu}|^k p_{\nu}\right) \left(\sum_{\nu=1}^{n-1} p_{\nu}\right)^{k-1}$$

$$= O(1) \sum_{n=2}^{m+1} \frac{p_n}{P_n P_{n-1}} \sum_{\nu=1}^{n-1} P_{\nu} |\lambda_{\nu}| |p_{\nu}| |s_{\nu}|^k$$

$$= O(1) \sum_{\nu=1}^{m} p_{\nu} |\lambda_{\nu}| |s_{\nu}|^k = O(1)$$

in view of the lemma and $P_n|\lambda_n| = O(1)$.

Alsc

$$\sum_{1}^{m+1} \left(\frac{P_n}{p_n}\right)^{k-1} |L_2|^k = O(1) \sum_{1}^{m+1} p_n |\lambda_n|^k |s_n|^k P_n^{k-1}$$

$$= O(1) \sum_{1}^{m+1} p_n |\lambda_n| |s_n|^k$$

$$= O(1).$$

This proves Theorem 2.2.

Thus a generalization of a corrected version of Theorem C is Theorem 2.2. Writing $\lambda_n = \mu_n P_n$ the conditions (1.5) and (1.4) become

$$(3.1) \sum_{1}^{\infty} p_n |\mu_n| < \infty,$$

$$(3.2) |\Delta(P_n\mu_n)| \le Cp_n|\mu_n|,$$

consequently Theorem D can be stated as:

If $\sum a_n$ is bounded $[\bar{N}, P_n]_k$, $k \ge 1$ and $\{\mu_n\}$ is a sequence satisfying (3.1) and (3.2) then $\sum a_n P_n \mu_n$ is summable $|\bar{N}, p_n|_k$, $k \ge 1$.

Thus Theorem D is the same as Theorem 2.2 which is a generalization of the corrected version of Theorem C.

REFERENCES

- [1] H. BOR, On $|\bar{N}, p_n|_k$ summability methods and $|\bar{N}, p_n|_k$ summability factors of infinite series, Ph.D. Thesis (1982), Univ. of Ankara.
- [2] H. BOR, On $|\bar{N}, p_n|_k$ summability factors, *Proc. Amer. Math. Soc.*, **94** (1985), 419–422.
- [3] H. BOR, On $|\bar{N}, p_n|_k$ summability factors of infinite series, *Tamkang J. Math.*, **16** (1985), 13–20.
- [4] M. ALI SARIGOL AND E. OZTURK, A note on $|\bar{N}, p_n|_k$ summability factors of infinite series, *Indian J. Math.*, **34** (1992), 167–171.
- [5] N. SINGH, On $|\bar{N}, p_n|$ summability factors of infinite series, *Indian J. Math.*, **10** (1968), 19–24.
- [6] T. SINGH, A note on $|\bar{N}, p_n|$ summability factors of infinite series, J. Math. Sci., 12-13 (1977-78), 25–28.