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ABSTRACT. Let εd be the volume of thed-dimensional standard Euclidean unit ball. In standard
Euclidean space the ratio of the surface area of the unit ball to the volume is equal to the dimen-
sion of the space. In Minkowski space (finite dimensional Banach space) where the volume has
been normalized according to the Holmes-Thompson definition the ratio is known to lie between

dεd

2εd−1
and d2εd

2εd−1
. We show that whend = 2 the lower bound is 2 and equality is achieved if and

only if Minkowski space is affinely equivalent to Euclidean, i.e., the unit ball is an ellipse.
Stronger criteria involving the inner and outer radii is also obtained for the 2-dimension spaces.
In the higher dimensions we discuss the relationship of the Petty’s conjecture to the case for
equality in the lower limit.

Key words and phrases:Convex body, Isoperimetrix, Mixed volume, Projection body, the Holmes-Thompson definitions of
volume and surface area.
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1. I NTRODUCTION

In their paper [4] Holmes and Thompson investigated the ratio of

ω(B) =
εd−1

dεd

· µB(∂B)

µB(B)
,

where εd = πd/2Γ(d/2 + 1)−1 is the volume of ad-dimensional Euclidean unit ball and
µB(B), µB(∂B) are volume and surface area, respectively, of the unit ball in thed-dimensional
Minkowski space for the “Holmes-Thompson definitions" (this will be defined later). They es-
tablished certain bounds onω which state that ifB is a d-dimensional Minkowski unit ball,
then

1

2
≤ ω(B) ≤ d

2
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2 ZOKHRAB MUSTAFAEV

with equality on the right ifB is a cube or an ‘octahedron’. They raised the question, “What is
the lower bound forω(B) in Rd?" This problem was solved for the cased = 2 in the paper [7].
It was obtained that ifB is the unit disc in a two-dimensional Minkowski space, then

2 ≤ µB(∂B)

µB(B)
≤ π

with equality on the left if and only ifB is an ellipse and equality on the right if and only ifB
is a parallelogram. Thus, there does not exist another Minkowski plane besides the Euclidean
one for which ratio of the length of the unit ‘circle’ to the area of the unit disc equals 2.

In this paper we prove that for the unit balls possessing a certain property this ratio is greater
thand, with equality if and only ifB is an ellipsoid and further this property is implied by the
Petty’s conjectured projection inequality for the unit balls.

There will be also proved some isoperimetric inequalities for the Holmes-Thompson defini-
tions of volume and surface area.

We recommend seeing the interesting book by A.C. Thompson “Minkowski Geometry” for
a thorough discussion on this topic.

2. SOME BACKGROUND M ATERIAL AND NOTATION

In this section we collect the facts we will need from the theory of convex bodies.
A Minkowski space is a pair(X, ‖·‖) in which X is finite dimension and‖·‖ is a norm. We

will assumed = dim X. The unit ball in(X, ‖·‖) is the set

B := {x ∈ X : ‖x‖ ≤ 1}.
The unit sphere in(X, ‖·‖) is the boundary of the unit ball, which is denoted by∂B. Thus,

∂B := {x ∈ X : ‖x‖ = 1}.
If K is a convex set inX, the polar reciprocalK◦ of K is defined by

K◦ := {f ∈ X∗ : f(x) ≤ 1 for all x ∈ K}.
The dual ball is the polar reciprocal ofB and is also the unit ball in the induced metric onX∗.

Recall that a convex body is a non-empty, closed, bounded convex set.
If K1 andK2 are the convex bodies inX, andαi ≥ 0, 1 ≤ i ≤ 2, then the Minkowski sum

of these convex bodies is defined as

α1K1 + α2K2 := {x : x = α1x1 + α2x2, xi ∈ Ki}.
It is easy to show that the Minkowski sum of convex bodies is itself a convex body.

We shall suppose thatX also possesses the standard Euclidean structure and thatλ is the
Lebesgue measure induced by that structure. We refer to this measure as volume (area) and
denote it asλ(·). The volumeλ gives rise to a dual volumeλ∗ on the convex subset ofX∗, and
they coincide inRd.

Recall thatλ(αK) = αdλ(K) andλ(∂(αK)) = αd−1λ(∂K), for α ≥ 0.

Definition 2.1. The functionhK defined by

hK(f) := sup{f(x) : x ∈ K}
is called the support function ofK.

Note thathαK = αhK , for α ≥ 0. If K is symmetric, thenhK is even function, and in this
casehK(f) = sup{|f(x)| : x ∈ K}. In Rd we definef(x) as the usual inner product off and
x.

Every support function is sublinear (convex) and conversely every sublinear function is the
support function of some convex set (see [12, p. 52]).
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GEOMETRIC INEQUALITIES FOR HOLMES-THOMPSONDEFINITIONS 3

Definition 2.2. If K is a convex body with0 as interior point, then for eachx 6= 0 in X the
radial functionρK(x) is defined to be that positive number such thatρK(x)x ∈ ∂K.

The support function of the convex bodyK is the inverse of radial function ofK◦. In other
wordsρK◦(f) = (hK(f))−1 andρK(x) = (hK◦(x))−1.

One of the fundamental theorem of convex bodies states that ifK is a symmetric convex
body inX, then

λ(K)λ∗(K◦) ≤ ε2
d,

whereεd is the volume of ad-dimensional Euclidean ball. Moreover, equality occurs if and
only if K is an ellipsoid. It is called the Blaschke-Santalo Theorem (see [12, p. 52]).

The best lower bound is known only for convex bodies which are zonoids (see [12, p. 52]).
That is

4d

d!
≤ λ(K)λ∗(K◦),

with equality if and only ifK is a parallelotope. It is called Mahler-Reisner Theorem.
Recall that zonoids are the closure of zonotopes with respect to the Hausdorff metric, and

zonotopes are finite Minkowski sum of the symmetric line segments. Whend = 2 all symmetric
convex bodies are zonoids (see Gardner’s book more about zonoids).

The Euclidean structure onX induces on each(d− 1)-dimensional subspace (hyperplane) a
Lebesgue measure and we call this measure area denoting bys(·). If the surface∂K of a convex
bodyK does not have a smooth boundary, then the set of points which∂K is not differentiable
is at most countable and has measure0. We will denote the Euclidean unit vectors inX by u

and inX∗ by f̂ .

Definition 2.3. The mixed volumeV (K[d−1], L) of the convex bodiesK andL in X is defined
by

V (K[d− 1], L) = d−1 lim
ε→0

ε−1{λ(K + εL)− λ(K)}(2.1)

= d−1

∫
∂K

hL(f̂x)ds(x),

whereds(·) denotes the Euclidean surface area element of∂K.

V (K, . . . , K) = V (K[d]) is the standard Euclidean volume ofλ(K). The mixed volume
V (K[d− 1], L) measures the surface area in some sense and satisfies

V (αK[d− 1], L) = αd−1V (K[d− 1], L), for α ≥ 0.

See Thompson’s book ([12, p. 56]) for those and the other properties of mixed volumes.

Theorem 2.1(Minkowski inequality for mixed volumes). (see[10, p. 317]or [12, p. 57]). If
K1 andK2 are convex bodies inX, then

V d(K1[d− 1], K2) ≥ λ(K1)
d−1λ(K2)

with equality if and only ifK1 andK2 are homothetic.

If K2 = B is the unit ball in Euclidean space, then this inequality becomes the standard
Isoperimetric Inequality.

Definition 2.4. The projection bodyΠK of a convex bodyK in X is defined as the body whose
support function is given by

hΠK(u) = lim
ε→0

λ(K + ε[u])− λ(K)

ε
,

where[u] denotes the line segment joining−u
2

to u
2
.

J. Inequal. Pure and Appl. Math., 5(1) Art. 17, 2004 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


4 ZOKHRAB MUSTAFAEV

Note thatΠK = Π(−K) andΠK ⊆ X∗. The functionhΠK is the area of the orthogonal
projection ofK onto a hyperplane perpendicular tou. A projection body is a centered zonoid.
If K1 andK2 are centered convex bodies inX, and ifΠK1 andΠK2 are equal, thenK1 andK2

are coincide.
For a convex bodyK in X andu ∈ Sd−1 we denote byλd−1(K | u⊥) the(d−1) dimensional

volume of the projection ofK onto a hyperplane orthogonal tou.

Theorem 2.2. (see[13]). A convex bodyK ∈ X is a zonoid if and only if

V (K, L1[d− 1]) ≤ V (K, L2[d− 1])

for all L1, L2 ∈ X which fulfill λd−1(L1 | u⊥) ≤ λd−1(L2 | u⊥) for all u ∈ Sd−1.

Theorem 2.3. (see[3, p. 321]or [6]). If K is a convex body inX, then(
2d

d

)
d−d ≤ λd−1(K)λ((ΠK)◦) ≤ (εd/εd−1)

d

with equality on the right side if and only ifK is an ellipsoid, and with equality on the left side
if and only ifK is a simplex.

The right side of this inequality is called the Petty projection inequality, and the left side was
established by Zhang.

Thek-dimensional convex volume of a convex body lying in ak- dimensional hyperplaneY
is a multiple of the standard translation invariant Lebesgue measure, i.e.,

µ = σB(Y )λ.

Choosing the ‘correct’ multiple, which can depend on orientation, is not as easy as it might
seem. Also, these two measuresµ andλ must agree in the standard Euclidean space.

The Holmes-Thompsond-dimensional volume is defined by

µB(K) =
λ(K)λ∗(B◦)

εd

,

i.e.,

σB(X) =
λ∗(B◦)

εd

and for ak-flat P containing a convex bodyL

µB(L) =
λ(L)λ∗((P ∩B)◦)

εk

.

(See Thompson’s book and see also Alvarez-Duran’s paper for connections with symplectic
volume). This definition coincides with the standard notion of volume if the space is Euclidean.
From this point on, the word volume will stand for the Holmes-Thompson volume.

The Holmes-Thompson volume has the following properties:

(1) µB(B) = µB◦(B◦).
(2) µB(B) ≤ εd, is from Blaschke-Santalo Inequality.

The definition can be extended to measure the(d− 1)-dimension surface volume of a convex
body using

(2.2) µB(∂K) =

∫
∂K

σB(f̂x)ds(f̂x),

whereds is standard Lebesgue surface measure andf̂x ∈ X∗ is zero on the tangent hyperplane
atx.
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GEOMETRIC INEQUALITIES FOR HOLMES-THOMPSONDEFINITIONS 5

If ∂K does not have a smooth boundary, then the set of points on the boundary ofK at which
there is not a unique tangent hyperplane has measure zero.

Expanding (2.2) and using Fubini’s Theorem one can show that ifA andB are two unit balls
in X, then

µB(∂A) = µA◦(∂B◦)

and in particularµB(∂B) = µB◦(∂B◦).
We can relate the Holmes-Thompson(d− 1)-dimensional surface volume to the Minkowski

mixed volumeV (K[d− 1], L) as follows:
σB(f̂) is a convex function (see Thompson’s book), and therefore is the support function of
some convex bodyIB. Hence equation (2.2) shows that

(2.3) µB(∂K) = dV (K[d− 1], IB),

whereIB is that convex body whose support function isσB.
Note that the ratioµB(∂IB) to λ(IB) is equald, i.e.,

(2.4) µB(∂IB) = dλ(IB).

It turns out (see Thompson’s book) that ifB is the unit ball inX andIB is the convex body
defined as above, then

(2.5) IB =
Π(B◦)

εd−1

.

Thus,IB is a centered zonoid.
Minkowski Inequality for mixed volume shows that in a Minkowski space(X, B), among

all convex bodies with volumeλ(IB) those with minimum surface volume are the translates of
IB. Likewise, among convex bodies with the Minkowski surface volumeµB(∂IB) those with
maximum volume are the translates ofIB (see [12, p. 144]).

If volume is some other fixed constant, then the convex bodies with minimal surface volume
are the translates of a suitable multiple ofIB. The same applies, dually, for the convex bodies
of maximum volume for a given surface volume.

The homogenity properties normalize (2.4) by replacingIB by ÎB = IB

σB
so that

µB(∂ÎB) = dµB(ÎB)

as in the Euclidean case. The convex bodyÎB is called isoperimetrix.
The relation between the Holmes-Thompson surface volume and mixed volume becomes

µB(∂K) = dσBV (K[d− 1], ÎB).

3. THE UNIT BALL AND THE I SOPERIMETRIX

We can summarize the relationship between the unit ball and the isoperimetrix. First by
definition

µB(∂ÎB) = dµB(ÎB).

Second settingK = B◦ in Petty projection inequality and using (2.5) for the dual ofIB, we
obtain

(3.1) µB◦(Î◦B) ≤ µB◦(B◦)

with equality if and only ifB is an ellipsoid.

Proposition 3.1. i) If ÎB ⊆ B thenB is an ellipsoid and̂IB = B.
ii) µÎB

(B) ≤ µB(B) andµÎB
(ÎB) ≤ µB(ÎB).
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6 ZOKHRAB MUSTAFAEV

Proof. i) If ÎB ⊆ B thenB◦ ⊆ Î◦B. Thus,λ∗(B◦) ≤ λ∗(Î◦B), which is a contradiction of
(3.1).

ii) Multiplying both sides toλ(B)/εd (λ(ÎB)/εd) in (3.1), we obtain those inequalities.
�

From the above arguments it follows that ifÎB = αB, thenα ≥ 1 and equality holds if and
only if B is an ellipsoid.

It is also interesting to know the relationship betweenµB(B) andµB(ÎB), which we will
apply in the next section. In a two-dimensional space it is not difficult to establish this relation-
ship.

Proposition 3.2. If (X, B) is a two-dimensional Minkowski space, then

µB(B) ≤ µB(ÎB)

with equality if and only ifB is an ellipse.

Proof. Recall that in a two-dimensional Minkowski spaceλ∗(B◦) = λ(IB), sinceIB is the
rotation ofB◦. Then from the Blaschke-Santalo Inequality we obtain

λ(B) ≤ π2

λ∗2(B◦)
λ∗(B◦) =

π2

λ∗2(B◦)
λ(IB) = λ(ÎB).

Thus,
µB(B) ≤ µB(ÎB).

Obviously, equality holds if and only ifB is an ellipse. �

4. THE RATIO OF THE SURFACE AREA TO THE VOLUME FOR THE UNIT BALL AND

PETTY ’ S CONJECTURED PROJECTION INEQUALITY

Petty’s conjectured projection inequality (see [8, p. 136]) states that ifK is a convex body in
X, then

(4.1) ε−2
d λ(ΠK)λ1−d(K) ≥

(
εd−1

εd

)d

with equality if and only ifK is an ellipsoid.
In his paper [5] Lutwak described this conjecture as “possibly the major open problem in the

area of affine isoperimetric inequalities” and gave an ‘equivalent’ non-technical version of this
conjecture. It is also known that this conjecture is true in a two-dimensional Minkowski space
(see Schneider [9]).

SettingK = B◦ (assumeX = Rd) we can rewrite (4.1) as

εd−2
d λ(ΠB◦) ≥ εd

d−1λ
d−1(B◦).

Using (2.5), we have

(4.2) λd−1(B◦) ≤ εd−2
d λ(IB).

Multiplying both sides toλ(B◦), we obtain

(4.3) µB(ÎB) ≥ εd.

Inequalities (4.2) and (4.3) are also Petty’s conjectured projection inequality for the unit balls,
and these hold with equality whend = 2.

In (4.2) using the Blaschke-Santalo Inequality, we get

λ(B)λd(B◦) ≤ ε2
dλ

d−1(B◦) ≤ εd
dλ(IB).
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GEOMETRIC INEQUALITIES FOR HOLMES-THOMPSONDEFINITIONS 7

Thus, we have the next inequality

(4.4) µB(B) ≤ µB(ÎB)

with equality if and only ifB is an ellipsoid.
We have obtained that if Petty’s conjectured projection inequality for the unit balls holds,

then (4.4) is true.
In the previous section we showed that this inequality is valid for the two-dimensional spaces.
If we multiply both sides of (4.2) toλd−1(B) and apply the Minkowski mixed volumes in-

equality, then

λd−1(B)λd−1(B◦)

εd−1
d

≤ ε−1
d λd−1(B)λ(IB) ≤ ε−1

d V d(B[d− 1], IB).

Using (2.3) forK = B, we have

(4.5) µd
B(∂B) ≥ ddεdµ

d−1
B (B)

with equality if and only ifB is an ellipsoid.
We can also rewrite (4.5) as

(4.6)

(
µB(∂B)

$d

)d

≥
(

µB(B)

εd

)d−1

,

where$d = dεd is the surface area of the unit ball in the Euclidean space.
Inequality (4.6) is the isoperimetric inequality for the Holmes-Thompson definition of vol-

ume and surface area, and it is also well known that this inequality is true whend = 2.

Theorem 4.1. If B is the unit ball in ad-dimensional Minkowski space such thatµB(B) ≤
µB(ÎB), then

µB(∂B)

µB(B)
≥ d

with equality if and only ifB is an ellipsoid.

Proof. µB(B) ≤ µB(ÎB) can be written as

λ(B)λd(B◦) ≤ εd
dλ(IB).

Multiplying both sides toλd−1(B)

εd
d

and applying Minkowski Inequality for the mixed volumes,
we obtain

λd(B)λd(B◦)

εd
d

≤ λd−1(B)λ(IB) ≤ V d(B[d− 1], IB) =
µd

B(∂B)

dd
.

Thus,
µB(∂B)

µB(B)
≥ d

and equality holds if and only ifB is an ellipsoid. �

Corollary 4.2. Let B be the unit ball in ad−dimensional Minkowski space. If Petty’s conjec-
tured projection inequality is true for the unit ball, then

µB(∂B)

µB(B)
≥ d

with equality if and only ifB is an ellipsoid.

Proof. We have been seen that if Petty’s conjectured projection inequality is true, thenµB(B) ≤
µB(ÎB). Hence the result follows from Theorem 4.1. �

J. Inequal. Pure and Appl. Math., 5(1) Art. 17, 2004 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/
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Conjecture 4.3. If B is the unit ball and̂IB is the isoperimetrix defined as above in a Minkowski
space, then

µB(B) ≤ µB(ÎB)

with equality if and only ifB is an ellipsoid.

It has been shown that this conjecture is true in a two-dimensional Minkowski space.

Definition 4.1. If K is a convex body inX, the inner radius ofK, r(K) is defined by

r(K) := max{α : ∃x ∈ X with αÎB ⊆ K + x},
and the outer radius ofK, R(K) is defined by

R(K) := min{α : ∃x ∈ X with αÎB ⊇ K + x}.

Lemma 4.4. If r(B) is the inner radius of the unit ball ofB, then

r(B) ≤ 1

with equality if and only ifB is an ellipsoid.

Proof. We know by (3.1) thatλ(Î◦B) ≤ λ(B◦). Using the fact thatB◦ ⊆ 1
r
Î◦B, we obtain the

result. �

Lemma 4.5. If d ≥ 3 andR(B) is the outer radius of the unit ball ofB in a d-dimensional
Minkowski space(X, B), then

R(B) ≥ εd−1

dεd

(
2d

d

) 1
d

.

Proof. SettingK = B◦ in Zhang’s inequality and using (2.5) for the dual ofIB we obtain that

λ(Î◦B) ≥ λ(B◦)

(
εd−1

εd

)d (
2d

d

)
d−d.

The result follows from the fact thatRdλ(B◦) ≥ λ(Î◦B). �

For two-dimensional spaces, it was shown in [7] thatR(B) ≥ 3
π
, with equality if and only if

B is an affine regular hexagon.

Remark 4.6. FromR(B) = 1, it does not follow thatB is an ellipsoid.

For two-dimensional Minkowski spaces, stronger result was also obtained. Namely, it was
proved that ifr(B) andR(B) are the inner and outer radii of the unit disc ofB, respectively, in
a two-dimensional Minkowski space, then

µB(∂B)

µB(B)
≥ r +

1

r

and
µB(∂B)

µB(B)
≥ R +

1

R
,

with equality if and only ifB is an ellipse (see, [7]).
In a higher dimension, we can also obtain a stronger result whenR(B) ≤ 1, i.e.,B ⊆ ÎB.

SinceIB is maximizing and minimizing the volume and surface area, respectively, we have

µB(∂K)d

µB(K)d−1
≥ µB(∂ÎB)d

µB(ÎB)d−1
= ddµB(ÎB).

But µB(ÎB) ≥ 1
Rd µB(B).
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GEOMETRIC INEQUALITIES FOR HOLMES-THOMPSONDEFINITIONS 9

Hence
µB(∂B)

µB(B)
≥ d

R
with equality if and only ifB is an ellipsoid.

Proposition 4.7. If B is the unit ball in ad-dimensional Minkowski space such thatµB(∂B) ≥
dεd, then

(i))
µB(∂B)

µB(B)
≥ d,

(ii))

(
µB(∂B)

dεd

)d

≥
(

µB(B)

εd

)d−1

.

Proof. SinceµB(B) ≤ εd we obtain both inequalities. �

There exist examples such thatµB(∂B) < dεd (see Thompson [11]).

Theorem 4.8.Let (X, B) be ad- dimensional Minkowski space andµB(∂B) ≤ dεd, then

µd−1

ÎB
(B)µB(ÎB) ≤ εd

d

with equality if and only ifB is an ellipsoid.

Proof. Using (2.3), we can rewriteµB(∂B) ≤ dεd as

V d(B[d− 1], IB) ≤ εd
d.

From the Minkowski Inequality we obtain

(4.7) λd−1(B)λ(IB) ≤ εd
d.

We know from the Petty projection inequality that

(4.8) λd−1(B◦)λ(I◦B) ≤ εd
d.

Multiplying (4.7) and (4.8) we get

λd−1(B)λd−1(B◦)λ(IB)λ(I◦B) ≤ ε2d
d .

The left side of this inequality can be also written as

µd−2
B (B)µÎB

(B)µB(ÎB) ≤ εd
d.

Recalling thatµÎB
(B) ≤ µB(B) ≤ εd, we obtain the desired result. One can see that equality

holds if and onlyB is an ellipsoid. �

Proposition 4.9. If B is the unit ball in ad-dimensional Minkowski space and ifλd−1(B|u⊥) ≤
λ(ÎB|u⊥) for all u ∈ Sd−1, then

µB(B) ≤ µB(ÎB).

Proof. SinceÎB is a zonoid, settingK = L2 = ÎB andL1 = B in Theorem 2.2 we have

V d(B[d− 1], ÎB) ≤ λd(ÎB).

Now we can obtain the result from the Minkowski Inequality for the mixed volumes. �

Proposition 4.10. If B is the unit ball in ad-dimensional Minkowski space such thatB is a
zonoid, then

µB(∂B) ≥ 4d

εd(d− 1)!
.
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10 ZOKHRAB MUSTAFAEV

Proof. SinceB is a zonoid by Mahler-Reizner Inequality we have

µB(B) ≥ 4d

εdd!
.

Assuming that the conjecture is true, the result follows from Theorem 4.1. �

Whend = 3, the smallest value ofµB(∂B) that has been found so far is36
π

in the case when
B is either the rhombic-dodecahedron or its dual (see [4] or Section 6.5 in Thompson’s book).

Problem 4.11. If B is the unit ball in ad-dimensional Minkowski space such thatµB(∂B) <
dεd, then is this still true (

µB(B)

dεd∂

)d

≥
(

µB(B)

εd

)d−1

?
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