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Abstract: Let K; and K3, respectively, be non empty closed convex subsets of real Hilbert Full S
spacesH; and H». The Approxzimation — solvability of a generalized system of ull screen
nonlinear variational inequalityS NV I) problems based on the convergence of pro- Close

jection methods is discussed. The SNVI problem is stated as follows: find an element
(z*,y") € K1 x K3 such that
journal of inequalities
(pS(z",y"),x — ") >0, Vz € K; and forp > 0, in pure and applied

(T (z*,y%),y —y*) >0, ¥y € K> and fory > 0, mathematics
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whereS : K1 x Ko — Hy andT : Ky x K2 — H, are nonlinear mappings. 1ssh
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1. Introduction

Projection-like methods in general have been one of the most fundamental tech-
niques for establishing the convergence analysis for solutions of problems arising
from several fields, such as complementarity theory, convex quadratic programming,
and variational problems. There exists a vast literature on approximation-solvability

of several classes of variational/hemivariational inequalities in different space set- Strongly Pseudomonotone
H - - - - . | e |
tings. The authord, 7] introduced and studied a new system of nonlinear variational e
inequalities in Hilbert space settings. This class encompasses several classes of non- R U. Verma
linear variational inequality problems. In this paper we intend to explore, based on a o 0 e, 1L v, G 200

general system of projection-like methods, the approximation-solvability of a system
of nonlinear strongly pseudomonotone variational inequalities in Hilbert spaces. The
obtained results extend/generalize the result&]iN 5] — [7] to the case of strongly Title Page
pseudomonotone system of nonlinear variational inequalities. Approximation solv-

Contents
ability of this system can also be established using the resolvent operator technique
but in the more relaxed setting of Hilbert spaces. For more details, we refer the 4 dd
reader to 1] —[10]. < >
Let H, and H, be two real Hilbert spaces with the inner prodict) and norm
|-]]. LetS : K; x Ky — H; andT : K, x Ky — H, be any mappings on Page 3 of 19
K, x Ky, where K; and K, are nonempty closed convex subsetsHgfand Hs, Go Back
respectively. We consider a system of nonlinear variational inequality (abbreviated
as SNVI) problems: determine an elemérit, 4*) € K; x K, such that Ul sarzer)
(1.1) (pS(a*,y"),x —2*) > 0Va € K, Close
journal of inequalities
in pure and applied
(1.2) (nT'(x",y"),y —y*) = 0Vy € Ko, mathematics

i : 1443-575k
wherep, n > 0. e
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The SNVI(1.1)—(1.2) problem is equivalent to the following projection formulas

" = Pplz* — pS(x*,y*)] forp>0

y' = Quly" —nT(z",y")] forn>0,
whereP; is the projection off; onto K; and() is the projection of{, onto K.

We note that the SNMI1.1)—(1.2) problem extends the NVI problem: determine Strongly Pseudomonotone
* Nonlinear Variational
an element* € K, such that Inequaliics
(1.3) (S(x*),z —z*) >0, Vo € Kj. R.U. Verma

vol. 8, iss. 1, art. 6, 2007
Also, we note that the SNV(1.1) — (1.2) problem is equivalent to a system of

nonlinear complementarities (abbreviated as SNC): find an elefment’) € K; x

K, such thatS(z*, y*) € K}, T(z*,y*) € K, and Title Page
Contents
(1.4) (pS(z*,y"),z") =0 for p>0,
<« »
< >
19 T2, y7),y") =0 for n >0, Page 4 of 19
whereK; and K, respectively, are polar coneskg and K, defined by Go Back
Ki={feH :(f,x) >0, Vo € K;}. Full Screen
Ky ={g9€ Hy:{g,y) >0, Vg € Ky}. Close
Now, we recall some auxiliary results and notions crucial to the problem on hand. journal of inequalities
Lemma 1.1. For an element € H, we have in pure and applied
mathematics

reK and (z—zy-—z)>0, VyeK ifandonlyif x= Py(z). issn: 1443-575k
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Lemma 1.2 (B]). Let{a*},{3"}, and {7*} be three nonnegative sequences such
that

o< (1=t + 55 +4F for k=0,1,2, ...,

wheret® € [0,1], 3222 1% = o0, 8" = o(t*), and Y32 | +* < co. Thena* — 0 as
k — oo.

A mappingT : H — H from a Hilbert spacé{ into H is called monotone if
(T'(x)=T(y), x—y) > 0forall =,y € H. The mappindis (r)—stronglymonotone
if for eachzx,y € H, we have

(T(x) —T(y),z —y) >r|lzr —y||* foraconstant > 0.

This implies that||7(x) — T(y)|| > r|lz — yl|, that is, T is (r)-expansive, and
whenr = 1, it is expansive. The mapping is called (s)-Lipschitz continu-
ous (or Lipschitzian) if there exists a constant 0 such that||7'(x) — T'(y)|| <
sl|lx —yl||, Yx,y € H. T is called(u)-cocoercive if for each,y € H, we have

(T(x) —T(y),z —y) > p||T(x) — T(y)||> foraconstant > 0.

Clearly, every(u)-cocoercive mappind’ is (ﬁ)-Lipschitz continuous. We can eas-
ily see that the following implications on monotonicity, strong monotonicity and
expansiveness hold:

strong monotonicity=- expansiveness

4

monotonicity
T is called relaxed~)-cocoercive if there exists a constant- 0 such that

(T(z) = T(y),x —y) = (=NT(2) =TI Vao,yeH
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T is said to ber)-strongly pseudomonotone if there exists a positive constamth
that

(T(y),x—y) 2 0= (T(x),x —y) 2r|e—yl*, VoyeH.
T is said to be relaxe(ty, r)-cocoercive if there exist constants: > 0 such that

(T(z) = T(y),z = y) = (=) IT(x) = TW)|* +rllz — yl*.

Clearly, it implies that

(T(x) = T(y),z —y) > (=) |T(x) = T(y)|?,

that is, T is relaxed(+)-cocoercive.

T is said to be relaxefly, r)-pseudococoercive if there exist positive constants
andr such that

(T(y),x —y) 2 0= (T(x),x —y) > (=) IT(x) = TW)|*+r ||z —ylI*, Va,y € H.
Thus, we have following implications:

(r)-strong monotonicity = strong(r)-pseudomonotonicity

Y

relaxed(+y, r)-cocoercivity

Y

relaxed(~, r)-pseudococoercivity
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2. General Projection Methods

This section deals with the convergence of projection methods in the context of the
approximation-solvability of the SNMI1.1) — (1.2) problem.

Algorithm 1. For an arbitrarily chosen initial pointz°,4°) € K, x K,, compute
the sequencese*} and {y*} such that

2= (1= ab — DMk 4 aF Pk — pS(a*, yb)] + bt

yk+1 — (1 o Oék o 6k)yk +akQK[yk . nT(xk,yk)] +ﬁk’l}k,
where P is the projection of/; onto K1, Qx is the projection ofH, onto K5, p,
n > 0 are constantsS : K; x K — H;andT : K; x Ky — H, are any two

mappings, and.* andv*, respectively, are bounded sequenceginand K,. The
sequence$a”}, {V*}, {a*}, and {5"} are in [0, 1] with (k > 0)
Ogak—i—bkgl, 0§o/“+ﬁk§1.

Algorithm 2. For an arbitrarily chosen initial pointz°, 4°) € K, x K,, compute
the sequencese*} and{y*} such that

2= (1= ab — DMk 4 aF Pk — pS(a*, b)) + brut

yk-i-l _ (1 _ ak _ bk)yk: 4 aszK[yk _ nT(xk,yk)] + bkvk,

where P is the projection of/; onto K1, QQx is the projection of/, onto K5, p,
n > 0 are constantsS : K; x K — H; andT : K; x Ky — H, are any two
mappings, and.* andv*, respectively, are bounded sequenceginand K,. The
sequence$a®} and{b*}, are in [0, 1] with (k£ > 0)

0<d" +b <.
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Algorithm 3. For an arbitrarily chosen initial pointz°,4°) € K, x K,, compute
the sequencegr*} and{y*} such that

2k — (1 — ak)xk + akpk[l'k - pS(xkayk)]

Y= (1= + d" Qkly* — T (", ")),
where P is the projection ofH/; onto K1, 0k is the projection ofH, onto K5, p,
n > 0 are constantsS : K; x Ky — H; andT : K; x K; — H, are any two
mappings. The sequenée®} € [0, 1] for k& > 0.

We consider, based on Algorith&) the approximation solvability of the SNVI
(1.1) — (1.2) problem involving strongly pseudomonotone and Lipschitz continuous
mappings in Hilbert space settings.

Theorem 2.1. Let H; and H; be two real Hilbert spaces ands; and K, respec-
tively, be nonempty closed convex subsefg,cnd H,. LetS : K1 x Ky — H; be
strongly (r)— pseudomonotone angh)—Lipschitz continuous in the first variable
and letS be (v)—Lipschitz continuous in the second variable. et K; x Ky —
H, be strongly(s)—pseudomonotone an@)—Lipschitz continuous in the second
variable and letl”’ be (7)—Lipschitz continuous in the first variable. Let||* denote
the norm onH; x H, defined by

(@, )II" = (]l + [[yll) V(z,y) € Hi x Hy.
In addition, let

2

9:\/1—2,07“+p+(7>+p2u2+777<1

a:\/1—277r+77—|—(

AS)

2

‘d
IR

)+T}2ﬂ2+pu<1,
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let (z*,y*) € K; x K, form a solution to the SN\I1.1) — (1.2) problem, and let
sequence$z®}, and{y*} be generated by Algorithth Furthermore, let

() (S, y"), ot —a*) = 0;

(i) (T(z*,y*),y" —y*) > 0;

(i) 0 < aF+b* < 1;

(iv) dpo,af = oo, and 7 bF < oo;
(v)0<p<%and0<n<§—§.

Then the sequende*, y*} converges tgz*, y*).

Proof. Since(z*, y*) € K; x K, forms a solution to the SNMII.1)—(1.2) problem,
it follows that

" = Pglz* — pS(a™,y")] and y* = Qklz" —nT(z",y")].
Applying Algorithm 2, we have
2.1) " =2
= ||(1 = a® = b")a* + a" Pg[a® — pS(a*, ")) + bru”
— (1 —a" — ")z — " Pg[z* — pS(a*, y*)] — b a*|
< (1—a" = 0)|la* — 27|
+a®|| Pg[a® = pS(a®,y")] = Prla® — pS(a*,y)]|| + MB*
< (1—d")|z" = a*|| + a*|]a* — 2 — p[S(a*,y*) — S(a*, y")
+ 82", y*) = S,y + Mb*
< (1—=a")|a" —2*| + a*|Ja* — 2 — p[S(a", y*) — S (@™, y")]]|
+pll[S(a*,y") = S,y + MY,
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where
M = max{sup ||u* — z*||,sup ||v* — y*||} < co.

SinceS is strongly(r)— pseudomonotone arg)—Lipschitz continuous in the first
variable, andS is (v)—Lipschitzcontinuous in the second variable, we have in light

of (i) that

= ka —{L‘*||2 _210<S(xk7yk) _S( Y ) ZL’ -z >
+ IS (2, y) = S(a*,y")|?

= [la® — 2| = 2p(S (2", y"), 2" —2*) + 2p(S (2", "), 2" — 27)

+02||S(a*, 4F) = S(a*, yM)|1?
< la* —2*|* = 2pr||2* — :v*||2 + Pt — |
+2p(S(a*,y"), 2" —27)
< o — 2| = 2pr||at — 2|2 + P2t — 2|2
+2p(S (2", y*), 2" —z%)
= [1 = 2pr + ] [J2* — 2*|* + 2p(S (2", y*), 2" — 2*).
On the other hand, we have
20(S(2", y*), 2" — a%) < p[IS(=, y)|I* + [la* — 2*]?]
and

(2.3) 1S, y*)|I?
= {15 - Sk I — st P
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1 *
- 318t + St IR

1 *
< {15t ) - SR - 216 PP
1 *
— S | 1S(*, %) = S(a*, ") P
2 Strongly Pseudomonotone
1 Nonlinear Variational
< —HS(SL’*, yk) _ S(SEk, yk)H2 Inequalities
2 R. U. Verma
2
< M_ka . LL'*HQ vol. 8, iss. 1, art. 6, 2007
— 2 )
where ] Title Page
E o k\j2 _ = k ,k\ x k 2
ISy = 5 LIS, 4% = St y") | 12> 0. —
Therefore, we get <« »
2
2p(5(a o)~ %) < o+ (20 )] et = I i
Page 11 of 19
It follows that —
2
|* —a*—p[S (¥, y*) =S (", y")]|]* < [1 — 207+ p+ (%) + (pu)Q] la* 1%, Full Screen
Close
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Similarly, we have

2.5) |y = || < A=) |ly" —y |+ dolly” —y* | + a*nr||2* — 2| + MYF,

wheres = \/1 —2nr +n+ <ﬂ§—2> + 0252,
It follows from (2.4) and(2.5) that
(2.6) [la"* — 2| + ly* " =y

< (1 —a")||z* — 2*|| + a*0||2* — z*|| + a*nr||2* — 2*|| + MD*

+ (1= d) Ny =yl + d*olly* — 'l + d*pvlly* — vl + MV*

= [1— (1= a)a"|(fla" — || + ly* — y7[l) +2Mb",
whered = max{6 + n7,0 + pr} and H; x H, is a Banach space under the norm
(RN

If we set
o = |la* — 2| + v =yl = (1-d)d,
gF=2Mb¥  fork=0,1,2,...,
in Lemmal.2, and apply(zii) and(iv), we conclude that
2% — 2% + ly* = y*|| = 0

ask — oo.
Hence,
"+ —2* | + [ly* =y — 0.

Consequently, the sequenfer®, 4*)} converges strongly toz*, y*), a solution to
the SNVI(1.1) — (1.2) problem. This completes the proaf.
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Note that the proof of the following theorem follows rather directly without using
Lemmal.2

Theorem 2.2. Let H, and H, be two real Hilbert spaces andys; and K, respec-
tively, be nonempty closed convex subsefs,chnd H,. LetS : K1 x Ky — H; be
strongly (r)— pseudomonotone ang)—Lipschitz continuous in the first variable
and letS be (v)—Lipschitz continuous in the second variable. et K; x Ky —
H, be strongly(s)—pseudomonotone ang)—Lipschitz continuous in the second
variable and letl’ be (7)—Lipschitz continuous in the first variable. Let||* denote
the norm onH; x H, defined by

Gz )™ = (=l + lyll) - ¥(z,y) € Hy x Hs.

In addition, let

2

0:\/1—2pr+p+(%) + p?p? T < 1,

0
o= 1—2777’+77+(T)+77262+p1/<1,

let (z*,y*) € K; x K, form a solution to the SN\I1.1) — (1.2) problem, and let
sequence$z”}, and{y"*} be generated by Algorithf Furthermore, let

(i) (S(z*,y*),a* —a*) >0
@iy (T(z*,y%),9* —y*) >0
(i) 0<a* <1

(V) oy a* = o0
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(V)0<,0< and0<n<

Then the sequenc{e:’“, y*)} converges strongly tor*, y*).

Proof. Since(z*, y*) € K; x K, forms a solution to the SNMII.1)—(1.2) problem,
it follows that

a* = Pglz" — pS(z*,y)]  and  y"=Qklz" —nT(z",y")].
Applying Algorithm 3, we have
2.7) [« =2
I(1 — a®)a* + a* Pg[a* — pS(a*,y*)] — (1 — a*)a”

— a*Prla” — pS(z*, y)]||
(1—a¥)||a* — 2*|| + | Px[a* — pS(a*,y")] — Pla” — pS(a*,y")|
(1 —d")||a" — 27|

+all|at — o = p[S(a*,y*) = S(a*,y") + S(a*,y") = S(a”,y)]|
< (1= aP)lat — o7 + e —a* — plS(at.g") — S,y
+pll[S(a*,y") = S,y

SinceS is strongly(r)— pseudomonotone arig)—Lipschitz continuous in the first

variable, andS is (v)—Lipschitzcontinuous in the second variable, we have in light
of (7) that

(2.8) " = 2% = p[S(a", y*) — S(=*, "I
= llo = 2"|* = 2p(S(2*, y") = S(a”, y"), 2" — 27)
+ 078", y") — S, )|
= |z — 2"||* — 2p(S(x ,y),x %) +2p(S(a",y"), 2" — 27)

<
<
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+ 0215 (=, ) = S(at, M)
< la* = 2*[* = 2pr||2® — 27|* + p?p?||2* — 2|
+ 2p(S(z*, y*), 2% — 2*)
< la* —2*[* = 2pr||z* — 27|* + p?p?||2* — 2|?
+2p(S(2*, y*), 2" —2¥)
= [1=2pr + p*p?]|2" — 2*|* + 2p(S (", y"), 2" — 27).
On the other hand, we have
20(S(2", y*), 2" — a*) < p[IS(=, y) P + [l2* — 2*]%]
and

(2.9) 1S (2", )"

- %{usw,y'ﬂ) ~ S I
-2 IS P - JISH ) + S6 IR }

1 *
< 5{”5(93 yF) — S(aF, yM)|)?
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where 1
I = 5 IS, o) = Sy > 0.

Therefore, we get

2
20(S(a", 1), 2 — 2} < [p+ (%)] ot — |12
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(2.10) |2t —2*|| < (1 = a")||2" — 2| + a"0]2" — 2*|| + " pr|ly* — v, Contents
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wheref = \/1 —2pr +p+ (%) + p?u?. p R

Similarly, we have
Page 16 of 19

(2.11) ||y =yt < (1= d)|ly" = v + dFollyt — vF|| + aFnr |t — 27,

Go Back
wheres = \/1 —2nr +n+ <#> + 772ﬁ2. Full Screen
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=[1 =1 =0)a")(lla" — 2" [ + lly* — "I}

<0 = (= o)a](l=" — 2| + lly° — v,

J=0

whered = max{0 + nr,0 + pv} and H; x H, is a Banach space under the norm
- 11"
Sinced < 1and)_,-, a* is divergent, it follows that
k
lim | |[[1-(1—-0)d’]=0 ask — oc.

k—o0
J=0

Therefore,
"+ — 2*|| + [ly* T = y*|| — 0,

and consequently, the sequer{¢e®, %)} converges strongly tor*, 3*), a solution
to the SNV (1.1) — (1.2) problem. This completes the proa.
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