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ABSTRACT. Let K1 andK2, respectively, be non empty closed convex subsets of real Hilbert
spacesH1 andH2. The Approximation − solvability of a generalized system of nonlinear
variational inequality(SNV I) problems based on the convergence of projection methods is
discussed. The SNVI problem is stated as follows: find an element(x∗, y∗) ∈ K1 × K2 such
that

〈ρS(x∗, y∗), x− x∗〉 ≥ 0, ∀x ∈ K1 and forρ > 0,

〈ηT (x∗, y∗), y − y∗〉 ≥ 0, ∀y ∈ K2 and forη > 0,

whereS : K1 ×K2 → H1 andT : K1 ×K2 → H2 are nonlinear mappings.

Key words and phrases:Strongly pseudomonotone mappings, Approximation solvability, Projection methods, System of non-
linear variational inequalities.
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1. I NTRODUCTION

Projection-like methods in general have been one of the most fundamental techniques for es-
tablishing the convergence analysis for solutions of problems arising from several fields, such as
complementarity theory, convex quadratic programming, and variational problems. There exists
a vast literature on approximation-solvability of several classes of variational/hemivariational
inequalities in different space settings. The author [6, 7] introduced and studied a new system
of nonlinear variational inequalities in Hilbert space settings. This class encompasses several
classes of nonlinear variational inequality problems. In this paper we intend to explore, based
on a general system of projection-like methods, the approximation-solvability of a system of
nonlinear strongly pseudomonotone variational inequalities in Hilbert spaces. The obtained
results extend/generalize the results in [1], [5] – [7] to the case of strongly pseudomonotone
system of nonlinear variational inequalities. Approximation solvability of this system can also
be established using the resolvent operator technique but in the more relaxed setting of Hilbert
spaces. For more details, we refer the reader to [1] – [10].
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2 R. U. VERMA

Let H1 andH2 be two real Hilbert spaces with the inner product〈·, ·〉 and norm‖ · ‖. Let
S : K1×K2 → H1 andT : K1×K2 → H2 be any mappings onK1×K2, whereK1 andK2 are
nonempty closed convex subsets ofH1 andH2, respectively. We consider a system of nonlinear
variational inequality (abbreviated as SNVI) problems: determine an element(x∗, y∗) ∈ K1 ×
K2 such that

(1.1) 〈ρS(x∗, y∗), x− x∗〉 ≥ 0 ∀x ∈ K1

(1.2) 〈ηT (x∗, y∗), y − y∗〉 ≥ 0 ∀y ∈ K2,

whereρ, η > 0.
The SNVI(1.1)− (1.2) problem is equivalent to the following projection formulas

x∗ = Pk[x
∗ − ρS(x∗, y∗)] for ρ > 0

y∗ = Qk[y
∗ − ηT (x∗, y∗)] for η > 0,

wherePk is the projection ofH1 ontoK1 andQK is the projection ofH2 ontoK2.
We note that the SNVI(1.1)−(1.2) problem extends the NVI problem: determine an element

x∗ ∈ K1 such that

(1.3) 〈S(x∗), x− x∗〉 ≥ 0, ∀x ∈ K1.

Also, we note that the SNVI(1.1)−(1.2) problem is equivalent to a system of nonlinear comple-
mentarities (abbreviated as SNC): find an element(x∗, y∗) ∈ K1×K2 such thatS(x∗, y∗) ∈ K∗

1 ,
T (x∗, y∗) ∈ K∗

2 , and

(1.4) 〈ρS(x∗, y∗), x∗〉 = 0 for ρ > 0,

(1.5) 〈ηT (x∗, y∗), y∗〉 = 0 for η > 0,

whereK∗
1 andK∗

2 , respectively, are polar cones toK1 andK2 defined by

K∗
1 = {f ∈ H1 : 〈f, x〉 ≥ 0, ∀x ∈ K1}.

K∗
2 = {g ∈ H2 : 〈g, y〉 ≥ 0, ∀g ∈ K2}.

Now, we recall some auxiliary results and notions crucial to the problem on hand.

Lemma 1.1. For an elementz ∈ H, we have

x ∈ K and 〈x− z, y − x〉 ≥ 0, ∀y ∈ K if and only if x = Pk(z).

Lemma 1.2([3]). Let{αk}, {βk}, and{γk} be three nonnegative sequences such that

αk+1 ≤ (1− tk)αk + βk + γk for k = 0, 1, 2, ...,

wheretk ∈ [0, 1],
∑∞

k=0 tk = ∞, βk = o(tk), and
∑∞

k=0 γk < ∞. Thenαk → 0 ask →∞.

A mappingT : H → H from a Hilbert spaceH into H is called monotone if〈T (x)− T (y),
x − y〉 ≥ 0 for all x, y ∈ H. The mappingT is (r)−stronglymonotone if for eachx, y ∈ H,
we have

〈T (x)− T (y), x− y〉 ≥ r||x− y||2 for a constantr > 0.

This implies that‖T (x)− T (y)‖ ≥ r‖x− y‖, that is,T is (r)-expansive, and whenr = 1, it is
expansive. The mappingT is called(s)-Lipschitz continuous (or Lipschitzian) if there exists a
constants ≥ 0 such that‖T (x)− T (y)‖ ≤ s‖x− y‖, ∀x, y ∈ H. T is called(µ)-cocoercive if
for eachx, y ∈ H, we have

〈T (x)− T (y), x− y〉 ≥ µ||T (x)− T (y)||2 for a constantµ > 0.
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Clearly, every(µ)-cocoercive mappingT is ( 1
µ
)-Lipschitz continuous. We can easily see that

the following implications on monotonicity, strong monotonicity and expansiveness hold:

strong monotonicity
⇓

monotonicity

⇒ expansiveness

T is called relaxed(γ)-cocoercive if there exists a constantγ > 0 such that

〈T (x)− T (y), x− y〉 ≥ (−γ)‖T (x)− T (y)‖2, ∀x, y ∈ H.

T is said to be(r)-strongly pseudomonotone if there exists a positive constantr such that

〈T (y), x− y〉 ≥ 0 ⇒ 〈T (x), x− y〉 ≥ r ‖x− y‖2 , ∀x, y ∈ H.

T is said to be relaxed(γ, r)-cocoercive if there exist constantsγ,r > 0 such that

〈T (x)− T (y), x− y〉 ≥ (−γ) ‖T (x)− T (y)‖2 + r ‖x− y‖2 .

Clearly, it implies that

〈T (x)− T (y), x− y〉 ≥ (−γ) ‖T (x)− T (y)‖2 ,

that is,T is relaxed(γ)-cocoercive.
T is said to be relaxed(γ, r)-pseudococoercive if there exist positive constantsγ andr such

that

〈T (y), x− y〉 ≥ 0 ⇒ 〈T (x), x− y〉 ≥ (−γ) ‖T (x)− T (y)‖2 + r ‖x− y‖2 , ∀x, y ∈ H.

Thus, we have following implications:

(r)-strong monotonicity
⇓

relaxed(γ, r)-cocoercivity
⇓

relaxed(γ, r)-pseudococoercivity

⇒ strong(r)-pseudomonotonicity

2. GENERAL PROJECTION M ETHODS

This section deals with the convergence of projection methods in the context of the approximation-
solvability of the SNVI(1.1)− (1.2) problem.

Algorithm 2.1. For an arbitrarily chosen initial point(x0, y0) ∈ K1 × K2, compute the se-
quences{xk} and{yk} such that

xk+1 = (1− ak − bk)xk + akPk[x
k − ρS(xk, yk)] + bkuk

yk+1 = (1− αk − βk)yk + αkQK [yk − ηT (xk, yk)] + βkvk,

wherePK is the projection ofH1 ontoK1, QK is the projection ofH2 ontoK2, ρ, η > 0 are
constants,S : K1 ×K2 → H1 andT : K1 ×K2 → H2 are any two mappings, anduk andvk,
respectively, are bounded sequences inK1 andK2. The sequences{ak}, {bk}, {αk}, and {βk}
are in[0, 1] with (k ≥ 0)

0 ≤ ak + bk ≤ 1, 0 ≤ αk + βk ≤ 1.
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Algorithm 2.2. For an arbitrarily chosen initial point(x0, y0) ∈ K1 × K2, compute the se-
quences{xk} and{yk} such that

xk+1 = (1− ak − bk)xk + akPk[x
k − ρS(xk, yk)] + bkuk

yk+1 = (1− ak − bk)yk + akQK [yk − ηT (xk, yk)] + bkvk,

wherePK is the projection ofH1 ontoK1, QK is the projection ofH2 ontoK2, ρ, η > 0 are
constants,S : K1 ×K2 → H1 andT : K1 ×K2 → H2 are any two mappings, anduk andvk,
respectively, are bounded sequences inK1 andK2. The sequences{ak} and{bk}, are in[0, 1]
with (k ≥ 0)

0 ≤ ak + bk ≤ 1.

Algorithm 2.3. For an arbitrarily chosen initial point(x0, y0) ∈ K1 × K2, compute the se-
quences{xk} and{yk} such that

xk+1 = (1− ak)xk + akPk[x
k − ρS(xk, yk)]

yk+1 = (1− ak)yk + akQK [yk − ηT (xk, yk)],

wherePK is the projection ofH1 ontoK1, QK is the projection ofH2 ontoK2, ρ, η > 0 are
constants,S : K1 × K2 → H1 andT : K1 × K2 → H2 are any two mappings. The sequence
{ak} ∈ [0, 1] for k ≥ 0.

We consider, based on Algorithm 2.2, the approximation solvability of the SNVI(1.1)−(1.2)
problem involving strongly pseudomonotone and Lipschitz continuous mappings in Hilbert
space settings.

Theorem 2.1. Let H1 and H2 be two real Hilbert spaces and,K1 and K2, respectively, be
nonempty closed convex subsets ofH1 and H2. Let S : K1 × K2 → H1 be strongly(r)−
pseudomonotone and(µ)−Lipschitz continuous in the first variable and letS be(ν)−Lipschitz
continuous in the second variable. LetT : K1 × K2 → H2 be strongly(s)−pseudomonotone
and(β)−Lipschitz continuous in the second variable and letT be(τ)−Lipschitz continuous in
the first variable. Let‖ · ‖∗ denote the norm onH1 ×H2 defined by

‖(x, y)‖∗ = (‖x‖+ ‖y‖)∀(x, y) ∈ H1 ×H2.

In addition, let

θ =

√
1− 2ρr + ρ +

(
ρµ2

2

)
+ ρ2µ2 + ητ < 1

σ =

√
1− 2ηr + η +

(
ηβ2

2

)
+ η2β2 + ρν < 1,

let (x∗, y∗) ∈ K1 × K2 form a solution to the SNVI(1.1) − (1.2) problem, and let sequences
{xk}, and{yk} be generated by Algorithm 2.2. Furthermore, let

(i) 〈S(x∗, yk), xk − x∗〉 ≥ 0;
(ii) 〈T (xk, y∗), yk − y∗〉 ≥ 0;

(iii) 0 ≤ ak + bk ≤ 1;
(iv)

∑∞
k=0 ak = ∞, and

∑∞
k=0 bk < ∞;

(v) 0 < ρ < 2r
µ2 and0 < η < 2s

β2 .

Then the sequence{xk, yk} converges to(x∗, y∗).
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Proof. Since(x∗, y∗) ∈ K1×K2 forms a solution to the SNVI(1.1)− (1.2) problem, it follows
that

x∗ = PK [x∗ − ρS(x∗, y∗)] and y∗ = QK [x∗ − ηT (x∗, y∗)].

Applying Algorithm 2.2, we have

‖xk+1 − x∗‖ = ‖(1− ak − bk)xk + akPK [xk − ρS(xk, yk)] + bkuk(2.1)

− (1− ak − bk)x∗ − akPK [x∗ − ρS(x∗, y∗)]− bkx∗‖
≤ (1− ak − bk)‖xk − x∗‖

+ ak‖PK [xk − ρS(xk, yk)]− PK [x∗ − ρS(x∗, y∗)]‖+ Mbk

≤ (1− ak)‖xk − x∗‖+ ak‖xk − x∗ − ρ[S(xk, yk)− S(x∗, yk)

+ S(x∗, yk)− S(x∗, y∗)]‖+ Mbk

≤ (1− ak)‖xk − x∗‖+ ak‖xk − x∗ − ρ[S(xk, yk)− S(x∗, yk)]‖
+ ρ‖[S(x∗, yk)− S(x∗, y∗)]‖+ Mbk,

where

M = max{sup ‖uk − x∗‖, sup ‖vk − y∗‖} < ∞.

SinceS is strongly(r)− pseudomonotone and(µ)−Lipschitz continuous in the first variable,
andS is (ν)−Lipschitzcontinuous in the second variable, we have in light of (i) that

‖xk − x∗ − ρ[S(xk, yk)− S(x∗, yk)]‖2(2.2)

= ‖xk − x∗‖2 − 2ρ〈S(xk, yk)− S(x∗, yk), xk − x∗〉+ ρ2‖S(xk, yk)− S(x∗, yk)‖2

= ‖xk − x∗‖2 − 2ρ〈S(xk, yk), xk − x∗〉+ 2ρ〈S(x∗, yk), xk − x∗〉
+ ρ2‖S(xk, yk)− S(x∗, yk)‖2

≤ ‖xk − x∗‖2 − 2ρr‖xk − x∗‖2 + ρ2µ2‖xk − x∗‖2 + 2ρ〈S(x∗, yk), xk − x∗〉
≤ ‖xk − x∗‖2 − 2ρr‖xk − x∗‖2 + ρ2µ2‖xk − x∗‖2 + 2ρ〈S(x∗, yk), xk − x∗〉
= [1− 2ρr + ρ2µ2]‖xk − x∗‖2 + 2ρ〈S(x∗, yk), xk − x∗〉.

On the other hand, we have

2ρ〈S(x∗, yk), xk − x∗〉 ≤ ρ[‖S(x∗, yk)‖2 + ‖xk − x∗‖2]

and

‖S(x∗, yk)‖2(2.3)

=
1

2
{‖S(x∗, yk)− S(xk, yk)‖2 − 2[‖S(xk, yk)‖2 − 1

2
‖S(xk, yk) + S(x∗, yk)‖2}

≤ 1

2
{‖S(x∗, yk)− S(xk, yk)‖2 − 2[‖S(xk, yk)‖2 − 1

2
| ‖S(xk, yk)− S(x∗, yk)‖ |2]}

≤ 1

2
{‖S(x∗, yk)− S(xk, yk)‖2

≤ µ2

2
‖xk − x∗‖2,

where

‖S(xk, yk)‖2 − 1

2
| ‖S(xk, yk)− S(x∗, yk)‖ |2> 0.
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Therefore, we get

2ρ〈S(x∗, yk), xk − x∗〉 ≤
[
ρ +

(
ρµ2

2

)]
‖xk − x∗‖2.

It follows that

‖xk − x∗ − ρ[S(xk, yk)− S(x∗, yk)]‖2 ≤
[
1− 2ρr + ρ +

(
ρµ2

2

)
+ (ρµ)2

]
‖xk − x∗‖2.

As a result, we have

(2.4) ‖xk+1 − x∗‖ ≤ (1− ak)‖xk − x∗‖+ akθ‖xk − x∗‖+ akρν‖yk − y∗‖+ Mbk,

whereθ =

√
1− 2ρr + ρ +

(
ρµ2

2

)
+ ρ2µ2.

Similarly, we have

(2.5)
∥∥yk+1 − y∗

∥∥ ≤ (1− ak)‖yk − y∗‖+ akσ‖yk − y∗‖+ akητ‖xk − x∗‖+ Mbk,

whereσ =

√
1− 2ηr + η +

(
ηβ2

2

)
+ η2β2.

It follows from (2.4) and(2.5) that

‖xk+1 − x∗‖+ ‖yk+1 − y∗‖(2.6)

≤ (1− ak)‖xk − x∗‖+ akθ‖xk − x∗‖+ akητ‖xk − x∗‖+ Mbk

+ (1− ak)‖yk − y∗‖+ akσ‖yk − y∗‖+ akρν‖yk − y∗‖+ Mbk

= [1− (1− δ)ak](‖xk − x∗‖+ ‖yk − y∗‖) + 2Mbk,

whereδ = max{θ + ητ, σ + ρν} andH1 ×H2 is a Banach space under the norm‖ · ‖∗.
If we set

αk = ‖xk − x∗‖+ ‖yk − y∗‖, tk = (1− δ)ak,

βk = 2Mbk for k = 0, 1, 2, ...,

in Lemma 1.2, and apply(iii) and(iv), we conclude that

‖xk − x∗‖+ ‖yk − y∗‖ → 0

ask →∞.
Hence,

‖xk+1 − x∗‖+ ‖yk+1 − y∗‖ → 0.

Consequently, the sequence{(xk, yk)} converges strongly to(x∗, y∗), a solution to the SNVI
(1.1)− (1.2) problem. This completes the proof. �

Note that the proof of the following theorem follows rather directly without using Lemma
1.2.

Theorem 2.2. Let H1 and H2 be two real Hilbert spaces and,K1 and K2, respectively, be
nonempty closed convex subsets ofH1 and H2. Let S : K1 × K2 → H1 be strongly(r)−
pseudomonotone and(µ)−Lipschitz continuous in the first variable and letS be(ν)−Lipschitz
continuous in the second variable. LetT : K1 × K2 → H2 be strongly(s)−pseudomonotone
and(β)−Lipschitz continuous in the second variable and letT be(τ)−Lipschitz continuous in
the first variable. Let‖ · ‖∗ denote the norm onH1 ×H2 defined by

‖(x, y)‖∗ = (‖x‖+ ‖y‖) ∀(x, y) ∈ H1 ×H2.
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In addition, let

θ =

√
1− 2ρr + ρ +

(
ρµ2

2

)
+ ρ2µ2 + ητ < 1,

σ =

√
1− 2ηr + η +

(
ηβ2

2

)
+ η2β2 + ρν < 1,

let (x∗, y∗) ∈ K1 × K2 form a solution to the SNVI(1.1) − (1.2) problem, and let sequences
{xk}, and{yk} be generated by Algorithm 2.3. Furthermore, let

(i) 〈S(x∗, yk), xk − x∗〉 ≥ 0
(ii) 〈T (xk, y∗), yk − y∗〉 ≥ 0

(iii) 0 ≤ ak ≤ 1
(iv)

∑∞
k=0 ak = ∞

(v) 0 < ρ < 2r
µ2 and0 < η < 2s

β2 .

Then the sequence{xk, yk)} converges strongly to(x∗, y∗).

Proof. Since(x∗, y∗) ∈ K1×K2 forms a solution to the SNVI(1.1)− (1.2) problem, it follows
that

x∗ = PK [x∗ − ρS(x∗, y∗)] and y∗ = QK [x∗ − ηT (x∗, y∗)].

Applying Algorithm 2.3, we have

‖xk+1 − x∗‖(2.7)

= ‖(1− ak)xk + akPK [xk − ρS(xk, yk)]− (1− ak)x∗ − akPK [x∗ − ρS(x∗, y∗)]‖
≤ (1− ak)‖xk − x∗‖+ ak‖PK [xk − ρS(xk, yk)]− PK [x∗ − ρS(x∗, y∗)]‖
≤ (1− ak)‖xk − x∗‖

+ ak‖xk − x∗ − ρ[S(xk, yk)− S(x∗, yk) + S(x∗, yk)− S(x∗, y∗)]‖
≤ (1− ak)‖xk − x∗‖+ ak‖xk − x∗ − ρ[S(xk, yk)− S(x∗, yk)]‖

+ ρ‖[S(x∗, yk)− S(x∗, y∗)]‖.

SinceS is strongly(r)− pseudomonotone and(µ)−Lipschitz continuous in the first variable,
andS is (ν)−Lipschitzcontinuous in the second variable, we have in light of(i) that

‖xk − x∗ − ρ[S(xk, yk)− S(x∗, yk)]‖2(2.8)

= ‖x− x∗‖2 − 2ρ〈S(xk, yk)− S(x∗, yk), xk − x∗〉+ ρ2‖S(xk, yk)− S(x∗, yk)‖2

= ‖x− x∗‖2 − 2ρ〈S(xk, yk), xk − x∗〉+ 2ρ〈S(x∗, yk), xk − x∗〉
+ ρ2‖S(xk, yk)− S(x∗, yk)‖2

≤ ‖xk − x∗‖2 − 2ρr‖xk − x∗‖2 + ρ2µ2‖xk − x∗‖2 + 2ρ〈S(x∗, yk), xk − x∗〉
≤ ‖xk − x∗‖2 − 2ρr‖xk − x∗‖2 + ρ2µ2‖xk − x∗‖2 + 2ρ〈S(x∗, yk), xk − x∗〉
= [1− 2ρr + ρ2µ2]‖xk − x∗‖2 + 2ρ〈S(x∗, yk), xk − x∗〉.

On the other hand, we have

2ρ〈S(x∗, yk), xk − x∗〉 ≤ ρ[‖S(x∗, yk)‖2 + ‖xk − x∗‖2]
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8 R. U. VERMA

and

‖S(x∗, yk)‖2(2.9)

=
1

2

{
‖S(x∗, yk)− S(xk, yk)‖2

− 2

[
‖S(xk, yk)‖2 − 1

2
‖S(xk, yk) + S(x∗, yk)‖2

]}

≤ 1

2

{
‖S(x∗, yk)− S(xk, yk)‖2

− 2

[
‖S(xk, yk)‖2 − 1

2
| ‖S(xk, yk)− S(x∗, yk)‖ |2

]}
≤ 1

2
‖S(x∗, yk)− S(xk, yk)‖2

≤ µ2

2
‖xk − x∗‖2,

where

‖S(xk, yk)‖2 − 1

2

∣∣∥∥S(xk, yk)− S(x∗, yk)
∥∥∣∣2 > 0.

Therefore, we get

2ρ〈S(x∗, yk), xk − x∗〉 ≤
[
ρ +

(
ρµ2

2

)]
‖xk − x∗‖2.

It follows that

‖xk − x∗ − ρ[S(xk, yk)− S(x∗, yk)]‖2 ≤
[
1− 2ρr + ρ +

(
ρµ2

2

)
+ (ρµ)2

]
‖xk − x∗‖2.

As a result, we have

(2.10) ‖xk+1 − x∗|| ≤ (1− ak)‖xk − x∗‖+ akθ‖xk − x∗‖+ akρν‖yk − y∗‖,

whereθ =

√
1− 2ρr + ρ +

(
ρµ2

2

)
+ ρ2µ2.

Similarly, we have

(2.11) ‖yk+1 − y∗‖ ≤ (1− ak)‖yk − y∗‖+ akσ‖yk − y∗‖+ akητ‖xk − x∗‖,

whereσ =

√
1− 2ηr + η +

(
ηβ2

2

)
+ η2β2.

It follows from (2.9) and(2.10) that

‖xk+1 − x∗‖+ ‖yk+1 − y∗‖(2.12)

≤ (1− ak)‖xk − x∗‖+ akθ‖xk − x∗‖+ akητ‖xk − x∗‖
+ (1− ak)‖yk − y∗‖+ akσ‖yk − y∗‖+ akρν‖yk − y∗‖

= [1− (1− δ)ak](‖xk − x∗‖+ ‖yk − y∗‖)

≤
k∏

j=0

[1− (1− δ)aj](‖x0 − x∗‖+ ‖y0 − y∗‖),

whereδ = max{θ + ητ, σ + ρν} andH1 ×H2 is a Banach space under the norm‖ · ‖∗.
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Sinceδ < 1 and
∑∞

k=0 ak is divergent, it follows that

lim
k→∞

k∏
j=0

[1− (1− δ)aj] = 0 as k →∞.

Therefore,
‖xk+1 − x∗‖+ ‖yk+1 − y∗‖ → 0,

and consequently, the sequence{(xk, yk)} converges strongly to(x∗, y∗), a solution to the
SNV I (1.1)− (1.2) problem. This completes the proof. �
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