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ABSTRACT. Let K; and K, respectively, be non empty closed convex subsets of real Hilbert
spacesH; and Ho. The Approzimation — solvability of a generalized system of nonlinear
variational inequality(SNVI) problems based on the convergence of projection methods is
discussed. The SNVI problem is stated as follows: find an eleffagny*) € K; x K, such
that

(pS(z*,y"),z — ") >0, Vo € Ky and forp > 0,

(nT(=z*,y"),y —y") >0, Yy € K and forn > 0,
whereS : K| x Ko — Hy andT : K1 x Ky — H, are nonlinear mappings.

Key words and phrasesStrongly pseudomonotone mappings, Approximation solvability, Projection methods, System of non-
linear variational inequalities.
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1. INTRODUCTION

Projection-like methods in general have been one of the most fundamental techniques for es-
tablishing the convergence analysis for solutions of problems arising from several fields, such as
complementarity theory, convex quadratic programming, and variational problems. There exists
a vast literature on approximation-solvability of several classes of variational/hemivariational
inequalities in different space settings. The author [6, 7] introduced and studied a new system
of nonlinear variational inequalities in Hilbert space settings. This class encompasses several
classes of nonlinear variational inequality problems. In this paper we intend to explore, based
on a general system of projection-like methods, the approximation-solvability of a system of
nonlinear strongly pseudomonotone variational inequalities in Hilbert spaces. The obtained
results extend/generalize the resultslin [1], [5] * [7] to the case of strongly pseudomonotone
system of nonlinear variational inequalities. Approximation solvability of this system can also
be established using the resolvent operator technique but in the more relaxed setting of Hilbert
spaces. For more details, we refer the reader|to [1] - [10].
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Let H, and H, be two real Hilbert spaces with the inner prodgct) and norm|| - ||. Let
S: Kix Ky — HyandT : K| x K3 — H, be any mappings oR; x K,, whereK; andK, are
nonempty closed convex subsetdffand H,, respectively. We consider a system of nonlinear
variational inequality (abbreviated as SNVI) problems: determine an eleiment’) € K; x
K, such that

(1.1) (pS(z*,y"),x —2*) > 0Vz € K,

(1.2) nT(x*,y"),y —y") > 0Vy € Ky,

wherep,n > 0.
The SNVI([L.1)) — (1.2)) problem is equivalent to the following projection formulas

" = Pyfz* — pS(z*,y")] forp>0
y = Qply" —nT (2", y")] forn >0,
whereP, is the projection off; onto K; and() is the projection of{, onto K.

We note that the SNV([1.1) — (1.2)) problem extends the NVI problem: determine an element
x* € Ky such that

(1.3) (S(z*),z —2*) >0, Vx € K.

Also, we note that the SN]L.1))— ([1.2)) problem is equivalent to a system of nonlinear comple-
mentarities (abbreviated as SNC): find an elenfenty*) € K, x K, suchthatS(z*, y*) € K7,
T(xz*,y*) € K3, and

(1.4) (pS(a*,y*),z") =0 for p>0,

(1.5) (nT'(z%,y%),y") =0 for n>0,
whereK;} and K, respectively, are polar coneskg and K, defined by
Ki={feH :(f,z) >0, Ve € K }.
K;={ge€ Hy:{(g,y) >0, Vg € K»}.
Now, we recall some auxiliary results and notions crucial to the problem on hand.
Lemma 1.1. For an element € H, we have
reK and (x—zy—z)>0, Vye K ifandonlyif == P(z).
Lemma 1.2([3]). Let{a*}, {3}, and{~+*} be three nonnegative sequences such that
oM< (1=t + pF A for kE=0,1,2,...,
wheret* € [0,1], Y72, t* = oo, BF = o(t*), and ;7 , +* < oo. Thena* — 0 ask — oc.
A mappingT : H — H from a Hilbert spacé{ into H is called monotone it7'(z) — T'(y),
x —y) > 0forall z,y € H. The mappindl’ is (r)—stronglymonotone if for each:,y € H,

we have

(T(x) —T(y),z —y) >r|lz —y||* foraconstant > 0.
This implies that|T'(z) — T'(y)|| > r|lz — y||, thatis,T is (r)-expansive, and when= 1, itis
expansive. The mapping is called(s)-Lipschitz continuous (or Lipschitzian) if there exists a
constant > 0 such that|7'(z) — T'(y)|| < s||lx —y||, Y&,y € H. T is called(u)-cocoercive if
for eachx,y € H, we have

(T(x) —T(y),z —y) > p||T(x) — T(y)||* foraconstant > 0.
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Clearly, every(u)-cocoercive mappind’ is (i)-Lipschitz continuous. We can easily see that
the following implications on monotonicity, strong monotonicity and expansiveness hold:

strong monotonicity=- expansiveness

Y

monotonicity

T is called relaxed~)-cocoercive if there exists a constant- 0 such that

(T(z) = T(y),x —y) = (=NT(x) = TW)I*, Yo,y € H.
T is said to bgr)-strongly pseudomonotone if there exists a positive constanth that
T is said to be relaxely, r)-cocoercive if there exist constants: > 0 such that

(T(x) = T(y),x —y) = (=) IT(x) = TW)II* + 7 llz — yl*.
Clearly, it implies that

(T(x) = T(y),x —y) = (=) IT(x) = T(W)|I*,

that is, 7" is relaxed(y)-cocoercive.
T is said to be relaxefty, r)-pseudococoercive if there exist positive constagnasidr such
that

(T(y),x —y) 2 0= (T(x),x —y) > (=) IT(x) = TW)|* +rlle —yl*, Vo,yeH.
Thus, we have following implications:

(r)-strong monotonicity = strong(r)-pseudomonotonicity

4

relaxed(~, r)-cocoercivity

4

relaxed(~, )-pseudococoercivity

2. GENERAL PROJECTION METHODS

This section deals with the convergence of projection methods in the context of the approximation-

solvability of the SNVI(L.1]) — problem.

Algorithm 2.1. For an arbitrarily chosen initial poirtz°,4°) € K; x K,, compute the se-
quenceqz*} and{y"*} such that

o = (1 — a — bF)a" + a" Py[a" — pS(2*, yF)] + bFu”
Yt = (1= = 35)y* + " Qr[y* — 0T (=", y")] + g,
where Py is the projection off; onto K1, QQx is the projection ofH, onto K5, p, n > 0 are
constantsS : K; x Ky — H, andT : K, x K, — H, are any two mappings, and andv*,

respectively, are bounded sequence&’imand K,. The sequences:*}, {b*}, {*}, and {3*}
are in[0, 1] with (k > 0)

0<a"+b" <1, 0<oa’+pF<1.
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Algorithm 2.2. For an arbitrarily chosen initial poirt:°,y°) € K; x K,, compute the se-
quenceqz*} and{y"*} such that

= (1= db — bRz + a* Pt — pS(a*, )] + bl

Yt = (1 —a" — ")y* + " Qi y" — nT (", y*)] + bt
where Py is the projection offf; onto K1, Qx is the projection ofH; onto K5, p, n > 0 are
constantsS : K; x K, — H, andT : K, x K, — H, are any two mappings, and andv*,
respectively, are bounded sequence&inand K,. The sequencef:*} and{b*}, are in[0, 1]
with (£ > 0)
0<a"+0"<1.

Algorithm 2.3. For an arbitrarily chosen initial pointz®,y°) € K; x K,, compute the se-
quenceqz*} and{y*} such that

l’k+1 — (1 — ak)l’k + akP]g[fEk - PS(xka yk)]

Y= (1= ")yt + d" Qi ly* — T (", y")),
where Py is the projection off/; onto K, Q) is the projection off{, onto K, p, n > 0 are

constantsS : K; x K, — H; andT : K; x K, — H, are any two mappings. The sequence
{a*} €10, 1] for k > 0.

We consider, based on Algoritjm P.2, the approximation solvability of the —(L.2)
problem involving strongly pseudomonotone and Lipschitz continuous mappings in Hilbert
space settings.

Theorem 2.1. Let H,; and H, be two real Hilbert spaces andy; and K, respectively, be
nonempty closed convex subsetsfgfand H,. Let S : K; x Ky — H; be strongly(r)—
pseudomonotone arig) —Lipschitz continuous in the first variable and lebe (»)—Lipschitz
continuous in the second variable. LBt: K; x K, — H, be strongly(s)—pseudomonotone
and ()—Lipschitz continuous in the second variable andlldie (7)—Lipschitz continuous in
the first variable. Lef| - ||* denote the norm of/; x H, defined by

|(z, »)[I" = (]| + [[yl) V(z,y) € Hi X Ha.
In addition, let

_ P2\ | 22
0=4/1—-2pr+p+ N +prpf 4T <1

_ 8%\ | o
o=ql1=2nr+n+ - +n?B%+ pr < 1,

let (z*,y*) € K; x K, form a solution to the SNJL.1)) — (1.2]) problem, and let sequences
{z*}, and {y*} be generated by Algorithm 2.2. Furthermore, let
(i) (S(z*,y"), 2" —a*) > 0;
(i) (T(2",y"),y* —y*) > 0;
(i) 0 <af+0bF < 1;
(iv) Yop,af = o0, andd> 7 bF < oo;
(v) 0<p<f7§and0<n<§.

Then the sequende*, v*} converges tgz*, y*).
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Proof. Since(z*, y*) € K; x K, forms a solution to the SNM|L.1|) — (1.2)) problem, it follows
that

o" = Pilz® — pS(z",y")] and y" = Qklz” —nT (2", y")].
Applying Algorithm[2.2, we have
(2.1)  |l2*t =2 = |(1 — a* — b¥)a* + " Pr[a® — pS(a*,yF)] 4 bFu”
— (1 —a" = b")a* — a"Pg[z* — pS(a*, y")] — bFa*||
< (1—d* = ) — 27|
+ M| Pyla* — pS(a*, )] — Prele® — pS(a*, 5] + M
< (1= @) — o + aHa* — " — plS(a*,4) — S(a*, 5
+S(a",y") = S,y + MY
< (1= a")|la* — 2| + a¥lla* — 2 = p[S(a*, ") — S(a”,y")]|
+plllS(a,y*) = S(a®, )| + Mb",
where
M = max{sup ||u" — z*||,sup ||v* — y*||} < oo.

SinceS is strongly(r)— pseudomonotone ang)—Lipschitz continuous in the first variable,
andS'is (v)—Lipschitzcontinuous in the second variable, we have in light of (i) that

(2.2) |la" — 2" = p[S(a*,y") = S(=" y")]|I?
= [|2* —a*|* = 2p(S (2", ") — S(a", "), 2" — 2) + p*||S (", y") — S (2", y")|?
= [la* — |2 — 2p(S(a*, 4", ¥ — &7) + 2p(S (2", "), 2* — 27)
+ IS (2, y) = S(a*, y)|?
< o = a*|* = 2pr(|la® — 2*|® + p?u|la® — 2|+ 2p(S (27, y*), 2* — )
< o = a|* = 2pr(|la” — 2P + Pt — 2| 4+ 2p(S (27, y*), 2* — 2¥)
= [L—2pr + p*p?][|2* — 2*|* + 2p(S (2", y*), 2" — 2¥).
On the other hand, we have
20(S(a*,y"), 2" — ") < p[| (=", y")|I* + [|2* — 2]
and
(2.3) [S@",y")]

= SIS 4) — Gy = 201G )P - SISEE o) + S, )7}

< SIS ) — SEE YOI — 205G )P 2 156 o) - S@ y)l )
< SUISE ) - S )P

<o

where
1 *
1S (=", y*)|1* — 5 | 1S (=", 4*) = S(a*, y")|| *> 0
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Therefore, we get
2
208t )t~ < [+ (%0 )] It - P

It follows that

2
o = o = IS, = S I < [1= 20 (5 )+ (ou?] et = o

As a result, we have
(2.4) "+ — ¥ < (1= a")[|2* — 2*|| + a*0||2* — 27| + a*pr[ly* — y*|| + Mb",

wheref = \/1 —2pr+p+ (%) + p2ul.
Similarly, we have

25) ||y =y < A= d")|YF = vl + dollyt — vt + dFnr||at — 2| + MY,

wheres = \/1 — 2+ 1+ (@) R,
It follows from and (2.5)) that
26) Mt =+ T -y
< (1= db)||2* — 27| + a*6)|a* — 2| + aFnr|a® — 2¥|| + MYF
+ (1= d"ly* =yl + d*olly* — y*|| + a*pvlly* — y*|| + Mb*
=[1— (1= )a)(l|lz" — z*| + lly* — y"ll) + 2MV",

whered = max{0 + nr,o + pr} andH; x H, is a Banach space under the ngfm||*.
If we set

of = la" =2 +ly* =y, = (1-d)d",
gk =2MV*  fork=0,1,2, ...,
in Lemmg 1.2, and applgiii) and(iv), we conclude that
=% = 2| + ly* =y = 0
ask — oo.
Hence,
25 — 2| + [ly** =yl — 0.

Consequently, the sequenger®, 4*)} converges strongly tér*, y*), a solution to the SNVI
(1.1) — (L.2) problem. This completes the proof. O

Note that the proof of the following theorem follows rather directly without using Lemma
[L.2.

Theorem 2.2. Let H, and H, be two real Hilbert spaces andy; and K, respectively, be
nonempty closed convex subsetdffand H,. Let S : K; x Ky, — H; be strongly(r)—
pseudomonotone arigh) —Lipschitz continuous in the first variable and lebe (»)—Lipschitz
continuous in the second variable. LBt: K; x K, — H, be strongly(s)—pseudomonotone
and (3)—Lipschitz continuous in the second variable andlldie (7)—Lipschitz continuous in
the first variable. Lef| - ||* denote the norm o#/; x H, defined by

G )" = (lzll + Nyl V(z,y) € Hi x Hs.
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In addition, let

_ PN L 22
0=4/1—=2pr+p+ N + pApcf 4+ nT < 1,

n3 242
1—2nr+n+ 5 + 0?62+ pr < 1,

let («*,y*) € K; x K, form a solution to the SN\MJL.1)) — (1.2)) problem, and let sequences
{z*}, and {y*} be generated by Algorithm 2.3. Furthermore, let

(i) (S(z*,y%), 2" —a*) >0
(i) (T(«* )y—y>>0
(iii) Oga’“gl

(v) Sy a = oo

(V)0<p< and0<n<

Then the sequen({e:’“, y*)} converges strongly tor*, y*).

Proof. Since(z*, y*) € K; x K, forms a solution to the SN\|1.1|) — (1.2)) problem, it follows
that

" = Pglz" — pS(z*,y")] and Yy = Qglr" —nT(x*,y")].
Applying Algorithm[2.3, we have
2.7)  [la"t =27

= [[(1 = a*)2* + a" Prc[a” — pS(a",y")] — (1 = a")a” — a"Pila” — pS(a”, )]
< (1= a")|a* — &7|| + a¥|| Pk [2* — pS(2*, y")] = Prla® — pS(a”, )]l
< (1-d")[a" —a7|
+at[|la" — 2" — p[S(a,y*) — S(a",y*) + S(a", ) — S(=", y)]|
< (1—a")fa* — 2| + a¥||2" — 2" — p[S(a", y*) — S(@",y")]]

+pll[S(@",y*) = Sz, ).

SinceS is strongly(r)— pseudomonotone arg)—Lipschitz continuous in the first variable,
andS is (v)—Lipschitzcontinuous in the second variable, we have in light:pthat

(28) " — " — p[S(*, y*) — S(a*, ¥
= |lo —2*||* = 2p(S (2", y*) — S(a*, ¢*), 2" — 2%) + p?(|S (2", y*) — S(z*, ") |
= [l — 2*|]* = 2p(S (2", "), 2" — 2*) + 2p(S (2", "), 2" — &)
+ P25 (2", ) — 5(50 [k
<l — 2| = 2pr |2t — 2| + p*p?||a® — 2P + 2p(S (2", yF), 2" — 2)
< la® — 2| = 2pr||a® — 2| + pPpP]a" — 96*”2 +2p(S(a*, "), 2" — z¥)
= [1 = 2pr + p*p?]Ja* — 2*|* + 2p(S (2", y*), 2" — 7).

On the other hand, we have

2p(S(a*,y"), 2" — %) < pllIS(",y)|* + [|2* — 2]
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and
* k\ 112
(2.9) 1S (2™, ™)l
1
=§@wu1ww~%ﬁw%w
1
—2Uaﬁw%W—ywwﬁww4Mﬁwmﬂ}
1
< §{||S(l’*,yk) — Sz, yM)|?
1 *
—2hﬂﬂymﬁ—§waﬂwﬂ—ﬂxw%mﬂ}
1
< §||5(fv*,y’“) — S(a*, y")|?
2
< Sllat -2,
where

1
ISty =5 |15 ) = S hIf > .
Therefore, we get

20(S(a",4), 2 — a7) < p+(@)}mhww2

It follows that

Hﬁ—nﬁ—pwuhwv—swawnWs[1—mw+p+(@j)+owfpmk—ﬂw.

As a result, we have
(2.10) 2"+ — 2¥]] < (1= aP)||a" — 2| + a"0| 2" — 2*|| + a*pr|ly* — '],

wheref = \/1 —2pr +p+ (%) + p?ul.
Similarly, we have
211) [y =y < (= d) Y =yl + dollyt -yl + dFnrllat — 2,

Wherea:\/1—2nr+n+< >+n2ﬁ2

It follows from (2.9) and (2.10) that

(2.12) [ — 2| + [ly** = o]
< (1 —a")|a" — 2™ + a"O|2" — &*|| + a*nr||a® — 27
+ (1 =)y =yl + d*olly” — y* || + " pvlly* — 7|
= [1— (1 =0)a"|(|lz" — z*|| + " — v*II)

k
SH @)(l2° = 2" [l + [ly" = "),

whered = max{0 + nr,o + pv} andH, x H, is a Banach space under the ndfm||*.
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Sinced < 1 and)",-, " is divergent, it follows that

k
Jim [ J[1-(1 —0)a’] =0 ask — oo.
7=0
Therefore,
[+t =2 + [ly** — v = 0,
and consequently, the sequenide”, v*)} converges strongly téz*,y*), a solution to the
SNVI — problem. This completes the proof. O
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