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Abstract

We establish a direct proof of the well known equivalence between the Crandall-
Lions viscosity solution of the Hamilton-Jacobi equation wt+H(wx) = 0 and the
Kruz̈kov-Vol’pert entropy solution of conservation law ut + H(u)x = 0. To reach
at the purpose we work directly with defining entropy and viscosity inequalities,
and using the front tracking method, and do not, as is usually done, exploit the
convergence of the viscosity method.
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1. Introduction
In this paper we present a direct proof of the equivalence between the unique
viscosity solution [4, 2, 3] of the Hamilton-Jacobi equation of the form

(1.1) wt + H(wx) = 0, w(x, 0) = w0(x),

and the unique entropy solution [7, 13] of the conservation law of the form

(1.2) ut + H(u)x = 0, u(x, 0) = u0(x),

whereH : R → R is a given function of classC2 andw0 ∈ BUC(R), the space
of all bounded uniformly continuous functions, andu0 ∈ L1(R) ∩ BV (R), the
space of all integrable functions of bounded total variation. It is well known
that if u0 = d

dx
w0 ∈ L1(R) ∩ BV (R), the solutionsu(·, t) ∈ BV (R), w(·, t) ∈

BUC(R) of both problems are related by the transformationu(·, t) = wx(·, t).
The usual proof in the one dimensional case of this relation exploits the known
results about existence, uniqueness, and convergence of the viscosity method.
As is usually done, the proof of this relation exploits the convergence of the
viscosity method; it is known that the solutionsuε, wε of

uε
t + H(uε)x = εuε

xx, uε(x, 0) = u0(x) ∈ L1(R) ∩BV (R),

and
wε

t + H(wε
x) = εwε

xx, wε(x, 0) = w0(x) ∈ BUC(R),

converge to the entropy and viscosity solutionsu, w of (1.1) and (1.2) respec-
tively. If w0x ∈ L1(R)∩BV (R) andu0 = d

dx
w0, the regularity ofwε permits the

relationuε = wε
x which, after lettingε tend to0 gives the desired resultu = wx.

In this paper we are going to prove that the unique viscosity solutionw of (1.1)
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is related to the unique entropy solutionu of (1.2) by the identityu = wx - when
u0 = d

dx
w0 ∈ L1(R) ∩ BV (R)- by a direct analysis without using the conver-

gence of the viscosity method but instead using the defining viscosity and en-
tropy inequalities directly. We recall that a functionw ∈ BUC(R×]0, T [) is a
viscosity solution of the initial problem (1.1) if w(x, 0) = w0(x) andw is simul-
taneously a (viscosity) sub-solution and a (viscosity) super-solution inR×]0, T [:
Sub-solution: For eachϕ ∈ C1(R×]0, T [),

if w − ϕ has a local maximum point at a point(x0, t0) ∈ R×]0, T [,

thenϕt(x0, t0) + H(ϕx(x0, t0)) ≤ 0.

Super-solution: For eachϕ ∈ C1(R×]0, T [),

if w − ϕ has a local minimum point at a point(x0, t0) ∈ R×]0, T [,

then ϕt(x0, t0) + H(ϕx(x0, t0)) ≥ 0.

The existence, uniqueness and stability properties of the viscosity solutions
were systematically studied by Kruz̈kov, Crandall, Evans, Lions, Souganidis,
and Ishii, [7, 10, 4, 2, 12, 3].

We recall thatu ∈ L∞(R×]0, T [) is an entropy solution of the initial problem
(1.2) if: ||u(·, t) − u0(·)||L1

loc(R) → 0 as t → 0 and, for all convex entropy-
entropy flux pairs(U, F ) : R → R2 with U ′H ′ = F ′, we have:

∂tU(p) + ∂xF (p) ≤ o in the distributional sense.

In view that a continuous convex functionU can be a uniform limit of a se-
quence of convex piece-affine functions of the form

Uε(x) = a0 + a1 + Σiai|x− ki|, ki constants∈ R,

http://jipam.vu.edu.au/
mailto:
mailto:maaibid@statistic.gov.ma
mailto:
mailto:sayah@fsr.ac.ma
http://jipam.vu.edu.au/


A Direct Proof of the
Equivalence Between the

Entropy Solutions of
Conservation Laws and
Viscosity Solutions of

Hamilton-Jacobi Equations In
One-Space Variable

M. Aaibid and A. Sayah

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 5 of 25

J. Ineq. Pure and Appl. Math. 7(2) Art. 64, 2006

http://jipam.vu.edu.au

then the convex pair(U, F ) can be replaced by the Kruz̈kov-pair [7]

(| · −k|, sgn(·, k)(H(·)−H(k)),

which is simple to manipulate. Therefore, using Kruz̈kov-pair, the definition of
the entropy solution can be presented as∫ T

0

∫
R
(|u− k|ϕt + sgn(u− k)(H(u)−H(k))ϕx)dxdt ≥ 0,

for all positiveϕ ∈ C1
c (R×]0, T [), and constantsk ∈ R.

For the existence, uniqueness, and stability results of the entropy solution we
refer to Lax [8, 9], Vol’pert [13], and Krüzkov [7].

The main purpose of the present paper is to give a direct proof of the the
equivalence between viscosity solutions of the Hamilton-Jacobi equation (1.1)
and entropy solutions of conservation law (1.2). There exist very few references
which prove this relation without using the convergence of the viscosity method.
The main result of the paper is contained in the following theorem:

Theorem 1.1. Let w be the unique viscosity solution of the Hamilton-Jacobi
equation (1.1) and letu be the unique entropy solution to the conservation law

ut + H(u)x = 0,

with initial data
u(x, 0) =

d

dx
w0(x).

If w0 ∈ BUC(R), or u(x, 0) ∈ L1(R)∩BV (R), thenwx(x, t) = u(x, t) almost
everywhere.
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To show Theorem1.1, we use the front tracking method, proposed firstly by
Dafermos [5]. This is a numerical method for scalar conservation laws (1.2),
which yield exact entropy solutions in the initial datau0, is piecewise constant,
and the flux functionH piecewise linear. We then note that this method trans-
lates into a method that gives the exact viscosity solutions to the Hamilton-
Jacobi equation (1.1) if w0 andH are piecewise linear and Lipschitz contin-
uous. This gives Theorem1.1 in the case of piecewise linear/constant initial
data, and piecewise linear Hamiltonians/flux functions. To extend the result to
more general problems, we take theL∞/L1 closure of the set of the piecewise
linear/constant initial data, and the Sup/Lip norm closure of the set of the piece-
wise linear Hamiltonians/flux functions, utilizing stability estimates from [12]
and [6] for conservation laws and Hamilton-Jacobi equations respectively. Note
that the front tracking method was translated to the system of conservation laws
(see, e.g., [1], [11]).

The paper is organized as follows. In Section2 we start by describing the
front tracking for scalar conservation law (1.2), we treat firstly the linear case
in Subsection2.1, and in Subsection2.2we extend the method to more general
problems. Section3 focuses on the Hamilton-Jacobi equation (1.1), for which
we translate the front tracking construction. Also we start by translating for the
linear case in Subsection3.1, Subsection3.2 extends the construction to more
general Hamiltonians. The end of Subsection3.2 is devoted to the main result
of the paper (Theorem1.1).
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2. Front Tracking Method for the Scalar
Conservation Law

2.1. The linear case

We start by describing front tracking for scalar conservation laws in the linear
case, i.e., we assume thatH is a piecewise linear continuous function andu0 is
a piecewise constant function with bounded support taking a finite number of
values. To solve the initial value problem (2.1),

(2.1) ut + H(u)x = 0, u(x, 0) = u0(x),

we start by solving the Riemann problem, i.e., whereu0 is given by

u0(x) =

{
ul, for x < 0,

ur, for x ≥ 0.

By breakpoints ofH we mean the points whereH ′ is discontinuous. Let
nowH^ be the lower convex envelope ofH betweenul andur, i.e.,

H^(u, ul, ur) = sup{h(u)|h”(u) ≥ 0, h(u) ≤ H(u) betweenul andur}.

Let alsoH_ be the upper concave envelope ofH betweenul andur,

H_(u, ul, ur) = inf{h(u)|h”(u) < 0, h(u) ≥ H(u) betweenul andur}.

Now set

H](u, ul, ur) =

{
H^(u, ul, ur), if ul ≤ ur;

H_(u, ul, ur), if ul > ur.
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SinceH is assumed to be piecewise linear and continuous,H] will also be linear
and continuous. We suppose thatH] hasN − 1 breakpoints betweenul andur,
call theseu2, ..., uN−1 and setu1 = ul anduN = ur, such thatui ≤ ui+1 if
ul ≤ ur andui > ui+1 if ul > ur. We assume thatui ∈ [−M, M ], for all
i = 0, 1, . . . , N, whereM is constant. Now set

σi =


−∞, if i = 0,
Hi+1−Hi

ui+1−ui
, if i = 1, ..., N − 1,

+∞, if i = N,

whereHi = H](ui; ul, ur) = H(ui).
Let

Ωi = {(x, t)|0 ≤ t ≤ T, andtσi−1 < x ≤ tσi}.

Then the following proposition holds:

Proposition 2.1. Set

u(x, t) = ui for (x, t) ∈ Ωi,

thenu is the entropy solution of the Riemann problem (2.1).

Proof. We show the proposition in the case whereul ≤ ur, the other case is
similar. First note that the definition of the lower convex envelope implies that
for k ∈ [ui, ui+1],

H(k) ≥ Hi + (k − ui)σi

≥ Hi+1 + (k − ui+1)σi
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≥ 1

2
(Hi+1 + Hi) +

(
k − 1

2
(ui+1 + ui)

)
σi.

To show thatu is the entropy solution desired, we have to prove that for each
non-negative test functionϕ,

(2.2) −
∫

ΩT

∫
(|u− k|ϕt + sgn(u− k)(H(u)−H(k))ϕx)dxdt

+

∫
R
|u(x, T )− k|ϕ(x, T )− |u0(x)− k|ϕ(x, 0)dx ≤ 0,

whereΩT = R×[0, T ], andsgn(u−k) = 1 if u−k ≥ 0, and = −1 if u−k < 0.
The first term in (2.2) is given by

−
∫

ΩT

∫
(|u− k|ϕt + sgn(u− k)(H(u)−H(k))ϕx)dxdt

= −
N∑

i=1

∫ ∫
Ωi

|ui − k|ϕt + sgn(ui − k)(H(ui)−H(k))ϕxdxdt

= −
∫

R
|u(x, T )− k|ϕ(x, T )− |u0(x)− k|ϕ(x, 0)

−
N−1∑
i=1

∫ T

0

{σi(|ui+1 − k| − |ui − k|)

− (sgn(ui+1 − k)(H(ui+1)−H(k))

− sgn(ui − k)(H(ui)−H(k)))ϕ(σit, t)}dt,
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by Green’s formula applied to eachΩi. Considering the integrand in the last
term, we find that, ifk > ui+1 or k < ui

σi(|ui+1 − k| − |ui − k|)− (sgn(ui+1 − k)(H(ui+1)−H(k))

− sgn(ui − k)(H(ui)−H(k))) = 0.

Otherwise, we find that

σi(|ui+1 − k| − |ui − k|)− (sgn(ui+1 − k)(H(ui+1)

−H(k))− sgn(ui − k)(H(ui)−H(k)))

=
1

2
(Hi+1 + Hi) + (k − 1

2
(ui+1 + ui))σi ≥ 0,

since fork ∈ [ui, ui+1],

H(k) ≥ 1

2
(Hi+1 + Hi) +

(
k − 1

2
(ui+1 + ui)

)
σi.

This implies thatu, defined in Proposition2.1, is an entropy solution of the
Riemann problem.

For a more general initial problem, i.e., whenu0 has more than one discon-
tinuous point, one defines a series of Riemann problems. Note that the initial
value function is piecewise constant, and the construction of the solutions of
this problem leads to defining the speedsσi, i = 1, ..., N − 1, for each Riemann
problem.
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The solutionu(x, t) will be piecewise constant, with discontinuities on lines em-
anating from the discontinuities ofu0. These discontinuities are called fronts. In
fact, the solution consists of constant states separated by these discontinuities:

u(x, t) = u1, for x < x1(t),

u(x, t) = ui, for xi−1 < x < xi, i = 2, ..., N − 1,

u(x, t) = uN , for x > xN−1(t),

where each front (path of discontinuity) is given by:

xi(t) = x0 + σi(t− t0).

The next proposition sums up the properties of the front tracking method.

Proposition 2.2. LetH be a continuous and piecewise linear continuous func-
tion with a finite number of breakpoints in the interval[−M, M ], whereM is
some constant. Assume thatu0 is piecewise constant function with a finite num-
ber of discontinuities taking values in the interval[−M, M ]. Then the initial
value problem

ut + H(u)x = 0, u(x, 0) = u0(x)

has an entropy solution which can be constructed by front tracking. The con-
struction solutionu(x, t) is a piecewise constant function ofx for eacht, and
u(x, t) takes values in finite set

{u0(x)} ∪ {breakpoints ofH}.

Furthermore, there are only a finite number of collisions between fronts inu.
If H is another piecewise linear continuous function with a finite number of
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breakpoints in the interval[−M, M ] and u0 is a piecewise constant function
with a finite number of discontinuities taking values in the interval[−M, M ],
setu to be the entropy solution to

ut + H(u)x = 0, u(x, 0) = u0(x).

If u0 andu0 are inL1R ∩BV (R), then

||u(·, T )− u(·, T )||L1(R)

≤ ||u0 − u0||L1(R) + T (inf{|u0|BV (R), |u0|BV (R)})||H −H||Lip([−M,M ]).

The proof of Proposition2.2can be found in [5, 6].

2.2. The general case

To deal with the general case, i.e, when the data of the problem is given by

H ∈ C2 function and,u0 ∈ L1(R) ∩BV (R),

we construct a piecewise linear continuous fluxHδ, as:

(2.3) Hδ(u) = H(iδ) + (u− iδ)
H((i + 1)δ)−H(iδ)

δ
,

for iδ ≤ u < (i + 1)δ.
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Then ifη > δ > 0,

||Hη −Hδ||Lip([−M,M ]) ≤ sup
u∈[−M,M ]

|(Hη)′(u)− (Hδ)′(u)|

≤ sup
|u−v|≤η

|H ′(u)−H ′(v)|

≤ sup
|u−v|≤η

∫ v

u

|H ′′
(r)|dr

≤ ||H ′′||L∞([−M,M ])η.

Thus(Hη)η∈N is a Cauchy sequence (by theLip-norm).
If furthermore,u0(x) ∈ BV (R) ∩ L1(R), set

(2.4) uh
0(x) =

1

h

∫ (i+1)h

ih

u0(κ)dκ, for ih ≤ x < (i + 1)h,

we have that,

||uh
0 − u0||L1(R) =

∑
i

∫ (i+1)h

ih

|u0(x)− 1

h

∫ (i+1)h

ih

u0(z)dz|dx

≤
∑

i

1

h

∫ (i+1)h

ih

∫ (i+1)h

ih

|u0(x)− u0(z)|dzdx

≤
∑

i

1

h

∫ (i+1)h

ih

∫ (i+1)h

ih

∫ x

z

|u′0(y)|dydzdx

≤
∑

i

h

∫ (i+1)h

ih

|u′0(y)|dy ≤ h|u0|BV (R).
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Therefore ifh ≥ l > 0,

||uh
0 − ul

0||L1(R) ≤ ||uh
0 − u0||L1(R) + ||ul

0 − u0||L1(R)

≤ (h + l)|u0|BV (R) ≤ 2h|u0|BV (R).

Proposition 2.3. Letuη,h be the entropy solution to

(2.5) uη,h
t + Hη(uη,h)x = 0, uη,h(x, 0) = uh

0(x).

The sequence(uη,h)η,h is a Cauchy sequence inL1(R) since

(2.6) ||uη,h(·, T )− uδ,l(·, T )||L1(R) ≤ (2h + T ||H ′′||L∞([−M,M ])η)|u0|BV (R).

The proof of Proposition2.3 can be easily deduced from Proposition2.2.
Now, using Proposition2.3, we can define theL1 limit

u = lim
(η,h)→0

uη,h.

To prove thatu is the entropy solution of the problem (1.2), we have to prove
thatu satisfies the entropy condition, i.e., for each test functionϕ non-negative
in C1

c (ΩT ), we have:

(2.7) −
∫

ΩT

∫
(|u− k|ϕt + sgn(u− k)(H(u)−H(k))ϕx)dxdt

+

∫
R
|u(x, T )− k|ϕ(x, T )− |u0(x)− k|ϕ(x, 0)dx ≤ 0.
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For the linear case we have:

(2.8) −
∫

ΩT

∫
(|uη,h − k|ϕt + sgn(uη,h − k)(Hη(uη,h)−Hη(k))ϕx)dxdt

+

∫
R
|uη,h(x, T )− k|ϕ(x, T )− |uh

0(x)− k|ϕ(x, 0)dx ≤ 0.

Since|uη,h − k| → |u − k| andHη → H, then it easily follows that the limit
functionu is an entropy solution to

ut + H(u)x = 0, u(x, 0) = u0(x).

In the next section we will describe how the front tracking construction trans-
lates to the Hamilton-Jacobi equation (1.1).
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3. Front tracking Method for the Hamilton-Jacobi
Equations

3.1. The linear case

We deal now with the Hamilton-Jacobi equation when the data of the problem
(1.1) is linear. Now set

(3.1) wt + H(wx) = 0, w(x, 0) = w0(x).

We assume thatH is piecewise linear and continuous, andw0 is also piecewise
linear and continuous, i.e.,∂

∂x
w0 is bounded and piecewise constant.

First we study the Riemann problem for (3.1) which is the initial value prob-
lem

w0(x) = w0(0) +

{
ulx, for x < 0,

urx, for x ≥ 0.

whereul andur are constants, c.f. (2.3). Now let u(x, t) denote the entropy
solution of the corresponding Riemann problem for the conservation law (2.1).
In the linear case, using the Hopf-Lax formula [10], the viscosity solution of
(3.1) is given by

(3.2) w(x, t) = w0(0) + xu(x, t)− tH(u(x, t)).

Note that in the case whereH is convex, this formula can be derived from the
Hopf-Lax formula for the solution (3.1). Also note that(H])′(u) is monotone

http://jipam.vu.edu.au/
mailto:
mailto:maaibid@statistic.gov.ma
mailto:
mailto:sayah@fsr.ac.ma
http://jipam.vu.edu.au/


A Direct Proof of the
Equivalence Between the

Entropy Solutions of
Conservation Laws and
Viscosity Solutions of

Hamilton-Jacobi Equations In
One-Space Variable

M. Aaibid and A. Sayah

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 17 of 25

J. Ineq. Pure and Appl. Math. 7(2) Art. 64, 2006

http://jipam.vu.edu.au

betweenul andur, hence we can define its inverse and set

u(x, t) =


ul for x < t min((H])′(ul), (H

])′(ur)),

((H])′)−1(x/t), for t min((H])′(ul), (H
])′(ur)) ≤ x,

((H])′)−1(x/t), for x < t max((H])′(ul), (H
])′(ur)),

ur for x ≥ t max((H])′(ul), (H
])′(ur)).

Althoughu is discontinuous, a closer look at the formula (3.2) reveals thatw
is uniformly continuous. Indeed, for fixedt, w(x, t) is piecewise linear inx,
with breakpoints located at the fronts inu. Hence, when computingw, one only
needs to keep a record of howw changes at the fronts. Along a front with speed
σi, w is given by

(3.3) w(σit, t) = w0(0) + t(σiui −H(ui)) = w0(0) + t(σiui+1 −H(ui+1)).

Now we can use the front tracking construction for conservation laws to define
a solution to the general initial value problem (3.1). We track the fronts as for
the conservation law, but updatew along each front by (3.3). Note that if for
some(x, t), w(x, t) is determined by the solution of the Riemann problem at
(xi, tj), then

(3.4) w(x, t) = w(xj, tj) + (x− xj)u(x, t)− (t− tj)H(u(x, t)),

whereu is the solution of the initial value problem for (2.1) with the initial
values given by

u(x, 0) =
d

dx
w0(x).

Analogously to Proposition2.3we have:
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Proposition 3.1. The piecewise linear functionw(x, t) is the viscosity solution
of (3.1). Furthermorew(x, t) is piecewise linear on a finite number of poly-
gons inR × R+

0 . If w0 is bounded and uniformly continuous(BUC), then
w ∈ BUC(R × [0, T ]) for any T < ∞. If H is another Lipschitz continu-
ous piecewise linear function with a finite number of breakpoints, andw is the
viscosity solution of

wt + H(wx) = 0, w(x, 0) = w0(x),

andw0 andw0 are bounded and uniformly continuous(BUC), then

(3.5) ||w(·, T )−w(·, T )||L∞(R) ≤ ||w0−w0||L∞(R) +T sup
|u|≤M

|H(u)−H(u)|,

whereM = min(||w0x||, ||w0x||).

Proof. We first show thatw is a viscosity solution. We have thatw is deter-
mined by the solution of a finite number of Riemann problems at the points
(xi, tj). Given a point(x, t) in wheret > 0, we can find aj such thatw(x, t) is
determined by the Riemann problem solved at(xi, tj).

Setu = wx. Let ϕ be aC1-function, assume that(x0, t0) is the maximum
point ofw − ϕ. Sincew is piecewise linear, we can define the following limits

lim
x→x−0

wx(x, t0)− ϕx(x0, t0) ≥ 0, lim
x→x+

0

wx(x, t0)− ϕx(x0, t0) ≤ 0.

Or

(3.6) ul ≤ ϕx(x0, t0) ≤ ur,
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whereul,r = limx→x±0
u(x, t−0 ). Set

σ =


H(ul)−H(ur)

ul−ur
if ul 6= ur,

H]
′
(ul), if ul = ur.

Sinceul ≤ ϕx(x0, t0) ≤ ur, the construction ofH] implies that

(3.7) H(ϕx(x0, t0)) ≥ H(ul) + σ(ϕx(x0, t0)− ul).

Now choose(x, t) sufficiently close to(x0, t0) such that

σ =
x0 − x

t0 − t

andw(x, t) is also determined by the solution of the Riemann problem at(xj, tj),
andt < t0.
If t0 > 0, we have:

(3.8)
1

t0 − t
(w(x0, t0)− w(x, t)) ≥ 1

t0 − t
(ϕ(x0, t0)− ϕ(x, t)).

Using (3.4) we have that

w(x0, t0) = w(x, t) + (x0 − x)ul − (t0 − t)H(ul).

Hence, by lettingt → t0−, we find that

σul −H(ul) ≥ ϕt(x0, t0) + σϕx(x0, t0)

≥ ϕt(x0, t0) + H(ϕx(x0, t0)) + σul −H(ul),
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which implies thatw is a sub-solution. A similar argument is applied to show
thatw is super-solution.

If t0 = 0, assume that(x0, 0) is a maximum point ofw − ϕ. Set ul,r =
limx→x0∓ u(x, 0+). Then

w(x, t) = w(x0, 0) + (x− x0)ul − tH(ul),

whereσ = (x−x0)/t and(x, t) is sufficiently close to(x0, 0). Now, using (3.7)
as before gives the conclusion. Note that this also demonstrates the solution of
the Riemann problem (3.1).

Next we show the stability estimate (3.5). This is a consequence of Proposi-
tion 1.4 in [12], which in our context says that

sup
(x,y)∈Dε

{|w(x, t)− w(y, t)|+ 3Rβε(x− y)}

≤ sup
(x,y)∈Dε

{|w0(x)− w0(y)|+ 3Rβε(x− y)}+ t sup
|u|≤M

|H(u)−H(u)|,

whereβε(x − y) = β(x/ε) for someC∞
c function β(x) with β(0) = 1 and

β(x) = 0 for |x| > 1. Furthermore,R = max(||w||, ||w||). Consequently,

||w(·, t)− w(·, t)||L∞(R) + sup
(x,y)∈Dε

{3Rβε(x− y)− |w(x, t)− w(y, t)}

≤ ||w0 − wh
0 ||L∞(R) + 3R + t sup

|u|≤M

|H(u)−H(u)|.

The inequality of the lemma now follows by noting thatw is in BUC(R ×
[0, T ]), and taking the limit asε → 0 on the left side.
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Now we are able to explicitly construct a viscosity solution to all problems
of the type (3.1) whereH andu0 are piecewise linear and Lipschitz continuous
with a finite number of breakpoints. In the next subsection we extend the result
to the more general case.

3.2. The general case

Now we pass to the general case. We assume that

H ∈ C2 andw0 ∈ BUC(R).

First, we construct a piecewise linear continuous HamiltonianHδ defined as
follows:

(3.9) Hδ(u) = H(iδ) + (u− iδ)
H((i + 1)δ)−H(iδ)

δ
,

for iδ ≤ u < (i + 1)δ.

and let

(3.10) wh
0 = w0(ih) + (x− ih)

w0((i + 1)h)− w0(ih)

h
,

for ih ≤ x < (i + 1)h.

Setwδ,h to be the viscosity solution of

wδ,h
t + Hδ(wδ,h

x ) = 0, wδ,h(x, 0) = wh
0 (x).
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Then forη > δ > 0 andh > l > 0,

||wδ,h(·, T )− wη,l(·, T )||L∞(R) ≤ ||wh
0 − wl

0||L∞(R) + T sup
|u|≤M

∣∣Hδ(u)−Hη(u)
∣∣

≤ h||w0||Lip + η||H||Lip.

Thus, the sequencewδ,h is a Cauchy sequence inL∞. SinceHδ converges
uniformly toH on [−M, M ], we can use the stability result of the Hamiltonians
in [3] to conclude that

w(x, t) = lim
(δ,h)→0

wδ,h(x, t)

is a viscosity solution of

(3.11) wt + H(wx) = 0, w(x, 0) = w0(x).

Now we can state the main result.

Theorem 3.2. Let w be the unique viscosity solution of the Hamilton-Jacobi
equation (3.11), wherew0 is in BUC(R), and letu be the unique entropy solu-
tion to the conservation law

(3.12) ut + H(u)x = 0, u(x, 0) = u0(x),

with initial data

u0(x) =
d

dx
w0(x).

Then fort > 0, wx(x, t) = u(x, t) almost everywhere.
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Proof. Fix z, by construction we have that

wδ,h(x, t) = wδ,h(z, t) +

∫ x

z

uδ,h(y, t)dy

as(δ, h) → 0, we have

wδ,h(x, t) → w(x, t),

wδ,h(z, t) → w(z, t),

uδ,h(y, t) → u(y, t),

by the Lebesgue convergence theorem. Hence the theorem holds.
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