AN UPPER BOUND FOR THE DETERMINANT OF A
MATRIX WITH GIVEN ENTRY SUM AND SQUARE

SUM

ORTWIN GASPER  HUGO PFOERTNER MARKUS SIGG

Waltrop, Germany

Received:
Accepted:

Communicated by:

2000 AMS Sub. Class.:

Key words:

Abstract:

Munich, Germany Freiburg, Germany
EMail: hugo@pfoertner.org EMail: mail@MarkusSigg.de

05 March, 2009

15 September, 2009
S.S. Dragomir

15A15, 15A45, 26D07.

Determinant, Matrix Inequality, Hadamard’s Determinant Theorem, Hadamard
Matrix.

By deducing characterisations of the matrices which have maximal determinant
in the set of matrices with given entry sum and square sum, we prove the inequal-
ity | det M| < |a|(8 — 6)*~V/2 for realn x n-matricesM, wherena andn3

are the sum of the entries and the sum of the squared entrigfs ofspectively,

ands := (a* — 8)/(n — 1), provided that® > 3. This result is applied to find

an upper bound for the determinant of a matrix whose entries are a permutation
of an arithmetic progression.
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J
1. Introduction |I\' M
S

Letn > 2 be a positive integer and= (a4, . .., a,2) a vector of real numbers. What

is the maximal determinard(a) of a matrix whose elements are a permutation of
the entries ofi? The answer is unknown even for the special ease (1, .. .,n?) if

n > 6, see f]. By computational optimisation using algorithms like tabu search, we
have found matrices with the following determinants, which thus are lower bounds = upper Bound for the Determinant

2. of a Matrix
for D(l, o, n ) 1 | lower bound fOfD(l, . 7n2> ortwin:nzsi)ﬂe;,rkl-[lll;g;ggoertner
2 10 vol. 10, iss. 3, art. 63, 2009
3 412
4 40 800
5 6 839492 Title Page
6 1865999 570 S
7 762 150 368 499
8 440960 274 696 935 << 44
9 346 254 605 664 223 620 p >
10| 356944784 622927045792
It would be nice to also have a good upper bound i, . .., n?). We will S et
show how to find an upper bound by treating the problem of determibifig as Go Back
a continuous optimisation task. This is done by maximising the determinant under
two equality contraints: by fixing the sum and the square sum of the matrix’s entries. Full Screen
Our result is a characterisation of the matrices with maximal determinant in the Close
set of matrices with given entry sum and square sum, and a general inequality for
the absolute value of the determinant of a matrix. journal of inequalities
For the problem of findingD(1,...,n?), the upper bound derived in this way in pure and applied

turns out to be quite sharp. So here we have an example where analytical optimisa- mathematics
tion gives valuable information about a combinatorial optimisation problem. issn: 1443-575k
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2. Conventions

Throughout this article, let > 1 be a natural number andl := {1, ..., n}. Matrix
always means a real x n matrix, the set of which we denote By.

For M € M andi,j € N we denote by\/; thei-th row of M, by M7 the j-th
column of M/, and by}, ; the entry of M at position(z, j). If M is a matrix or a
row or a column of a matrix, then by(M) we denote the sum of the entries fof
and byq(M) the sum of their squares.

The identity matrix is denoted b¥. By J we name the matrix which hdsat all
of its fields, whilee is the column vector ifR™ with all entries being. Matrices of
the structurer/ +y.J will play an important role, so we state some of their properties:

Lemma 2.1. Letx,y € Rand M := zI + yJ. Then we have:
1. det M = 2"}z + ny)
2. M is invertible if and only ifc ¢ {0, —ny}.

3. If M is invertible, thenM/ ! = 1] — m(w_{ny) J.

Proof. SinceJ = ee”, it holds that
Me = (z +yeel)e = (z+yele)e = (x+ny)e and Mv = (I +yee’ v = zv

for all v € R™ with v L e. HenceM has the eigenvalue with multiplicity n — 1
and the simple eigenvalue+ ny. This shows (1). (2) is an immediate consequence
of (1). (3) can be verified by a straight calculation. O
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3. Main Theorem

Leta, 8 € Rwith § > 0andM, 3 := {M € M : s(M) = na, ¢(M) = ng}.
Furthermore, let
a? —f3

n—1"
In the proof of the following lemma, matrices are specified whose determinants
will later turn out to be the greatest possible:

0=

Lemma 3.1.

1. M, 5 # 0 if and only ifa? < nf. If o® < ng, then there exists at/ € M, 4
with

n—1
2

det M = a8 — 0)
2. If o < 3, then there exists afl € M, 5 with det M = 3%.
3. There exists ad/ € M, 5 with det M =+ 0 if and only ifa* < ng.

Proof. (1) SupposéV, s # 0, sayM € M, ;. ReadingM and.J as elements of
R™*, the Cauchy inequality shows that

2
1 n
QQ = E ( E M@j)

ij=1
1
= <M7 J>2

n2

1 2 2 .
SIMI 1l = > M =np.

ij=1

IN
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N[

For the other implication suppos€ < nj,i.e.3 > ¢, and sety := (3 — 9)
andM := I + +(a—)J. ThenM € M, 3, and by Lemma.1

det M = 7" (7 nk(a 7)) =" o= a(F = 0)"F .
(2) Leta?® < 3. First supposex > 0, S0 := 3 (j—% - ) givesy? < 1. Set

2

_ o O

— Y -7
L R I (Ve

0 0

Thens(A) = 2a, ¢(A) = 28, det A = 8, s(B) = 3a, ¢(B) = 38, det B = 2. In
the case ofi = 2k with k € N, usek copies ofA to build the block matrix
A
M =
A

which has the required properties. In the case ef 2k + 1 with &k € N, usek — 1
copies ofA to build the block matrix

A

B

which again fulfills the requirements.

In the case ofv < 0, anM’ € M_,, 5 with det M’ = 3% exists. For evem, the
matrix M/ := —M" € M, g has the requested determinant, while for adivapping
two rows of— M’ gives the desired matrix/.
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(3) If o* < ng, then the existence of aW € M, 5 with det M # 0 is proved by (1)
in the case ofv # 0 and by (2) in the case of = 0. Fora? = nfgandM € M, g,
the calculation in (1) shows that/, J) = || M ||, ||/||,. However, this equality holds
only if M is a scalar multiple of/, so we havelet M = 0 because ofiet J = 0. [

Fora? < 3 we have given two types of matrices in Lemrad, the first one
having the determinant(5 — 5)”7‘1, the second one with the determinait. The
proof of Theorem3.3 below will use the fact that fon? < 3 the determinant of
the first type is strictly smaller than that of the second type. Indeed, the following
stronger statement holds:

Lemma 3.2. Leta? < nB3. Then|a|(8 — 5)%1 < B2 with equality if and only if
a? = B.

Proof. This is obvious fora = 0, so leta # 0. With f(z) := z (2=2)""" for
x € [0,n] we have

al(3=0)7 878 = /£ (%)

1/n.

The proof is completed by applying the AM-GM inequality f0r)

o (= (7)) =

with equality if and only ifx = =7, i.e. ifand only ifz = 1. ]

If * < nB3, then by LemmaB.1 there exists an\/ € M, 5 with det M # 0,
and, by possibly swapping two rows 8f, det A/ > 0 can be achieved. AB[, 3
is compact, the determinant function assumes a maximum vali#,on The next

Upper Bound for the Determinant

of a Matrix
Ortwin Gasper, Hugo Pfoertner

and Markus Sigg
vol. 10, iss. 3, art. 63, 2009

Title Page
Contents
44 44
< >
Page 7 of 18
Go Back
Full Screen

Close

journal of inequalities
in pure and applied
mathematics

issn: 1443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:
mailto:
http://jipam.vu.edu.au

theorem, which is essentially due to O. Gasper, shows that this maximum value is

given by the determinants noted in Lemma:

Theorem 3.3.Leta? < nf and M € M, z with maximal determinant. Then
ifa2§ﬁ2 {(1) MMT:ﬁi
(2) det M = [z
(3) s(M;)=s(M’)=aforalli,jeN
ifa?>3:¢(4) MM'=(3-6)1I1+6J
(5) det M =|a](5— )"

Proof. From Lemma3.1, we know thatdet M/ > 0. The matrixM/ solves an ex-

tremum problem with equality contraints

det X — max
(P) s(X) = na
q(X) =np

whereM* is the set of invertible matrices. The Lagrange function®fi§ given by

(X e M),

L(X, A p) = det X — A(s(X) — na) — p(g(X) —np),

so there exish, 1 € R with ﬁL(M, A\ ) =0foralli,j € N. Itis well known
that ’

<d]\i,j det M) = (det M) (MT)™"

irj
(see e.q.1], 10.6), thus we getdet M) (MT)_1 —AM —2uJ =0,i.e,
(3.1) (det M)I = AMM™ 4 2uJ M™.
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Suppose\ = 0. Then
(det M)" = det(2uJMT) = det(2u.J) det M = O det M = 0
by applying the determinant function t6.(). This contradictslet M/ > 0. Hence
(3.2) A £ 0.

As M MT has diagonal elemenig)f,), ..., q(M,), andJM™ has diagonal ele-
mentss(M,), ..., s(M,), we get

ndet M = A\qg(M) + 2us(M) = Anf + 2una
by applying the trace function t& (1), consequently
(3.3) det M = \G + 2pua.

The symmetry of(det M)I and the symmetry oAM M7 in (3.1) show that
uJM?T is symmetric as well. As all rows of M7 are identical, namely equal to
(s(My),...,s(M,)), we obtain

(3.4) ps(My) = -+ = ps(M,).
In the following, we inspect the casgs= 0 andy # 0 and prove:

(35) {u:o — a?<B A1) A (2),
' p#0 = a*>p A 3) A (4) A (B).

Caseu = 0: Then (3.9) readslet M = A\j3, so taking 8.2) into account and dividing
(3.1) by X gives3I = MM7T,i.e. (1). Part (2) follows by applying the determinant
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function to (1). Using the Cauchy inequality and the fact fat+/3) M is orthog-
onal and thus an isometry w.r.t. the euclidean ngrj,, we get:

(3.6) a? = % (ZS(MJ)

1 9o 1
P —_ - —_ - pr— .
0 HM€H2 nﬁ”e’b nﬂn B

Casen # 0: Thens(M;) = --- = s(M,) by (3.4). The identity
s(My) + -+ s(M,,) = s(M) = n«a

shows thats(M;) = « for all i € N. Taking into account that the determinant is
invariant against matrix transposition, this proves (3). Furthermpi¢! = a.J,
and (.1) becomes

(3.7) AMM?T = (det M) — 2ua],

hence 1
q(M;) = (MM");; = X(detM — 2pa)

foralli € N,andq(M;) = --- = q(M,). With

q(My) + -+ +q(M,) = ¢(M) =np,
this shows that
(3.8) (MM?),; = q(M;) =3 forallie N.
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Leti,; € N with ¢ # j. Equation 8.7) gives (MMT)M = —32po for all
k€ N\ {i}, and we get

B+ (n—1(MMT), = (MM"),; +> (MM"),,
ki

= Z (MMT)zk
k=1
=2 D My My

k=1 p=1

= Z M;yp s(MP)
p=1

n
= Z M;,a=s(M;)a=a?
p=1
SO

(3.9) (MMT), ;= =8 _ 6.

n—1
Equations §.8) and (3.9) together prove (4). With Lemma 1, this yields
(det M)? = det(MMT) = (8 —6)""Y (8 — 6 4+ nd) = a*(f — §)" 1,

and taking the square root gives (5). Supposedhat 3. Then by Lemma&.1there
exists anM’ € M, s with det M’ = 3%, and by Lemma.2,

det M = |a|(B - 8)7 < B% = det M',
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which contradicts the maximality efet /. Hencea? > 3.

We have now proved3(5) and are ready to deduce the statements of the theorem:

If a? < 3, then @.5 shows thay: = 0 and thus (1) and (2). i&* > 3, then 3.5
shows that: # 0 and thus (3), (4) and (5). Finally suppose thdt= 3. Then

0 = 0, hence (1= (4) and (2)<= (5). If u # 0, then (3.5 shows (3), (4) and
(5), from which (1) and (2) follow. Ifu = 0, then 3.5 shows (1) and (2), from
which (4) and (5) follow. It remains to prove (3) in the casexéf= 3 andu = 0.
To this purpose, look at3(6) again, wherex?> = 3 means equality in the Cauchy
inequality, which tells us thats(M,), ..., s(M,)) is a scalar multiple ot, hence
s(My) = --- = s(M,), and (3) follows as in the cage+# 0. O
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4. Application

The following is a more application-oriented extract of Theoff

Proposition 4.1. Let M € M, o := Ls(M), 3 := Lq(M) andd := =2, Then:

n—1
a*<pB = |detM|<pB?
| det M| < |a|(8 = 6)"T = p%

|det M| < |a|(8 —8)"7 < §%

d=3 =
ad>p =

Proof. This is clear ifdet M = 0. In the case oflet M # 0, we geta? < nf3 by
Lemmas3.1, and the stated inequalities are true by Lenihtaand Theoren®3.3. [

For M € M with |M; ;| < 1foralli,j € N, Propositior.1 tells us that

. 1 & , bl 1 & bl .
(4.1) |detM|§ﬁ2:<ﬁZMi7j) S(EZI> =nz,

,j=1 ,j=1

which is simply the determinant theorem of Hadamaid If //; ; € {—1, 1} for all
i,j € N and|det M| = n"/2, i.e. M is a Hadamard matrix, then PropositiénL
shows thatv? < 3 must hold. For a Hadamard matrd{, the values(M) is called
the excesof M. Sinceq(M) = n? in the case of\/;; € {—1,1}, Proposition4.1
yields an upper bound for the excess, known as Best'’s inequality [

(NI

4.2) M is a Hadamard matrix — s(M) <n

The results4.1) and ¢.2), which both can be proved more directly, are mentioned
here just as by-products of Propositiéri. In the following, we are interested only
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in the casex? > /3, where the inequality
[ det M| < |a|(8 - 8)F =: g(M)

holds. Note that Lemma.2 states thay(M) < 32 is true fora? < 3 also, but
| det M| is not necessarily bounded ky)/) in this situation:

M= (é _01) o ldetM|=1, g(M)=0.
We are now going to apply Propositignl to the problem stated in the introduc-
tion. This problem is a special case of finding an upper bound for the determinant of

matrices whose entries are a permutation of an arithmetic progression:

Proposition 4.2. Letp, ¢ be real numbers with > 0 and M a matrix whose entries
are a permutation of the numbepsp + ¢, ...,p + (n*> — 1)q. Set

T__g+n2—1 and _onP4nt4n+1
= 5 0= T :
Then n
det M| < nz2q™ | r?
|det M| < nzq (7“+ 2 )
and

1

n— n nt—1\°?
>0 = |detM|§n”q”|r|Q2<n2q”(r2—|— ) :

12

Proof. Fora := 1s(M) andj := L¢q(M) a calculation shows that* — 3 = n(n —
1)¢*(r* — ), hence(a? > 3 <= r? > o). The bounds noted in Propositignl
yield the asserted inequalities fatet M/ |. O
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Corollary 4.3. If M is a matrix whose entries are a permutationlof. ., n?, then

n*+n*+n+1 =N
12 '

241
| det M| < n ; <

Proof. Apply Proposition4.2to (p, ¢) := (1,1). Forr = (n* +1)/2 itis easy to see
thatr? > o, which yields the stated bound. O

Comparing the lower bounds f@(1, ..., n?) noted in the introduction with the
upper bounds resulting from rounding down the values given by Corallashows
that the quality of these upper bounds is quite convincing:

n | determinant of best known matrpupper bound given by Corollary.3
2 10 11
3 412 450
4 40800 41021
D 6 839492 6 865 625
6 1865999 570 1867994 210
7 762150 368 499 762539814814
8 440960 274 696 935 441077015225 642
9 346 254 605 664 223 620 346 335 386 150 480 625
10 356 944 784 622 927 045 792 357017114947 987 625 629

These are the record matricBén) corresponding to the noted determinants:

12 13 6 2

9 3 5
4 2
R(2):<1 3)’ R(g):(;; 2 ;) BH=114 1 9 10

w
o
—
=]
EN|
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46
39
26
20

32

42
48
11
22

28
16

25

10
16

15
36
44
17
40
19

15
24
12
13

30
34
41

25
37

R(10) =

14
23

18

27

13
47
33
38
10

11

20
22

24
14
29

23
49
35

68

53
46
79
17
68
100
21
69
52

67
30
56
23

45
15
64

57
63
42
75
93
16
72
15

4
17

19
21

18
31

21 |

45
12
43

7 12
37 43
20 79

14 54
38 32
74 31
77 35
52 75

61

47
49
87
76
31
29
99
23

62
10
53
27
63
21
80
39
13

84
65

71
58
50
35

32
96

73

49
42
11
65
17
51
57

81
94
45

30
85
62
48
44
11

26
61
71
60
18
66
46
16

82
20
78
95

56
34
73
24
36

24
35

22

18

12
35

22
36
60
39
54

21
25
34

17
15
16

19 29

9

20
51
55

42
33

47

78 36

41

44 70
48 76

24 47

19 55

54
22
28
10
27
37
64
97
74
92

41
66
13
T
86
14
67
89
40
12

1

52
14
49

34
56
37
13

60
33
98
26
80
19
88
25
18
59

23
10
12
32
30

40
43
23
64

46
30
10

11
31
28

27

50
15
11
41
48

58
31

53
45
38
18

16
21
62

32
61
29
27
63
24

17
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Calculating the matrix\/ M T for each record matriX/ reveals that\/ M7 has
roughly the structurégd — 0)I + ¢.J that was noted in Theorefh3 for the optimal
matrices of the corresponding real optimisation problem.
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