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ABSTRACT. By deducing characterisations of the matrices which have maximal determinant in
the set of matrices with given entry sum and square sum, we prove the inequality|det M | ≤
|α|(β − δ)(n−1)/2 for realn × n-matricesM , wherenα andnβ are the sum of the entries and
the sum of the squared entries ofM , respectively, andδ := (α2 − β)/(n − 1), provided that
α2 ≥ β. This result is applied to find an upper bound for the determinant of a matrix whose
entries are a permutation of an arithmetic progression.
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1. I NTRODUCTION

Let n ≥ 2 be a positive integer anda = (a1, . . . , an2) a vector of real numbers. What is
the maximal determinantD(a) of a matrix whose elements are a permutation of the entries of
a? The answer is unknown even for the special casea := (1, . . . , n2) if n > 6, see [4]. By
computational optimisation using algorithms like tabu search, we have found matrices with the
following determinants, which thus are lower bounds forD(1, . . . , n2):

n lower bound forD(1, . . . , n2)
2 10
3 412
4 40 800
5 6 839 492
6 1 865 999 570
7 762 150 368 499
8 440 960 274 696 935
9 346 254 605 664 223 620

10 356 944 784 622 927 045 792
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It would be nice to also have a good upper bound forD(1, . . . , n2). We will show in this
article how to find an upper bound by treating the problem of determiningD(a) as a continuous
optimisation task. This is done by maximising the determinant under two equality contraints:
by fixing the sum and the square sum of the entries of the matrix.

Our result is a characterisation of the matrices with maximal determinant in the set of matrices
with given entry sum and square sum, and a general inequality for the absolute value of the
determinant of a matrix.

For the problem of findingD(1, . . . , n2), the upper bound derived in this way turns out to be
quite sharp. So here we have an example where analytical optimisation gives valuable informa-
tion about a combinatorial optimisation problem.

2. CONVENTIONS

Throughout this article, letn > 1 be a natural number andN := {1, . . . , n}. Matrix always
means a realn× n matrix, the set of which we denote byM.

ForM ∈ M andi, j ∈ N we denote byMi thei-th row ofM , by M j thej-th column ofM ,
and byMi,j the entry ofM at position(i, j). If M is a matrix or a row or a column of a matrix,
then bys(M) we denote the sum of the entries ofM and byq(M) the sum of their squares.

The identity matrix is denoted byI. By J we name the matrix which has1 at all of its fields,
while e is the column vector inRn with all entries being1. Matrices of the structurexI + yJ
will play an important role, so we state some of their properties:

Lemma 2.1. Letx, y ∈ R andM := xI + yJ . Then we have:

(1) det M = xn−1(x + ny)
(2) M is invertible if and only ifx 6∈ {0,−ny}.
(3) If M is invertible, thenM−1 = 1

x
I − y

x(x+ny)
J .

Proof. SinceJ = eeT , it holds that

Me = (xI + yeeT )e = (x + yeT e)e = (x + ny)e and Mv = (xI + yeeT )v = xv

for all v ∈ Rn with v ⊥ e. HenceM has the eigenvaluex with multiplicity n−1 and the simple
eigenvaluex + ny. This shows (1). (2) is an immediate consequence of (1). (3) can be verified
by a straight calculation. �

3. M AIN THEOREM

Let α, β ∈ R with β > 0 andMα,β := {M ∈ M : s(M) = nα, q(M) = nβ}. Furthermore,
let

δ :=
α2 − β

n− 1
.

In the proof of the following lemma, matrices are specified whose determinants will later turn
out to be the greatest possible:

Lemma 3.1.

(1) Mα,β 6= ∅ if and only ifα2 ≤ nβ. If α2 ≤ nβ, then there exists anM ∈ Mα,β with

det M = α(β − δ)
n−1

2 .

(2) If α2 ≤ β, then there exists anM ∈ Mα,β with det M = β
n
2 .

(3) There exists anM ∈ Mα,β with det M 6= 0 if and only ifα2 < nβ.
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Proof. (1) SupposeMα,β 6= ∅, sayM ∈ Mα,β. ReadingM andJ as elements ofRn2
, the

Cauchy inequality shows that

α2 =
1

n2

(
n∑

i,j=1

Mi,j

)2

=
1

n2
〈M, J〉2

≤ 1

n2
‖M‖2

2 ‖J‖
2
2 =

n∑
i,j=1

M2
i,j = nβ.

For the other implication supposeα2 ≤ nβ, i. e. β ≥ δ, and setγ := (β − δ)
1
2 andM :=

γI + 1
n
(α− γ)J . ThenM ∈ Mα,β, and by Lemma 2.1

det M = γn−1
(
γ + n 1

n
(α− γ)

)
= γn−1α = α(β − δ)

n−1
2 .

(2) Letα2 ≤ β. First supposeα ≥ 0, soγ := 1
2

(
3α√

β
− 1
)

givesγ2 ≤ 1. Set

A :=

(
α

√
β − α2

−
√

β − α2 α

)
and B :=

√
β

 γ
√

1− γ2 0

−
√

1− γ2 γ 0
0 0 1

 .

Thens(A) = 2α, q(A) = 2β, det A = β, s(B) = 3α, q(B) = 3β, det B = β
3
2 . In the case of

n = 2k with k ∈ N, usek copies ofA to build the block matrix

M :=

A
...

A

 ,

which has the required properties. In the case ofn = 2k + 1 with k ∈ N, usek − 1 copies ofA
to build the block matrix

M :=


A

. ..
A

B

 ,

which again fulfills the requirements.
In the case ofα < 0, anM ′ ∈ M−α,β with det M ′ = β

n
2 exists. For evenn, the matrix

M := −M ′ ∈ Mα,β has the requested determinant, while for oddn swapping two rows of−M ′

gives the desired matrixM .

(3) If α2 < nβ, then the existence of anM ∈ Mα,β with det M 6= 0 is proved by (1) in the case
of α 6= 0 and by (2) in the case ofα = 0. Forα2 = nβ andM ∈ Mα,β, the calculation in (1)
shows that〈M, J〉 = ‖M‖2 ‖J‖2. However, this equality holds only ifM is a scalar multiple
of J , so we havedet M = 0 because ofdet J = 0. �

For α2 ≤ β we have given two types of matrices in Lemma 3.1, the first one having the
determinantα(β − δ)

n−1
2 , the second one with the determinantβ

n
2 . The proof of Theorem 3.3

below will use the fact that forα2 < β the determinant of the first type is strictly smaller than
that of the second type. Indeed, the following stronger statement holds:

Lemma 3.2. Letα2 ≤ nβ. Then|α|(β − δ)
n−1

2 ≤ β
n
2 with equality if and only ifα2 = β.
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Proof. This is obvious forα = 0, so letα 6= 0. With f(x) := x
(

n−x
n−1

)n−1
for x ∈ [0, n] we

have

|α|(β − δ)
n−1

2 β−
n
2 =

√
f
(

α2

β

)
.

The proof is completed by applying the AM-GM inequality tof(x)1/n:

f(x)
1
n =

(
x

(
n− x

n− 1

)n−1
) 1

n

≤
x + (n− 1)n−x

n−1

n
= 1

with equality if and only ifx = n−x
n−1

, i. e. if and only ifx = 1. �

If α2 < nβ, then by Lemma 3.1 there exists anM ∈ Mα,β with det M 6= 0, and, by possibly
swapping two rows ofM , det M > 0 can be achieved. AsMα,β is compact, the determinant
function assumes a maximum value onMα,β. The next theorem, which is essentially due to
O. Gasper, shows that this maximum value is given by the determinants noted in Lemma 3.1:

Theorem 3.3.Letα2 < nβ andM ∈ Mα,β with maximal determinant. Then

if α2 ≤ β:

{
(1) MMT = βI

(2) det M = β
n
2

if α2 ≥ β:


(3) s(Mi) = s(M j) = α for all i, j ∈ N

(4) MMT = (β − δ)I + δJ

(5) det M = |α|(β − δ)
n−1

2

Proof. From Lemma 3.1, we know thatdet M > 0. The matrixM solves an extremum problem
with equality contraints

(P)


det X −→ max

s(X) = nα

q(X) = nβ

(X ∈ M∗),

whereM∗ is the set of invertible matrices. The Lagrange function of (P) is given by

L(X, λ, µ) = det X − λ(s(X)− nα)− µ(q(X)− nβ),

so there existλ, µ ∈ R with d
dMi,j

L(M, λ, µ) = 0 for all i, j ∈ N . It is well known that(
d

dMi,j

det M

)
i,j

= (det M) (MT )
−1

(see e. g. [3], 10.6), thus we get(det M) (MT )
−1 − λM − 2µJ = 0, i. e.

(3.1) (det M)I = λMMT + 2µJMT .

Supposeλ = 0. Then

(det M)n = det(2µJMT ) = det(2µJ) det M = 0 det M = 0

by applying the determinant function to (3.1). This contradictsdet M > 0. Hence

(3.2) λ 6= 0.

As MMT has diagonal elementsq(M1), . . . , q(Mn), andJMT has diagonal elementss(M1),
. . . , s(Mn), we get

n det M = λq(M) + 2µs(M) = λnβ + 2µnα
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by applying the trace function to (3.1), consequently

(3.3) det M = λβ + 2µα.

The symmetry of(det M)I and the symmetry ofλMMT in (3.1) show thatµJMT is sym-
metric as well. As all rows ofJMT are identical, namely equal to(s(M1), . . . , s(Mn)), we
obtain

(3.4) µs(M1) = · · · = µs(Mn).

In the following, we inspect the casesµ = 0 andµ 6= 0 and prove:

(3.5)

{
µ = 0 =⇒ α2 ≤ β ∧ (1) ∧ (2),

µ 6= 0 =⇒ α2 ≥ β ∧ (3) ∧ (4) ∧ (5).

Caseµ = 0: Then (3.3) readsdet M = λβ, so taking (3.2) into account and dividing (3.1) byλ
givesβI = MMT , i. e. (1). Part (2) follows by applying the determinant function to (1). Using
the Cauchy inequality and the fact that

(
1
/√

β
)
M is orthogonal and thus an isometry w.r.t.

the euclidean norm‖ · ‖2, we get:

α2 =
1

n2

(
n∑

i=1

s(Mi)

)2

(3.6)

≤ 1

n2
n

n∑
i=1

s(Mi)
2

=
1

n
‖Me‖2

2 =
1

n
β‖e‖2

2 =
1

n
βn = β.

Caseµ 6= 0: Thens(M1) = · · · = s(Mn) by (3.4). The identity

s(M1) + · · ·+ s(Mn) = s(M) = nα

shows thats(Mi) = α for all i ∈ N . Taking into account that the determinant is invariant
against matrix transposition, this proves (3). Furthermore,JMT = αJ , and (3.1) becomes

(3.7) λMMT = (det M)I − 2µαJ,

hence

q(Mi) = (MMT )i,i =
1

λ
(det M − 2µα)

for all i ∈ N , andq(M1) = · · · = q(Mn). With

q(M1) + · · ·+ q(Mn) = q(M) = nβ,

this shows that

(3.8) (MMT )i,i = q(Mi) = β for all i ∈ N.
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Let i, j ∈ N with i 6= j. Equation (3.7) gives(MMT )i,k = − 1
λ
2µα for all k ∈ N \ {i}, and

we get

β + (n− 1)(MMT )i,j = (MMT )i,i +
∑
k 6=i

(MMT )i,k

=
n∑

k=1

(MMT )i,k

=
n∑

k=1

n∑
p=1

Mi,p Mk,p

=
n∑

p=1

Mi,p s(Mp)

=
n∑

p=1

Mi,p α = s(Mi) α = α2,

so

(3.9) (MMT )i,j =
α2 − β

n− 1
= δ.

Equations (3.8) and (3.9) together prove (4). With Lemma 2.1, this yields

(det M)2 = det(MMT ) = (β − δ)n−1(β − δ + nδ) = α2(β − δ)n−1,

and taking the square root gives (5). Suppose thatα2 < β. Then by Lemma 3.1 there exists an
M ′ ∈ Mα,β with det M ′ = β

n
2 , and by Lemma 3.2,

det M = |α|(β − δ)
n−1

2 < β
n
2 = det M ′,

which contradicts the maximality ofdet M . Henceα2 ≥ β.
We have now proved (3.5) and are ready to deduce the statements of the theorem: Ifα2 < β,

then (3.5) shows thatµ = 0 and thus (1) and (2). Ifα2 > β, then (3.5) shows thatµ 6= 0 and
thus (3), (4) and (5). Finally suppose thatα2 = β. Thenδ = 0, hence (1)⇐⇒ (4) and (2)
⇐⇒ (5). If µ 6= 0, then (3.5) shows (3), (4) and (5), from which (1) and (2) follow. Ifµ = 0,
then (3.5) shows (1) and (2), from which (4) and (5) follow. It remains to prove (3) in the case
of α2 = β andµ = 0. To this purpose, look at (3.6) again, whereα2 = β means equality in
the Cauchy inequality, which tells us that(s(M1), . . . , s(Mn)) is a scalar multiple ofe, hence
s(M1) = · · · = s(Mn), and (3) follows as in the caseµ 6= 0. �

4. APPLICATION

The following is a more application-oriented extract of Theorem 3.3:

Proposition 4.1. LetM ∈ M, α := 1
n
s(M), β := 1

n
q(M) andδ := α2−β

n−1
. Then:

α2 < β =⇒ | det M | ≤ β
n
2

α2 = β =⇒ | det M | ≤ |α|(β − δ)
n−1

2 = β
n
2

α2 > β =⇒ | det M | ≤ |α|(β − δ)
n−1

2 < β
n
2

Proof. This is clear ifdet M = 0. In the case ofdet M 6= 0, we getα2 < nβ by Lemma 3.1,
and the stated inequalities are true by Lemma 3.2 and Theorem 3.3. �
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ForM ∈ M with |Mi,j| ≤ 1 for all i, j ∈ N , Proposition 4.1 tells us that

(4.1) | det M | ≤ β
n
2 =

(
1

n

n∑
i,j=1

M2
i,j

)n
2

≤

(
1

n

n∑
i,j=1

1

)n
2

= n
n
2 ,

which is simply the determinant theorem of Hadamard [2]. IfMi,j ∈ {−1, 1} for all i, j ∈ N
and| det M | = nn/2, i. e.M is a Hadamard matrix, then Proposition 4.1 shows thatα2 ≤ β must
hold. For a Hadamard matrixM , the values(M) is called theexcessof M . Sinceq(M) = n2

in the case ofMi,j ∈ {−1, 1}, Proposition 4.1 yields an upper bound for the excess, known as
Best’s inequality [1]:

(4.2) M is a Hadamard matrix =⇒ s(M) ≤ n
3
2

The results (4.1) and (4.2), which both can be proved more directly, are mentioned here just
as by-products of Proposition 4.1. In the following, we are interested only in the caseα2 ≥ β,
where the inequality

| det M | ≤ |α|(β − δ)
n−1

2 =: g(M)

holds. Note that Lemma 3.2 states thatg(M) < β
n
2 is true forα2 < β also, but| det M | is not

necessarily bounded byg(M) in this situation:

M :=

(
1 0
0 −1

)
, | det M | = 1 , g(M) = 0.

We are now going to apply Proposition 4.1 to the problem stated in the introduction. This
problem is a special case of finding an upper bound for the determinant of matrices whose
entries are a permutation of an arithmetic progression:

Proposition 4.2. Let p, q be real numbers withq > 0 and M a matrix whose entries are a
permutation of the numbersp, p + q, . . . , p + (n2 − 1)q. Set

r :=
p

q
+

n2 − 1

2
and % :=

n3 + n2 + n + 1

12
.

Then

| det M | ≤ n
n
2 qn

(
r2 +

n4 − 1

12

)n
2

and

r2 > % =⇒ | det M | ≤ nnqn |r|%
n−1

2 < n
n
2 qn

(
r2 +

n4 − 1

12

)n
2

.

Proof. Forα := 1
n
s(M) andβ := 1

n
q(M) a calculation shows thatα2−β = n(n−1)q2(r2−%),

hence(α2 > β ⇐⇒ r2 > %). The bounds noted in Proposition 4.1 yield the asserted inequalities
for | det M |. �

Corollary 4.3. If M is a matrix whose entries are a permutation of1, . . . , n2, then

| det M | ≤ nn n2 + 1

2

(
n3 + n2 + n + 1

12

)n−1
2

.

Proof. Apply Proposition 4.2 to(p, q) := (1, 1). Forr = (n2 +1)/2 it is easy to see thatr2 > %,
which yields the stated bound. �
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Comparing the lower bounds forD(1, . . . , n2) noted in the introduction with the upper
bounds resulting from rounding down the values given by Corollary 4.3 shows that the quality
of these upper bounds is quite convincing:

n determinant of best known matrixupper bound given by Corollary 4.3
2 10 11
3 412 450
4 40 800 41 021
5 6 839 492 6 865 625
6 1 865 999 570 1 867 994 210
7 762 150 368 499 762 539 814 814
8 440 960 274 696 935 441 077 015 225 642
9 346 254 605 664 223 620 346 335 386 150 480 625

10 356 944 784 622 927 045 792 357 017 114 947 987 625 629

These are the record matricesR(n) corresponding to the noted determinants:

R(2) =
(

4 2
1 3

)
, R(3) =

9 3 5
4 8 1
2 6 7

 , R(4) =


12 13 6 2
3 8 16 7
14 1 9 10
5 11 4 15

 ,

R(5) =


25 15 9 11 4
7 24 14 3 17
6 12 23 20 5
10 13 2 22 19
16 1 18 8 21

 , R(6) =


36 24 21 17 5 8
3 35 25 15 23 11
13 7 34 16 10 31
14 22 2 33 12 28
20 4 19 29 32 6
26 18 9 1 30 27

 ,

R(7) =



46 42 15 2 27 24 18
9 48 36 30 7 14 31
39 11 44 34 13 29 5
26 22 17 41 47 1 21
20 8 40 6 33 23 45
4 28 19 25 38 49 12
32 16 3 37 10 35 43


, R(8) =



1 12 20 52 40 50 53 32
44 35 3 14 43 15 45 61
57 2 51 49 23 11 38 29
28 22 55 4 64 41 18 27
25 36 42 34 5 48 7 63
19 60 33 56 46 6 16 24
59 39 9 37 30 58 21 8
26 54 47 13 10 31 62 17


,

R(9) =



68 7 12 62 73 26 29 58 34
67 37 43 10 3 61 33 78 36
30 20 79 53 49 71 40 25 2
56 50 8 27 42 60 81 4 41
23 14 54 63 11 18 72 44 70
1 38 32 21 65 66 22 48 76
45 74 31 80 17 46 5 24 47
15 77 35 39 51 16 59 69 9
64 52 75 13 57 6 28 19 55


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R(10) =



1 2 61 84 81 82 39 54 41 60
53 57 3 65 94 20 91 22 66 33
46 63 47 4 45 78 83 28 13 98
79 42 49 71 5 95 51 10 77 26
17 75 87 58 30 6 38 27 86 80
68 93 76 50 85 56 7 37 14 19
100 16 31 35 62 34 8 64 67 88
21 72 29 9 48 73 43 97 89 25
69 15 99 32 44 24 90 74 40 18
52 70 23 96 11 36 55 92 12 59


Calculating the matrixMMT for each record matrixM reveals thatMMT has roughly the

structure(β − δ)I + δJ that was noted in Theorem 3.3 for the optimal matrices of the corre-
sponding real optimisation problem.
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