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ABSTRACT. By deducing characterisations of the matrices which have maximal determinant in
the set of matrices with given entry sum and square sum, we prove the ineqdality/| <

la|(8 — 8)(»~1)/2 for realn x n-matricesM, wherena andn3 are the sum of the entries and
the sum of the squared entries &f, respectively, and := (a? — 3)/(n — 1), provided that

a? > . This result is applied to find an upper bound for the determinant of a matrix whose
entries are a permutation of an arithmetic progression.
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1. INTRODUCTION

Let n > 2 be a positive integer and = (a4, ...,a,2) a vector of real numbers. What is
the maximal determinan®(a) of a matrix whose elements are a permutation of the entries of
a? The answer is unknown even for the special ecase (1,...,n?%) if n > 6, seel[4]. By
computational optimisation using algorithms like tabu search, we have found matrices with the
following determinants, which thus are lower boundsfuf, . . ., n?):
lower bound forD(1, ..., n?)
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It would be nice to also have a good upper bound i, ..., n%). We will show in this
article how to find an upper bound by treating the problem of determibifag as a continuous
optimisation task. This is done by maximising the determinant under two equality contraints:
by fixing the sum and the square sum of the entries of the matrix.

Our result is a characterisation of the matrices with maximal determinant in the set of matrices
with given entry sum and square sum, and a general inequality for the absolute value of the
determinant of a matrix.

For the problem of findind (1, ..., n?), the upper bound derived in this way turns out to be
quite sharp. So here we have an example where analytical optimisation gives valuable informa-
tion about a combinatorial optimisation problem.

2. CONVENTIONS

Throughout this article, let > 1 be a natural number andl := {1,...,n}. Matrix always
means a reat x n matrix, the set of which we denote B{.

For M € M andi,; € N we denote by\/; thei-th row of M, by M7 the j-th column of/,
and by}, ; the entry ofM at position(¢, 7). If M is a matrix or a row or a column of a matrix,
then bys(M) we denote the sum of the entries/af and byq(M) the sum of their squares.

The identity matrix is denoted by, By J we name the matrix which hdsat all of its fields,
while e is the column vector ifR™ with all entries beindl. Matrices of the structure! + y.J
will play an important role, so we state some of their properties:

Lemma?2.l.Letz,y € Rand M := zI + yJ. Then we have:

(1) det M = 2™ 1 (x + ny)
(2) M is invertible if and only ifr ¢ {0, —ny}.
(3) If M is invertible, then/ ' = 1] — 4]

z(x+ny) <"

Proof. SinceJ = ee”, it holds that
Me = (xI +yeel)e = (z +yele)e = (x +ny)e and Mv = (zI + yee’ v = zv

forall v € R™ with v L e. HenceM has the eigenvaluewith multiplicity » — 1 and the simple
eigenvaluer + ny. This shows (1). (2) is an immediate consequence of (1). (3) can be verified
by a straight calculation. O

3. MAIN THEOREM

Leta,f € Rwith 5 > 0andM, 3 := {M € M : s(M) = na, q(M) = nS3}. Furthermore,
let
0= oF - 5.
n—1
In the proof of the following lemma, matrices are specified whose determinants will later turn
out to be the greatest possible:

Lemma 3.1.
(1) M, 5 # 0 ifand only ifa® < nf. If a® < nf3, then there exists ai/ € M, s with

n—1
2 .

det M = o — 0)

(2) If o < 3, then there exists all € M, ;5 with det M = 35.
(3) There exists ad/ € M,, s with det M # 0 if and only ifa? < np.
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Proof. (1) SupposéM, s # 0, sayM € M, 3. ReadingM and. as elements oR", the
Cauchy inequality shows that

2
1 n
2 _
=z (Z Mzi)
ij=1

— Ly

n2

HMHQ 17115 = Z

i,7=1
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For the other implication suppos€ < nf3,i.e.3 > ¢, and sety := (3 —4)2 a
vI + 2(a—~)J. ThenM € M, 5, and by Lemma 2|1

det M =" (y+nk(a—9)) =y"'a =a(3-0)T

(2) Leta?® < 3. First supposer > 0, S0 := 5 (3—0‘ — ) givesy? < 1. Set

VB
2 g 1-42 0
t=(Lypma VL) e me VBV Ty
0 0 1

Thens(A) = 2a, q(A) = 23, det A = 3, s(B) = 3a, ¢(B) = 38, det B = 32. In the case of
n = 2k with k& € N, usek copies ofA to build the block matrix

A
M =
A

which has the required properties. In the case ef 2k + 1 with k£ € N, usek — 1 copies ofA
to build the block matrix
A

M = ,
A
B
which again fulfills the requirements.
In the case ofv < 0, an M’ € M_, 5 with det M’ = (3% exists. For evem, the matrix
M := —M' € M, 3 has the requested determinant, while for adevapping two rows of- A/’
gives the desired matrix/.

(3) If o < ng, then the existence of aW € M, 5 with det M # 0 is proved by (1) in the case
of a # 0 and by (2) in the case ef = 0. Fora? = n3 andM € M, 4, the calculation in (1)
shows that M, J) = ||M]], ||./]|,- However, this equality holds only if/ is a scalar multiple
of J, so we havelet M = 0 because oflet J = 0. OJ

Foro? < 3 we have given two types of matrices in Lemmal 3.1, the first one having the
determinanty(3 — §) "z, the second one with the determinatit. The proof of Theore .3
below will use the fact that for® < 3 the determinant of the first type is strictly smaller than
that of the second type. Indeed, the foIIowing stronger statement holds:

Lemma 3.2. Leta? < ng3. Then|a|(8 — 6) T * < 3% with equality if and only ih? = 3.
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Proof. This is obvious fora = 0, o leta # 0. With f(z) == = (2=2)""" for = € [0,n] we
have

al(8=0)"7 575 = /1 (%)
The proof is completed by applying the AM-GM inequality]tow)l/”:

1 n—aux n-1\ x n—ln—ﬂf
f(x)n:(,t(n_l) ) < +( . = _q

with equality if and only ifz = *=7, i.e. ifand only ifz = 1. O

If o < ng3, then by Lemml there exists &h € M, g with det M # 0, and, by possibly
swapping two rows of\/, det M > 0 can be achieved. ABI, 5 is compact, the determinant
function assumes a maximum value B, 5. The next theorem, which is essentially due to
O. Gasper, shows that this maximum value is given by the determinants noted in [emma 3.1:

Theorem 3.3.Leta? < nfand M € M, ; with maximal determinant. Then
ifOCQSB: {(D MMT:ﬁi
(2) det M = [z
(3) s(M;)=s(M')=aforalli,j € N
ifa?>p:¢(4) MM'=(3-¥6I+6]
(5) detM = |a|(8—6)">

Proof. From Lemma 31, we know thatt M > 0. The matrix)/ solves an extremum problem
with equality contraints

det X — max
(P) s(X) = na (X e MY),
q(X) = np
whereM* is the set of invertible matrices. The Lagrange function of (P) is given by
L(X, A\ ) = det X — A(s(X) — na) — pu(q(X) — np3),

so there exish, € R with -4 L(M, A, 1) = 0forall 4, j € N. Itis well known that

(dj\cjfw det M) = (det M) (MT)™"

2y
(see e.g.[8], 10.6), thus we getet M) (MT) ' — AM —2uJ =0, i.e.
(3.1) (det M)T = AMM™ + 2uJM™.
Suppose\ = 0. Then
(det M)" = det(2uJ M™) = det(2uJ) det M = O0det M =0
by applying the determinant function {o (B.1). This contradiets)M > 0. Hence
(3.2) A 0.

As M M7 has diagonal elemeni$)M,), . .., q(M,), andJM* has diagonal element$)M; ),
.., 8(M,), we get
ndet M = A\q(M) + 2us(M) = Anf + 2una
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by applying the trace function tp (3.1), consequently

(3.3) det M = \G + 2ua.

The symmetry ofdet M )1 and the symmetry ok M/ M7 in ) show thapJ M7 is sym-
metric as well. As all rows off MT are identical, namely equal {&(M,),...,s(M,)), we
obtain
(3.4) ps(My) = - = ps(M,).

In the following, we inspect the casgs= 0 andyu # 0 and prove:

(35) {uzo = a?<B A1) A Q)
' p#0 = a>>p3 A (3) A 4) A (5).

Caseyu = 0: Then [3.8) readdet M = Af3, so taking[(3.R) into account and dividirjg (8.1) by
givespl = M M7, i.e. (1). Part (2) follows by applying the determinant function to (1). Using
the Cauchy inequality and the fact tl"(at/\/ﬁ) M is orthogonal and thus an isometry w.r.t.
the euclidean norn - ||, we get:

(3.6) a? = % (ZS(MZ-)>

IA
|
-3
(]
2
=

1 5 1 9 1
== -— M = — == — p— .
N H 6”2 nﬁH@HQ nﬁn B

Casep # 0: Thens(M;) = - -- = s(M,) by (3.4). The identity
s(My) + -+ s(M,) = s(M) = na

shows thats(M;) = « for all i« € N. Taking into account that the determinant is invariant
against matrix transposition, this proves (3). Furtherméd! = «./, and ) becomes

(3.7) AMMT = (det M)I — 2ua,
hence

q(M;) = (MM");; = ~(det M — 2pa)

> =

foralli € N,andq(M,) = --- = q(M,,). With
q(My) + -+ q(M,) = q(M) = np,
this shows that

(3.8) (MM?),, = q(M;) =3 forallie N.
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Leti,j € N with i # j. Equation[(3.]7) give§M M™), , = —52uaforallk € N\ {i}, and
we get

B+ (n—1)(MM"), = (MM"),,+> (MMT),,
ki

= Z (MMT)zk
k=1

=2 My My

k=1 p=1

= Z M;p s(MP)
p=1

= Z M;,a = s(M;)a = a?
p=1

SO

a? -

n—1

Equations[(3.8) andl (3.9) together prove (4). With Lemima 2.1, this yields
(det M)* = det(MMT) = (8 —0)""Y (3 — 6 +nd) = a*(f —0)" !,

and taking the square root gives (5). SupposedRat 3. Then by Lemma 3|1 there exists an
M' € M, 5 with det M’ = 3%, and by Lemma 3|2,

= .

(3.9) (MMT),, =

det M = |a|(B — )7 < % = det M,

which contradicts the maximality efet //. Hencea? > 3.
We have now proved (3.5) and are ready to deduce the statements of the theer&ra: #f
then [3.5) shows that = 0 and thus (1) and (2). &> > 3, then [3.5) shows that # 0 and
thus (3), (4) and (5). Finally suppose that = 3. Thend = 0, hence (1= (4) and (2)
< (5). If u # 0, then [3.5) shows (3), (4) and (5), from which (1) and (2) followu If= 0,
then [3.5) shows (1) and (2), from which (4) and (5) follow. It remains to prove (3) in the case
of > = g andu = 0. To this purpose, look af (3.6) again, where = 3 means equality in
the Cauchy inequality, which tells us th@at 1 /,), ..., s(M,)) is a scalar multiple o, hence
s(My) = --- = s(M,), and (3) follows as in the cage+ 0. O

4. APPLICATION

The following is a more application-oriented extract of Theofem 3.3:

Proposition 4.1. Let M € M, o := Ls(M), 3 := Lg(M) andd := =2, Then:
< = |detM|<p2
=B = |detM|<|a|(8-6)T =5}
>3 = |detM|< |Oz’(ﬂ—5)%l < fz

Proof. This is clear ifdet M = 0. In the case oflet M # 0, we geta® < n3 by Lemmd 3.1L,
and the stated inequalities are true by Lenimé 3.2 and Theorém 3.3. O
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For M € M with |M; ;| < 1foralli, j € N, Propositiorj 4.1 tells us that

n 1 & ’ 1 & : n
4.1 det M| < p2 = | — M2 < |- 1| =nz,
which is simply the determinant theorem of Hadamard [2]Mif; € {—1,1} forall 4,5 € N
and| det M| = n"/?,i. e. M is a Hadamard matrix, then Proposit4.1 showsdRat 3 must
hold. For a Hadamard matrix/, the values(M) is called theexces®f M. Sinceq(M) = n?
in the case of\/; ; € {—1,1}, Propositio yields an upper bound for the excess, known as
Best's inequality![1]:

(4.2) M is a Hadamard matrix —=  s(M) < nt

The results[(4]1) andl (4.2), which both can be proved more directly, are mentioned here just
as by-products of Propositidn 4.1. In the following, we are interested only in thenéases,
where the inequality

n—1
2

| det M| < af(8—6) = =:g(M)

holds. Note that Lemnia 3.2 states thad/) < (% is true fora? < 3 also, but| det M| is not
necessarily bounded hy A1) in this situation:

M::((l) _01> ldet M| =1, g(M)=0.

We are now going to apply Propositipn 4.1 to the problem stated in the introduction. This
problem is a special case of finding an upper bound for the determinant of matrices whose
entries are a permutation of an arithmetic progression:

Proposition 4.2. Let p, ¢ be real numbers witly > 0 and M a matrix whose entries are a
permutation of the numbeysp + ¢, ...,p + (n? — 1)q. Set

p n?-1 n4n?+n+1
ro== and p:= )
q 2 12
Then
det M| < nz2q" [ r?
|det M| < nzq (7’ + G )
and

it n L1 E
>0 = |detM|§n”q”|r|Q21<n2q”(r2+n12 ) .

Proof. Fora := £s(M) andg := Lq(M) a calculation shows that’ — = n(n—1)¢*(r*— o),
hencea? > 3 <= r? > p). The bounds noted in Propositi@.l yield the asserted inequalities
for | det M. O

Corollary 4.3. If M is a matrix whose entries are a permutationlof. . n?, then

n—1

21 /034 n2 1\ 2
]detM\gn”n;_ (n +n1;n+)

Proof. Apply Propositior 4.2 tdp, ¢) := (1,1). Forr = (n*>+1)/2itis easy to see that > o,
which yields the stated bound. O
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Comparing the lower bounds fab(1,...,n%) noted in the introduction with the upper
bounds resulting from rounding down the values given by Cordflary 4.3 shows that the quality
of these upper bounds is quite convincing:

n | determinant of best known matrpupper bound given by Corollafy 4|3
2 10 11
3 412 450
4 40 800 41021
5) 6 839 492 6 865 625
6 1865999 570 1867994 210
7 762 150 368 499 762539814814
8 440960 274 696 935 441077015225 642
9 346 254 605 664 223 620 346 335 386 150 480 625
10 356 944 784 622 927 045 792 357017114 947987625629

These are the record matricBén) corresponding to the noted determinants:

5 12 13 6 2
3 8 16 7
;)’ R(4) = 14 1 9 10|”°
5 11 4 15
36 24 21 17 5 8
3 35 25 15 23 11
13 7 34 16 10 31
14 22 2 33 12 28]’
20 4 19 29 32 6
26 18 9 1 30 27

25 15 9 11 4
7T 24 14 3 17

10 13 2 22 19

1 12 20 52 40 50 53 32
44 35 3 14 43 15 45 61
57 2 51 49 23 11 38 29
28 22 55 4 64 41 18 27
25 36 42 34 5 48 7 63|’
19 60 33 56 46 6 16 24
599 39 9 37 30 58 21 8
26 54 47 13 10 31 62 17

46 42 15 2 27 24 18

39 11 44 34 13 29 5

20 8 40 6 33 23 45

32 16 3 37 10 35 43

68 7 12 62 73 26 29 58 34
67 37 43 10 3 61 33 78 36
30 20 79 53 49 71 40 25 2

56 50 8 27 42 60 81 4 41

45 74 31 80 17 46 5 24 47
15 77 35 39 51 16 59 69 9
64 52 75 13 57 6 28 19 55
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1 2 61 8 81 82 39 54 41 60
53 57 3 65 94 20 91 22 66 33
46 63 47 4 45 78 83 28 13 98
79 42 49 T1 5 95 51 10 77T 26
17 75 87 58 30 6 38 27 86 80
68 93 76 50 8 56 7 37 14 19

100 16 31 35 62 34 8 64 67 88
21 72 29 9 48 73 43 97 89 25
69 15 99 32 44 24 90 74 40 18
52 70 23 96 11 36 55 92 12 39

Calculating the matrix\/ M* for each record matrid/ reveals that\/ M* has roughly the
structure(3 — §)I + ¢.J that was noted in Theorem 3.3 for the optimal matrices of the corre-
sponding real optimisation problem.
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