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ABSTRACT. Given a functionf ∈ C3[0, 1] and someq ∈ (0, 1), we look at the approximation
for the Hadamard finite-part integral=

∫ 1

0
x−q−1f(x)dx based on a piecewise linear interpolant

for f atn equispaced nodes (i.e., the product trapezoidal rule). The main purpose of this paper is
to give sufficient conditions for the sequence of approximations to converge against the correct
value of the integral in a monotonic way. An application of the results yields detailed information
on the error term of a backward differentiation formula for a fractional differential equation.
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1. I NTRODUCTION

When discussing problems in numerical integration, it is often not sufficient to prove that a
certain sequence of approximations is convergent. Frequently one additionally wants to know
whether the sequence converges in a monotonic fashion, i.e. whether one can be certain that an
approximation using more quadrature nodes is actually better than an approximation with fewer
nodes. Such monotonicity results are closely related to the question of finding so-called stop-
ping rules: One needs to determine the value of an integral with a certain prescribed accuracy
and the smallest possible amount of work.

For the classical setting when the integral in question is a standard unweighted integral∫ b

a
f(x)dx, this topic is well investigated; we refer to the comprehensive survey of Förster [9]

and the references cited therein and to the more recent papers [6, 10, 12] for a description of
the present state of the art. However, to the best of our knowledge nothing is known about such
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2 KAI DIETHELM

results when the functional to be approximated is a weighted strongly singular integral of the
form

(1.1) Iq[f ] := =

∫ 1

0

x−q−1f(x)dx :=

bqc∑
k=0

f (k)(0)

(k − q)k!
+

∫ 1

0

x−q−1Rbqc(x)dx

interpreted in Hadamard’s finite-part sense (see, e.g., [11] or [2, §1.6.1]). Here we assumeq to
be a positive non-integer number, and

Rµ(x) :=
1

µ!

∫ x

0

(x− y)µf (µ+1)(y)dy

is the remainder of the Taylor polynomial off , centered at0. By bqc, we denote the largest
integer not exceedingq. It is well known that a sufficient condition for the existence ofIq[f ]
is thatf ∈ Cbqc+1[0, 1]. Among the most important properties of these integral operators we
mention here only that, in contrast to the classical Riemann or Lebesgue integral,Iq is not
a positive functional, i. e. the inequality|Iq[f ]| ≤ Iq[|f |] is not true in general. Additional
properties are described in [2, §1.6.1]. Since integrals of this type are known to have important
applications in various methods for solving partial differential equations or ordinary differential
equations of fractional (i.e., non-integer) order [3, 4, 7, 8, 11], we now aim to extend the classical
theory to this setting.

Specifically we shall investigate what is probably the most important example of a quadrature
formula forIq, the product trapezoidal method. The construction of the method is simple: Given
an integern, we divide the fundamental integral[0, 1] into n subintervals of equal length with
break pointsxj = j

n
, j = 0, 1, . . . , n. We then replace the functionf by its piecewise linear

interpolant (linear interpolating spline) with knots and nodes atx0, x1, . . . , xn. Denoting this
interpolant byfn+1 (the subscriptn + 1 being the number of interpolation points), we then
define our approximationIq,n+1 for Iq according to

Iq,n+1[f ] := Iq[fn+1],

where we note that the piecewise linear structure offn+1 allows us to calculate the expression
on the right-hand side effectively.

An explicit representation forIq,n+1 is available from [3, Lemma 2.1]:

Lemma 1.1. We have

Iq,n+1[f ] =
n∑

k=0

αknf

(
k

n

)
,

where

q(1− q)n−qαkn =


−1 for k = 0,

2k1−q − (k − 1)1−q − (k + 1)1−q for k = 1, 2, . . . , n− 1,

(q − 1)k−q − (k − 1)1−q + k1−q for k = n.

There are various reasons for choosing this formula as a first candidate for our investigations:

• It is a generalization of the classical trapezoidal formula, which is in turn the quad-
rature formula for standard integrals that was historically among the first and is very
thoroughly investigated with respect to its monotonicity properties.

• Many other properties of this formula have been studied in great detail, see, e.g., [4, 5].
• It has been used very successfully as the basic ingredient for algorithms for the numeri-

cal solution of fractional differential equations [3].

J. Inequal. Pure and Appl. Math., 5(2) Art. 44, 2004 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


MONOTONICITY RESULTS FOR ACOMPOUND QUADRATURE METHOD 3

2. M AIN RESULT

The main result of this paper is the following monotonicity theorem that directly corresponds
to an analogous result for standard integrals (see, e.g., [13] or [1, Thm. 105]).

Theorem 2.1. Let 0 < q < 1 be fixed, and letf ∈ C3[0, 1]. Moreover assume thatf ′′ is
nonnegative on[0, 1] (i.e. f is convex) andf ′′′ is nonpositive on[0, 1]. Then, the sequence
(Iq,n+1[f ])∞n=1 is monotonically decreasing, and its limit isIq[f ].

For the proof we shall use some properties of the quadrature rule(Iq,n+1)
∞
n=1 that have been

established previously. Here and in the following we will make use of the notation

Rn+1 := Iq − Iq,n+1

to denote the remainder functional ofIq,n+1. For the sake of simplicity we have suppressed the
dependence onq in our notation. (Remember thatq is assumed to be fixed.)

In view of the above mentioned properties of the functionalIq and its approximationIq,n+1,
we may apply the classical Peano kernel theorem [16] toRn+1 and derive

Lemma 2.2. Let0 < q < 1 or 1 < q < 2, and assume thatf ∈ C2[0, 1]. Then,

Rn+1[f ] =

∫ 1

0

K2(Rn+1, x)f ′′(x)dx,

whereK2(Rn+1, ·) is the second Peano kernel ofRn+1, given by

K2(Rn+1, x) := Rn+1[(· − x)+].

Here(·)+ is the truncated power function defined by

(x)+ :=

{
x if x ≥ 0,
0 otherwise.

From Lemma 2.2 we can deduce the explicit representation

(2.1) K2(Rn+1, t) =

j∑
k=0

αkn

(
k

n
− t

)
− t1−q

q(1− q)
for t ∈

[
j

n
,
j + 1

n

]
of the Peano kernel in a straightforward way (as is done, e.g., in [1, Thm. 16] for classical
quadrature formulas).

In [4, p. 487] it has been stated thatRn+1 is negative definite of order two whenever0 < q < 1
or 1 < q < 2. Unfortunately this result is incorrect; it should read as follows.

Lemma 2.3. For any n ≥ 2, the functionalRn+1 is negative definite for0 < q < 1 and
indefinite for1 < q < 2.

Proof. It is clear that

Rn+1[f ] = Iq[f − fn+1]

= =

∫ n−1

0

u−q−1(f(u)− fn+1(u))du +

∫ 1

n−1

u−q−1(f(u)− fn+1(u))du.

To prove the negative definiteness in the case0 < q < 1 it is sufficient to show thatRn+1[f ] ≤ 0
wheneverf is convex. Thus we assumef to be convex. Then, as is well known,f(u) ≤ fn+1(u)
for all u, and hence the second integral is nonpositive. Moreover, for the first integral we can
explicitly calculate the Peano kernel representation

=

∫ n−1

0

u−q−1(f(u)− fn+1(u))du =: A[f ] =

∫ n−1

0

f ′′(u)K2(A, u)du.
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4 KAI DIETHELM

In view of the relation between the functionalsA andRn, it is evident that foru ∈ [0, n−1] we
have

(2.2) K2(A, u) = K2(Rn+1, u) = − u

q(1− q)

(
u−q − nq

)
≤ 0

because of (2.1). Thus, the first integral is nonpositive too iff is convex, and the claim follows.
The indefiniteness in the case1 < q < 2 follows by very similar arguments. We find the

same expression for the Peano kernelK2(A, ·) as above, but now the sign of(1− q) and hence
the sign of the complete expression has changed. ThusK2(A, u) ≥ 0 for 0 < u < n−1. Since
nothing changes in the integral over[n−1, 1], we deduce that nowRn+1 is the sum of a positive
definite functional onC2[0, n−1] and a negative definite functional onC2[n−1, 1], and hence it
must be indefinite. �

Formulated in terms of Peano kernels, the case0 < q < 1 of Lemma 2.3 can be restated as:

Lemma 2.4. Let0 < q < 1, x ∈ [0, 1] andn ∈ N. Then,K2(Rn+1, x) ≤ 0.

Standard methods from elementary Peano kernel theory give us additional fundamental re-
sults on the functionK2(Rn+1, ·) and itsL1 norm

ρn+1 := ‖K2(Rn+1, ·)‖1 =

∫ 1

0

|K2(Rn+1, x)|dx;

we omit the details of the proof.

Lemma 2.5. Let0 < q < 1.

(a) For j = 0, 1, . . . , n we haveK2(Rn+1, xj) = 0.
(b) The sequence(ρn+1)

∞
n=1 is monotonically decreasing.

Finally we quote another result on the sequence mentioned in Lemma 2.5 (b) from [5, Thm.
1.2]; more details are given there and in [4, Thm. 2.3].

Lemma 2.6. For 0 < q < 1 there exists some constantcq such thatρn+1 = cqn
q−2 + O(n−2).

We are now in a position to prove our main result.

Proof of Theorem 2.1.First we note that, by Lemmas 2.2 and 2.4,

Rn+1[f ] =

∫ 1

0

K2(Rn+1, x)f ′′(x)dx ≤ 0,

and hence by definition ofRn+1 we find thatIq,n+1[f ] ≥ Iq[f ].
Moreover, by Lemma 2.2, Hölder’s inequality and Lemma 2.6,

|Rn+1[f ]| =
∣∣∣∣∫ 1

0

K2(Rn+1, x)f ′′(x)dx

∣∣∣∣ ≤ ‖f ′′‖∞ · ρn+1 → 0,

i.e. (again by definition ofRn+1), Iq,n+1[f ] → Iq[f ] asn →∞.
It remains to prove that the sequence(Iq,n+1[f ]) decreases monotonically or, equivalently,

that the sequence(Rn+1[f ]) increases monotonically. To this end, we use the representation of
Rn+1[f ] from Lemma 2.2 and introduce the functionsJn+1 andLn+1 according to

Jn+1(x) := K2(Rn+1, x) + ρn+1 and Ln+1(x) :=

∫ x

0

Jn+1(t)dt.
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Then, a partial integration yields

Rn+1[f ] =

∫ 1

0

(Jn+1(x)− ρn+1)f
′′(x)dx

= f ′′(x) [Ln+1(x)− xρn+1]
1
0 −

∫ 1

0

f ′′′(x) [Ln+1(x)− xρn+1] dx

= f ′′(1) [Ln+1(1)− ρn+1]−
∫ 1

0

f ′′′(x) [Ln+1(x)− xρn+1] dx

since obviouslyLn+1(0) = 0. Moreover,

Ln+1(1) =

∫ 1

0

Jn+1(t)dt

=

∫ 1

0

(K2(Rn+1, x) + ρn+1) dx =

∫ 1

0

K2(Rn+1, x)dx + ρn+1.

Recalling the definition ofρn+1 and the nonpositivity ofK2(Rn+1, ·) (see Lemma 2.4), we find

ρn+1 =

∫ 1

0

|K2(Rn+1, x)|dx = −
∫ 1

0

K2(Rn+1, x)dx,

and henceLn+1(1) = 0 too. Combining these results we find

Rn+1[f ] = −ρn+1f
′′(1)−

∫ 1

0

f ′′′(x) [Ln+1(x)− xρn+1] dx.

Under our assumptions onf , we know thatf ′′(1) ≥ 0, and hence by Lemma 2.5 (b) we see
that the first expression on the right-hand side, viz. the quantity−ρn+1f

′′(1), is indeed a mono-
tonically increasing function ofn. It thus remains to prove that the remaining term has got this
property as well. Sincef ′′′ is assumed to be negative, it is sufficient for this purpose to show
that, for every fixedx ∈ [0, 1], the functionφx defined by

φx(n + 1) := Ln+1(x)− xρn+1

is a non-decreasing function ofn. Note that

φx(n + 1) =

∫ x

0

(K2(Rn+1, t) + ρn+1) dt− xρn+1 =

∫ x

0

K2(Rn+1, t)dt.

For the proof of the monotonicity ofφx we distinguish two cases.
First we look at0 ≤ x ≤ (n + 1)−1. An explicit representation forK2(Rn+1, t) in the case

0 < t < n−1 can be taken from eq. (2.1); it reads

K2(Rn+1, t) =
t

q(1− q)

(
nq − t−q

)
.

Consequently,

φx(n + 1) =
1

q(1− q)

(
1

2
nqx2 − 1

2− q
x2−q

)
for 0 ≤ x ≤ n−1. In an analogous manner we find

φx(n + 2) =
1

q(1− q)

(
1

2
(n + 1)qx2 − 1

2− q
x2−q

)
for 0 ≤ x ≤ (n + 1)−1. From these identities we immediately see

φx(n + 1) ≤ φx(n + 2)

for all n and0 ≤ x ≤ (n + 1)−1 as required.
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6 KAI DIETHELM

In the second case(n + 1)−1 < x ≤ n−1 we will prove the relation

φx(n + 1) ≤ φ(n+1)−1(n + 1) ≤ φn−1(n + 2) ≤ φx(n + 2).

SinceK2(Rn+1, ·) is a nonpositive function (see Lemma 2.4), we find thatφx(n + 1) is a de-
creasing function ofx. Thus the first and the last of the three inequalities above are evident. It
remains to show the middle one. To this end we note that we still have, as above,

φx(n + 1) =
1

q(1− q)

(
1

2
nqx2 − 1

2− q
x2−q

)
,

and therefore

φ(n+1)−1(n + 1) =
1

q(1− q)

(
1

2
nq(n + 1)−2 − 1

2− q
(n + 1)q−2

)
=

1

q(1− q)(n + 1)2

(
1

2
nq − 1

2− q
(n + 1)q

)
.

However we now pass a node of the formulaIq,n+2, namely the point(n + 1)−1, and hence the
Peano kernelK2 of this formula becomes

K2(Rn+2, t) = −α0,n+1t + α1,n+1

(
1

n + 1
− t

)
− t1−q

q(1− q)

=
(n + 1)q

q(1− q)

(
t + (2− 21−q)

(
1

n + 1
− t

)
− (n + 1)−qt1−q

)
according to eq. (2.1) and Lemma 1.1. Thus we have

φn−1(n + 2) =

∫ n−1

0

K2(Rn+2, t)dt

=

∫ (n+1)−1

0

K2(Rn+2, t)dt +

∫ n−1

(n+1)−1

K2(Rn+2, t)dt

= φ(n+1)−1(n + 2) +

∫ n−1

(n+1)−1

K2(Rn+2, t)dt

=
1

q(1− q)

(
1

2
− 1

2− q

)
(n + 1)q−2 +

∫ n−1

(n+1)−1

K2(Rn+2, t)dt

= − 1

2(1− q)(2− q)
(n + 1)q−2 +

∫ n−1

(n+1)−1

K2(Rn+2, t)dt

= − 1

2(1− q)(2− q)
(n + 1)q−2

+
1

2q(1− q)(2− q)

(
2(n + 1)q−2 − 2nq−2

+n−2(n + 1)q−2(q − 2)(1− 21−q − 2n)
)
,

and after a rather long but simple calculation we obtain the required inequality.
On the remaining part of the interval[0, 1], the required representation of the Peano kernel is

also given in (2.1). For the purpose of illustration we have plotted the graphs forφx(n+1) versus
x in Figure 2.1 for the special caseq = 0.3 andn ∈ {5, 6, 7}. In a qualitative sense these graphs
can be considered to be typical also for other values ofq ∈ (0, 1). Using these representations,
we can deduce the required property after a lengthy but straightforward calculation on these
intervals too. �
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Figure 2.1: Plots ofφx(n + 1) versusx for n = 5 (dotted line; bottom),n = 6 (dashed line; middle), andn = 7
(solid line; top), over the entire intervalx ∈ [0, 1] (upper graph) and zoom over the subintervalx ∈ [0, 0.1] (lower
graph).

3. FURTHER REMARKS

In Lemma 2.3 we had pointed out a mistake in the discussion of the case1 < q < 2 in our
earlier paper [4]. This observation leads to some consequences.

To begin with, an error estimate for the quadrature rule considered above has been discussed
in [4, Thm. 2.3]. The analysis there was partly based on the incorrect result and needs to
be modified slightly. The correction due to this problem affects only the case1 < q < 2 (the
parameterp used in that paper corresponds toq+1 here), but since the original proof regrettably
also contained some typographical errors in the case0 < q < 1, we give the correct result in
both cases here.

Theorem 3.1.Let0 < q < 1 or 1 < q < 2. Then, for everyn ∈ N we have

30− q(q + 1)

360q · |1− q|(2− q)
nq−2 +

(
q + 1

180
− 1

6q

)
n−2

< ρn+1 <

(
1

6q
+

1

2|1− q|(2− q)

)
nq−2 − 1

6q
n−2.
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Proof. In [4, Proof of Thm. 2.3], we have seen that

ρn+1 = σ + τ,

where
1− n−q

q

(
1

6
− q(q + 1)

180

)
nq−2 < σ <

1− n−q

6q
nq−2

and
τ = sup

‖f ′′‖∞≤1

|A[f ]|,

whereA[f ] is as in the proof of Lemma 2.3. Thus, standard Peano kernel theory reveals that

τ =

∫ n−1

0

|K2(A, u)|du.

From the explicit representation ofK2(A, ·) in eq. (2.2) we find that

τ =
1

q · |1− q|

∫ n−1

0

u(u−q − nq)du =
nq−2

2|1− q|(2− q)
,

and the claim follows. �

Another aspect of the results presented in §2 is related to the fact that finite-part integrals are
a convenient means to represent derivatives of fractional order. To be precise, as is well known
[7], we have that the Caputo-type fractional differential operatorDq

∗ can be rewritten as

Dq
∗y(x) =

1

Γ(−q)
=

∫ x

0

(y(u)− y(0))(x− u)−q−1du

for 0 < q < 1 and as

Dq
∗y(x) =

1

Γ(−q)
=

∫ x

0

(y(u)− y(0)− uy′(0))(x− u)−q−1du

for 1 < q < 2. We refer to the books of Podlubny [14] or Samko et al. [15] for detailed in-
formation on fractional derivatives and fractional differential equations; here we only note that
our results above can be applied in a direct way to derive monotonically convergent approxima-
tions for such derivatives. We recall that certain other important properties of the approximation
method investigated here have been given in [5].

Differential equations involving such operators have proven to be an important tool in many
applications in physics, engineering, finance, etc.; see, e.g., the examples mentioned in [14] and
the references cited therein. It is an obvious consequence of the above considerations that we
may also use the product trapezoidal method for finite-part integrals as a means to construct
numerical solutions for fractional differential equations. First results on this topic have been
given in [3, 5]. In the analysis of the algorithm, a discrete Gronwall inequality [3, Lemma 2.3]
turned out to be helpful. In view of our new developments above we may now strengthen this
result and bring it into the form of a two-sided inequality:

Theorem 3.2.For 0 < q < 1, let the sequence(dj) be given byd1 = 1 and

dj = 1 + q(1− q)j−q

j−1∑
k=1

αkjdj−k, j = 2, 3, . . . ,

whereαkj is as in Lemma 1.1. Then,

jq ≤ dj ≤
sin πq

πq(1− q)
jq, j = 1, 2, 3, . . . .
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We can thus see that the upper bound gives the correct rate of growth of the sequence(dj).

Proof. The upper bound is known [3, Lemma 2.3]. For the lower bound, we proceed inductively.
The induction basis (j = 1) is presupposed. For the induction step we use the fact thatαkj > 0
for all j andk under consideration and find, using the functionφ(x) = (1− x)q, that

dj+1 = 1 + q(1− q)(j + 1)−q

j∑
k=1

αk,j+1dj+1−k

≥ 1 + q(1− q)

j+1∑
k=1

αk,j+1

(
j + 1− k

j + 1

)q

= 1 + q(1− q) (Iq,j+2[φ]− α0,j+1φ(0))

= 1 + q(1− q)Iq,j+2[φ] + (j + 1)q.

It thus remains to prove thatq(1 − q)Iq,j+2[φ] ≥ −1. In view of the fact thatφ′′(x) < 0 and
φ′′′(x) ≥ 0 for 0 < x < 1, Theorem 2.1 allows us to conclude that it is sufficient for this
purpose to show thatq(1− q)Iq,2[φ] ≥ −1. An explicit calculation reveals that indeed

q(1− q)Iq,2[φ] = q(1− q)
(
α02 + α122

−q
)

= −2q + 2− 21−q ≥ −1.

This completes the proof. �

It is our belief that the new lower bound may be useful in gaining an even better understanding
of the properties of the differential equation solver; in particular we hope to prove that the error
bound derived in [3, Thm. 1.1] is not improvable. But this will be the topic of a different paper.
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