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ABSTRACT. In this paper, we use the technique of updating the solution to suggest and analyze a
class of new splitting methods for solving general variational inequalities. It is shown that these
modified methods converge for pseudomonotone operators, which is a weaker condition than
monotonicity. Our method includes the two-step forward-backward splitting and extragradient
methods for solving various classes of variational inequalities and complementarity problems as
special cases.
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1. I NTRODUCTION

Variational inequalities theory is a branch of mathematics with a wide range of applications
in industrial, physical, regional, social, pure and applied sciences, see [1] – [18]. Variational
inequalities have been extended and generalized in many different directions using new and
novel techniques. A useful and significant generalization is called the general mixed varia-
tional inequality or variational inequality of the second type. In recent years, several numerical
methods for solving variational inequalities have been developed. It is a well known fact that
the projection method and its variant forms including the Wiener-Hopf equations cannot be ex-
tended for mixed variational inequalities involving the nonlinear terms. These facts motivated
us to use the technique of the resolvent operators. In this technique, the given operator is de-
composed into the sum of two (or more) monotone operators, whose resolvents are easier to
evaluate then the resolvent of the original operator. Such type of methods are called the opera-
tors splitting methods. This can lead to the development of very efficient methods, since one can
treat each part of the original operator independently. In the context of variational inequalities,
Noor [9, 10] has used the resolvent operator technique to suggest and analyze some two-step
forward-backward splitting methods. A useful feature of the forward-backward splitting meth-
ods for solving variational inequalities is that the resolvent step involves the subdifferential of
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the proper, convex and lower semicontinuous part only, the other part facilitate the problem
decomposition. If the nonlinear term involving the general mixed variational inequalities is
proper, convex and lower-semicontinuous, then it has been shown [8] – [10] that the general
mixed variational inequalities are equivalent to the fixed point and resolvent equations. These
alternative formulations have been used to develop a number of iterative type methods for solv-
ing mixed variational inequalities. Noor [9, 10] used the technique of updating the solution in
conjunction with resolvent operator techniques to suggest a number of splitting type algorithms
for various classes of variational inequalities. It has been shown [13] that the convergence
of such type of splitting and predictor-corrector type algorithms requires the partially relaxed
strongly monotonicity condition, which is weaker than cocoercivity. In this paper, we suggest
and analyze a class of forward-backward splitting algorithms for a class of general mixed varia-
tional inequalities by modifying the associated fixed-point equation. The new splitting methods
are self-adaptive type methods involving the line search strategy, where the step size depends
upon the resolvent equation and the direction of searching is a combination of the resolvent
residue and the modified extraresolvent direction. Our results include the previous results of
Noor [9, 10], Wang et al. [18] and Han and Lo [4] for solving different classes of variational
inequalities as special cases. Our results can be viewed as novel applications of the technique
of updating the solution as well as a refinement and improvement of previously known results.

2. PRELIMINARIES

Let H be a real Hilbert space whose inner product and norm are denoted by〈·, ·〉 and‖·‖
respectively. LetK be a nonempty closed convex set inH. Let ϕ : H → R ∪ {+∞} be a
function.

For given nonlinear operatorsT, g : H → H, consider the problem of findingu ∈ H such
that

(2.1) 〈Tu, g(v)− g(u)〉+ ϕ(g(v))− ϕ(g(u)) ≥ 0, for all g(v) ∈ H.

The inequality of type (2.1) is called the general mixed variational inequality or the general
variational inequality of the second kind. If the functionϕ(·) is a proper, convex and lower
semicontinuous function, then problem (2.1) is equivalent to findingu ∈ H such that

0 ∈ Tu + ∂ϕ(g(u)),

which is known as the problem of finding a zero of the sum of two (maximal) monotone op-
erators and has been studied extensively in recent years. We remark that ifg ≡ I, the identity
operator, then problem (2.1) is equivalent to findingu ∈ H such that

(2.2) 〈Tu, v − u〉+ ϕ(v)− ϕ(u) ≥ 0, for all v ∈ H,

which are called the mixed variational inequalities. It has been shown that a wide class of linear
and nonlinear problems arising in finance, economics, circuit and network analysis, elasticity,
optimization and operations research can be studied via the mixed variational inequalities (2.1)
and (2.2). For the applications, numerical methods and formulations of general mixed varia-
tional inequalities, see [1] – [3], [7] – [10], [13], [17] and the references therein.

We note that ifϕ is the indicator function of a closed convex setK in H, that is,

ϕ(u) ≡ IK(u) =

 0, if u ∈ K

+∞, otherwise,

then problem (2.1) is equivalent to findingu ∈ H, g(u) ∈ K such that

(2.3) 〈Tu, g(v)− g(u)〉 ≥ 0, for all g(v) ∈ K.
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The inequality of the type (2.3) is known as thegeneral variational inequality,which was
introduced and studied by Noor [5] in 1988. It turned out that the odd-order and nonsymmetric
free, unilateral, obstacle and equilibrium problems can be studied using the general variational
inequality (2.3), see [5, 6, 12, 14, 15].

From now onward, we assume that the operatorg is ontoK andg−1 exists unless otherwise
specified.

If K∗ = {u ∈ H : 〈u, v〉 ≥ 0, for all v ∈ K} is a polar cone of a convex coneK in H, then
problem (2.3) is equivalent to findingu ∈ H such that

(2.4) g(u) ∈ K, Tu ∈ K∗, and 〈Tu, g(u)〉 = 0,

which is known as thegeneral complementarity problem,which was introduced and studied by
Noor [5] in 1988. We note that ifg(u) = u−m(u), wherem is a point -to-point mapping, then
problem (2.4) is called the quasi(implicit) complementarity problem, see the references for the
formulation and numerical methods.

Forg ≡ I, the identity operator, problem (2.3) collapses to: findu ∈ K such that

(2.5) 〈Tu, v − u〉 ≥ 0, for all v ∈ K,

which is called the standard variational inequality, introduced and studied by Stampacchia [16]
in 1964. For recent results, see [1] – [18].

It is clear that problems (2.2) – (2.5) are special cases of the general mixed variational in-
equality (2.1). In brief, for a suitable and appropriate choice of the operatorsT , g, ϕ and the
spaceH, one can obtain a wide class of variational inequalities and complementarity problems.
This clearly shows that problem (2.1) is quite general and unifying. Furthermore, problem (2.1)
has important applications in various branches of pure and applied sciences, see [1] – [18].

We now recall some well known concepts and results.

Definition 2.1. For allu, v, z ∈ H, an operatorT : H → H is said to be:

(i). g-monotone,if
〈Tu− Tv, g(u)− g(v)〉 ≥ 0

(ii). g-pseudomonotone,

〈Tu, g(v)− g(u)〉 ≥ 0 implies 〈Tv, g(v)− g(u)〉 ≥ 0.

For g ≡ I, whereI is the identity operator, Definition 2.1 reduces to the classical definition
of monotonicity and pseudomonotonicity. It is known that monotonicity implies pseudomono-
tonicity but the converse is not true, see [2]. Thus we conclude that the concept of pseudomono-
tonicity is weaker than monotonicity.

Definition 2.2. If A is a maximal monotone operator onH, then for a constantρ > 0, the
resolvent operator associated withA is defined as

JA(u) = (I + ρA)−1(u), for all v ∈ H,

whereI is the identity operator. It is well known that the operatorA is maximal monotone if
and only if the resolvent operatorJA is defined everywhere on the space. The operatorJA is
single-valued and nonexpansive.

Remark 2.1. It is well known that the subdifferential∂ϕ of a proper, convex and lower semi-
continuous functionϕ : H −→ R ∪ {∞} is a maximal monotone operator, so

Jϕ(u) = (I + ∂ϕ)−1(u), for all u ∈ H,

is the resolvent operator associated with∂ϕ and is defined everywhere.
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Lemma 2.2. For a givenz ∈ H, u ∈ H satisfies

(2.6) 〈u− z, v − u〉+ ρϕ(v)− ρϕ(u) ≥ 0, for all v ∈ H

if and only if

u = Jϕz,

whereJϕ is the resolvent operator.

We remark that if the proper, convex and lower semicontinuous functionϕ is an indicator
function of a closed convex setK in H, thenJϕ ≡ PK , the projection ofH ontoK. In this case
Lemma 2.2 is equivalent to the projection lemma, see [8].

Related to the general mixed variational inequality (2.1), we now consider the resolvent equa-
tions. LetRϕ = I − Jϕ, whereJϕ is the resolvent operator. For given nonlinear operators
T, g : H −→ H, we consider the problem of findingz ∈ H such that

(2.7) Tg−1Jϕz + ρ−1RAz = 0.

Equation of the type (2.7) is called the resolvent equation, which was introduced and studied
by Noor [8]. Note that ifϕ(·) is an indicator function of a closed convex setK in H, then the
resolvent equations are equivalent to the Wiener-Hopf equation. For applications and numerical
methods of the resolvent equations, see [8] – [10] and the references contained therein.

3. M AIN RESULTS

In this section, we use the resolvent equations technique to suggest a modified resolvent
method for solving general mixed variational inequalities (2.1). For this purpose, we need the
following result, which can be proved by using Lemma 2.2.

Lemma 3.1. The general mixed variational inequality (2.1) has a solutionu ∈ H if and only if
u ∈ H satisfies

(3.1) g(u) = Jϕ[g(u)− ρTu],

whereJϕ(u) = (I + ρ∂ϕ)−1 is the resolvent operator.

Lemma 3.1 implies that problems (2.1) and (3.1) are equivalent. This alternative equivalent
formulation has played an important part in suggesting several iterative methods for solving
general mixed variational inequalities and related problems, see [8, 9].

We define the resolvent residue vector by

(3.2) R(u) = g(u)− Jϕ[g(u)− ρTu].

Invoking Lemma 3.1, one can easily show thatu ∈ H is a solution of (2.1) if and only ifu ∈ H
is a zero of the equation

(3.3) R(u) = 0.

We also need the following known result, which can be proved by using Lemma 3.1, which
shows that the general mixed variational inequality (2.1) is equivalent to the resolvent equation
(2.7).

Lemma 3.2. [6] The general mixed variational inequality (2.1) has a unique solutionu ∈ H if
and only ifz ∈ H is a unique solution of the resolvent equation (2.7), where

(3.4) g(u) = Jϕz, and z = g(u)− ρTu.
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Using (3.2) and (3.4), the resolvent equation (2.7) can be written in the form:

(3.5) R(u)− ρTu + ρTg−1Jϕ[g(u)− ρTu] = 0.

Invoking Lemma 3.1, one can show thatu ∈ H is a solution of (2.1) if and only ifu ∈ H is a
zero of the equation (3.5).

Using the technique of updating the solution, one can rewrite the equation (3.1) in the form;

(3.6) g(u) = Jϕ[Jϕ[g(u)− ρTu]− ρTg−1Jϕ[g(u)− ρTu]],

or equivalently,

g(u) = Jϕ[g(w)− ρTw],(3.7)

g(w) = Jϕ[g(u)− ρTu].(3.8)

Invoking Lemma 3.1, one can easily show thatu ∈ H is solution of equation (2.1) if and only
if u ∈ H is a zero of the equation

(3.9) g(u)− Jϕ[Jϕ[g(u)− ρTu]− ρTg−1Jϕ[g(u)− ρTu]] = g(u)− Jϕ[g(w)− ρTw] = 0.

The fixed-point formulation (3.6) – (3.8) can be used to suggest and analyze the following
iterative methods for solving general variational inequalities (2.1).

Algorithm 3.1. For a givenu0 ∈ H, compute the approximate solutionun+1 by the iterative
schemes

g(wn) = Jϕ[g(un)− ρTun],

g(un+1) = Jϕ[g(wn)− ρTwn], n = 0, 1, 2 . . . ,

which is known as the predictor-corrector method, see Noor [9, 13].

Algorithm 3.2. For a givenu0 ∈ H, compute the approximate solutionun+1 by the iterative
schemes

g(un+1) = Jϕ[Jϕ[g(un)− ρTun]− ρTg−1Jϕ[g(un)− ρTun]]

= Jϕ[I − ρTg−1]Jϕ[I − ρTg−1]g(un), n = 0, 1, 2, . . .

which is known as the two-step forward-backward splitting algorithm. Note that the order ofT
andJϕ has not been changed. For the convergence analysis of Algorithm 3.2, see Noor [9, 13].

By rearranging the terms, one can use the fixed-point formulation (3.6) to suggest and analyze
the following method for solving the general mixed variational inequalities (2.1).

Algorithm 3.3. For a givenu0 ∈ H, computeun+1 by the iterative scheme

g(un+1) = (I + ρTg−1)−1{Jϕ[I − ρTg−1]Jϕ[I − ρTg−1] + ρTg−1}g(un), n = 0, 1, 2 . . . ,

which is again a two-step forward-backward splitting type method and is similar to that of Tseng
[17]. Noor [13] has studied the convergence analysis of Algorithms 3.1 – 3.3 for the partially
relaxed strongly monotone operator, which is a weaker condition than cocoercivity.

Using Lemma 3.2, we can rewrite the resolvent equation (2.7) in the following useful form:

(3.10) D(u) = 0,

where

D(u) = R(u)− ρTu + ρTg−1Jϕ[g(u)− ρTu]

= R(u)− ρTu + ρTw.(3.11)

Invoking Lemma 3.1, one can show thatu ∈ H is a solution of (2.1) if and only ifu ∈ H is a
zero of the equation (3.10).
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In this paper , we suggest another method involving the line search strategy, which includes
these splitting type methods as special cases. For a given positive constantα, we rewrite the
equation (3.6), using (3.2), in the following form.

g(u) = Jϕ[g(u)− α{g(u)− g(w) + ρTw}]
= Jϕ[g(u)− α{R(u) + ρTw}]
= Jϕ[g(u)− αd(u)],(3.12)

where

(3.13) d(u) = R(u) + ρTw ≡ R(u) + ρTg−1[g(u)− ρTu].

This fixed-point formulation enables us to suggest the following iterative method for general
mixed variational inequalities (2.1).

Algorithm 3.4. For a givenu0 ∈ H, compute the approximate solutionun+1 by the iterative
schemes.
Predictor step.

(3.14) g(wn) = Jϕ[g(un)− ρnTun],

whereρn satisfies

(3.15) ρn〈Tun − Twn, R(un)〉 ≤ σ‖R(un)‖2, σ ∈ (0, 1).

Corrector step.

(3.16) g(un+1) = Jϕ[g(un)− αnd(un)], n = 0, 1, 2 . . .

where

d(un) = R(un) + ρnTwn,(3.17)

αn =
〈R(un), D(un)〉

‖d(un)‖2
,(3.18)

D(un) = R(un)− ρTun + ρTwn,(3.19)

whereαn is the corrector step size. Note that the corrector step sizeαn, in (3.18) depend upon
the resolvent equation (3.10).

If the proper, convex and lower-semicontinuous functionϕ is an indicator function of a closed
convex setK in H,, thenJϕ ≡ PK , the projection ofH ontoK and consequently Algorithm
3.4 collapses to:

Algorithm 3.5. For a givenu0 ∈ H, compute the approximate solutionun+1 by the iterative
schemes
Predictor step.

g(wn) = PK [g(un)− ρnTun],

whereρn satisfies

ρn〈Tun − Twn, R(un)〉 ≤ σ‖R(un)‖2, σ ∈ (0, 1).

Corrector step.

g(un+1) = PK [g(un)− αnd1(un)], n = 0, 1, 2 . . .
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where

d1(un) = R(un) + ρnTwn

αn =
〈R(un), D1(un)〉

‖d1(un)‖2

D1(un) = R(un)− ρTun + ρTwn.

Algorithm 3.4 appears to be a new one even for general variational inequalities (2.3). Note that
for αn = 1, Algorithm 3.4 is exactly Algorithm 3.1, which is mainly due to Noor [9, 10]. For
g ≡ I, the identity operator, we obtain new improved versions of previously known algorithms
of Wang et al. [18] and Han and Lo [4] for variational inequalities and related optimization
problems. This clearly shows that Algorithm 3.4 is a unifying one and includes several known
and new algorithms as special cases.

For the convergence analysis of Algorithm 3.4, we need the following results.

Lemma 3.3. If ū ∈ H is a solution of (2.1) andT is g-pseudomonotone, then

(3.20) 〈g(u)− g(ū), d(u)〉 ≥ (1− σ)‖R(u)‖2, for all u ∈ H.

Proof. Let ū ∈ H be a solution of (2.1). Then

〈T ū, g(v)− g(ū)〉+ ϕ(g(v))− ϕg(ū) ≥ 0, for all v ∈ H,

which implies

(3.21) 〈Tv, g(v)− g(ū)〉+ ϕ(g(v))− ϕg(ū) ≥ 0,

sinceT is g-pseudomonotone.
Takingg(v) = Jϕ[g(u)− ρTu] = g(w), (whereg(w) is defined by (3.8)) in (3.21), we have

〈Tw, g(w)− g(ū)〉+ ϕ(g(w))− ϕ(g(ū)) ≥ 0,

from which, we have

(3.22) 〈g(u)− g(ū), ρTw〉 ≥ ρ〈R(u), Tw〉+ ρϕ(g(ū))− ρϕ(g(w)).

Settingu = g(w), z = g(u)− ρTu andv = g(ū) in (2.6), we have

〈g(w)− g(u) + ρTu, g(ū)− g(w)〉+ ρϕ(g(ū))− ρϕ(g(w)) ≥ 0,

from which, we obtain

〈g(u)− g(ū), R(u)〉 ≥ 〈R(u), R(u)− ρTu〉 − ρϕ(g(ū)) + ρϕ(g(w))

+ ρ〈Tu, g(u)− g(ū)〉.
≥ 〈R(u), R(u)− ρTu〉 − ρϕ(g(ū)) + ρϕ(g(w)),(3.23)

where we have used the fact that the operatorT is pseudomonotone.
Adding (3.22) and (3.23), we have

〈g(u)− g(ū), R(u) + ρTw〉 = 〈g(u)− g(ū), d(u)〉
≥ 〈R(u), D(u)〉(3.24)

= 〈R(u), R(u)− ρTu + ρTw〉
≥ ‖R(u)‖2 − ρ〈R(u), Tu− Tw〉
≥ (1− σ)‖R(u)‖2, using (3.15),(3.25)

the required result. �
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Lemma 3.4.Let ū ∈ H be a solution of (2.1) and letun+1 be the approximate solution obtained
from Algorithm 3.4. Then

(3.26) ‖g(un+1)− g(ū)‖2 ≤ ‖g(un)− g(ū)‖2 − (1− σ)2‖R(u)‖4

‖d(un)||2
.

Proof. From (3.16), (3.20) and (3.24), we have

‖g(un+1)− g(ū)‖2 ≤ ‖g(un)− g(ū)− αnd(un)‖2

≤ ‖g(un)− g(ū)‖2 − 2αn〈g(u)− g(ū), d(un)〉
+ α2

n‖d(un)‖2

≤ ‖g(un)− g(ū)‖2 − αn〈R(un), D(un)〉
≤ ‖g(un)− g(ū)‖2 − αn(1− σ)‖R(un)‖2

≤ ‖g(un)− g(ū)‖2 − (1− σ)2‖R(un)‖4

‖d(un)‖2
,

the required result. �

Theorem 3.5. Let g : H −→ H be invertible and letH be a finite dimensional space. Ifun+1

is the approximate solution obtained from Algorithm 3.4 andū ∈ H is a solution of (2.1), then
limn→∞ un = ū.

Proof. Let ū ∈ H be a solution of (2.1). From (3.25), it follows that the sequence{||g(ū) −
g(un)||} is nonincreasing and consequently{un} is bounded. Furthermore, we have

∞∑
n=0

(1− σ)2‖R(un)‖4

‖d(un)‖2
≤ ||g(u0)− g(ū)||2,

which implies that

(3.27) lim
n→∞

R(un) = 0.

Let û be the cluster point of{un} and the subsequence{unj
} of the sequence{un} converge to

û ∈ H. SinceR(u) is continuous, so

R(û) = lim
j→∞

R(unj
) = 0,

which implies that̂u solves the general mixed variational inequality (2.1) by invoking Lemma
3.1. From (3.26), it follows that

‖g(un+1)− g(ū)‖2 ≤ ‖g(un)− g(ū)‖2.

Thus it follows from the above inequality that the sequence{un} has exactly one cluster point
û and

lim
n→∞

g(un) = g(û).

Sinceg is invertible, then

lim
n→∞

(un) = û,

the required result. �
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