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ABSTRACT. Characterization of quasiconvexity and pseudoconvexity of lower semicontinuous
functions on Banach spaces are presented in terms of abstract subdifferentials relying on a Mean
Value Theorem. We give some properties of the normal cone to the lower level set off . We
also obtain necessary and sufficient optimality conditions in quasiconvex and pseudoconvex pro-
gramming via variational inequalities.
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1. I NTRODUCTION

It is natural in convex analysis to search for characterizations of generalized convex functions
in terms of some kind of generalized derivatives or subdifferentials. Several contributions to this
question has been made recently. The reader may consult for example [3, 5, 11, 13, 16, 20] for
quasiconvex functions and [2, 8, 21, 23, 25] for pseudoconvex functions.

In this paper, we shall define an abstract subdifferential as in [1, 23] which allows us to extend
some results in [1, 2, 8, 23] and to give some properties of the normal cone to lower level sets
of a given functionf .

Notice that the condition0 ∈ ∂f(x̄) for x̄ ∈ X, is known to be a necessary but not a sufficient
optimality condition in quasiconvex programming for some subdifferentials. We give, using
some variational inequalities, a necessary and sufficient condition for a point to be either a local
or a global minimum.
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2 A. HASSOUNI AND A. JADDAR

After the introduction of some notations and definitions in Section 2, we present in Section 3
some properties of the abstract subdifferential and normal cone to lower level sets of quasicon-
vex and pseudoconvex functions. Then, in Section 4, we give some optimality conditions in-
volving variational inequalities. This should extend our previous results stated for quasiconvex
lower semicontinuous functions on Banach spaces with the Clarke-Rockafellar subdifferential
in [13].

2. PRELIMINARIES

Let X be a real Banach space,X∗ its dual and〈·, ·〉 the duality pairing betweenX∗ andX.
The segment[a, b] is the set{a+t(b−a); t ∈ [0, 1]}while [a, b[ is the set[a, b]\{b}. The open
ball with centerx and radiusr in X is denoted byB(x, r), and the polar cone of a nonempty
subsetA of X is

A◦ = {x∗ ∈ X∗; 〈x∗, a〉 ≤ 0, ∀a ∈ A}.
For an extended real valued functionf : X 7→ R ∪ {+∞}, the effective domain is defined by

dom(f) = {x ∈ X; f(x) < ∞}.

We write l.s.c. for lower semicontinuous, andxn→fx whenxn → x andf(xn) → f(x).
The abstract subdifferential we consider here is defined as follows:

Definition 2.1. An operator∂ that associates to any l.s.c. functionf : X 7→ R ∪ {+∞} and a
pointx ∈ X a subset∂f(x) of X∗ is a subdifferential if the following assertions hold:

(P1) ∂f(x) = {x∗ ∈ X∗; f(y) ≥ f(x) + 〈x∗, y − x〉 ∀y ∈ X } whenf is convex.
(P2) If x ∈ dom f is a local minimum off , then0 ∈ ∂f(x).
(P3) ∂f(x) = ∂g(x), for anyg : X 7→ R ∪ {+∞} such thatf − g is constant in a neighbor-

hood ofx.
(P4) ∂f(x) = ∅, for anyx ∈ X such thatf(x) = +∞.

It is well known that the Clarke-Rockafellar subdifferential∂CRf satisfies Zagrodny’s Mean
value theorem [27]. In order to extend this theorem to our subdifferential, we shall deal with a
particular space associated with∂ called∂-reliable.

Definition 2.2. [23]. A Banach spaceX is ∂-reliable if for each l.s.c. functionf : X 7→
R ∪ {+∞}, for any Lipschitz convex functiong and anyx ∈ dom f such thatf + g achieves
its minimum inX and eachε > 0 we have:

0 ∈ ∂f(u) + ∂g(v) + εB∗
1(0),

for someu, v ∈ Bε(x) such that|f(u)− f(v)| < ε.

In the case of the Clarke-Rockafellar subdifferential∂CR [26] or Iofee subdifferential∂I [7],
any Banach space is∂-reliable.

In the sequel, we will restrict ourselves to subdifferentials that are included in the dag subd-
ifferential

∂†f(x) = {x∗ ∈ X∗; 〈x∗, v〉 ≤ f †(x, v) ∀v ∈ X},
where

f †(x, v) = lim sup
(t,y)→(0+,x)

t−1(f(y + t(v + x− y)− f(y)).

This subdifferential was introduced by Penot (see [22]), it is large enough to contain the Clarke-
Rockafellar∂CR and Upper Dini∂D+ subdifferentials and still has good properties.

Our results rely on the following mean value theorem.
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GENERALIZED MONOTONEMULTIFUNCTIONS 3

Theorem 2.1. [23]. Let X be a∂-reliable space andf : X 7→ R ∪ {+∞} a l.s.c. function.
For anya ∈ dom f , b ∈ X \ {a}, β ≤ b, there exists a sequencecn in X converging to some
c ∈ [a, b) and a sequencec∗n ∈ ∂f(cn) such that for anyb′ = c + t(b− a), with t > 0 we have:

i) lim infn〈c∗n, b− a〉 ≥ β − f(a),
ii) lim infn〈c∗n, c− cn〉 ≥ 0,

iii) lim infn

〈
c∗n,

||b−a||
||b′−c||(b

′ − cn)
〉
≥ β − f(a).

Following the methods of [1, 16, 20], we get a similar lemma for our abstract subdifferential,
which is immediate by Theorem 2.1.

Lemma 2.2. Let X be a Banach∂-reliable space,f a l.s.c. function. Leta, b ∈ X with
f(a) < f(b) then there existsc ∈ [a, b[ and two sequencescn → c, c∗n ∈ ∂f(cn) with

〈c∗n, x− cn〉 > 0,

for anyx = c + t(b− a) with t > 0.

Proof. Let a, b ∈ X with f(a) < f(b), then we can find by Theorem 2.1,c ∈ [a, b[ and two
sequencescn → c, c∗n ∈ ∂f(cn) with

lim inf
n

〈c∗n, c− cn〉 ≥ 0,

and
lim inf

n
〈c∗n, b− a〉 ≥ f(b)− f(a) > 0.

Forx = c + t(b− a) with t > 0, we have

〈c∗n, x− cn〉 = 〈c∗n, c− cn〉+ t〈c∗n, b− a〉.
It follows that

lim inf
n

〈c∗n, x− cn〉 > 0.

Hence, forn large enough, we have that

〈c∗n, x− cn〉 > 0.

�

3. GENERALIZED CONVEX FUNCTIONS AND GENERALIZED M ONOTONE

M ULTIFUNCTIONS

3.1. Quasiconvex Functions and Quasimonotone Multifunctions.We recall the character-
ization of quasiconvex functions of [22, 23]. It will allow us to extend and generalize some
properties of the normal cone to the lower level set given in [12, 13] to a more general setting.

Indeed, forf : X 7→ R ∪ {+∞} a l.s.c. function,f is said to be quasiconvex if for every
x, y ∈ X andλ ∈ [0, 1] one has

f(λx + (1− λ)y) ≤ max{f(x), f(y)}.
And denoting by

Sf (λ) = {x ∈ X; f(x) ≤ λ }.
Quasiconvexity is geometrically equivalent to the fact thatSf (λ) is a convex set for allλ ∈ R.

In the above one could use the strict level sets as well.
Recall that a multifunctionA : X → X∗ is said to be quasimonotone if for every pair of

distinct pointsx, y ∈ X:

∃x∗ ∈ A(x), such that 〈x∗, y − x〉 > 0 then, ∀y∗ ∈ A(y), 〈y∗, y − x〉 ≥ 0.
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4 A. HASSOUNI AND A. JADDAR

Theorem 3.1. [22, 23] Let X be a Banach space andf : X 7→ R ∪ {+∞} a l.s.c. function.
And consider the following assertions

i) f is quasiconvex.
ii) ∂f is quasimonotone.

Theni) impliesii) if ∂f ⊂ ∂†f . Andii) impliesi) if X is ∂-reliable.

Forx0 ∈ X, set

L(x0) = {x ∈ X; f(x) = f(x0)}.
Then we have

Proposition 3.2. LetX be a Banach∂-reliable space, andf a l.s.c. quasiconvex function such
that∂f ⊂ ∂†f . If for x0 ∈ X there existsr > 0 with

0 6∈ ∂f(x), for all x ∈ B(x0, r) ∩ L(x0),

then we have

[∂f(x0)]
◦◦ ⊂ N(Sf (f(x0)); x0),

whereN(Sf (f(x0)); x0) is the normal cone to the lower level setSf (f(x0)) at the pointx0.

Proof. Suppose by contradiction that there existsv such that

v ∈ [∂f(x0)]
◦◦ and v 6∈ N(Sf (f(x0)); x0).

We can check that

Cl(R+co(∂f(x0))) = [∂f(x0)]
◦◦.

So, we can suppose without loss of generality thatv = x∗0 ∈ ∂f(x0). Then, we can find some
x1 ∈ Sf (x0) such that

(3.1) 〈x∗0, x1 − x0〉 > 0.

We claim thatf(x0) = f(x1). Otherwise by Lemma 2.2, there existsc ∈ [x1, x0[ and two
sequencescn→fc andc∗n ∈ ∂f(cn) with

〈c∗n, x0 − cn〉 > 0.

By using the quasimonotonicity of∂f we have:

〈x∗0, x0 − cn〉 ≥ 0.

Then, lettingn → +∞ we get

〈x∗0, x0 − c〉 ≥ 0.

It follows that

〈x∗0, x0 − x1〉 ≥ 0.

A contradiction with (3.1), thusf(x0) = f(x1).
Now, set Vx1 = {x ∈ X : 〈x∗0, x− x0〉 > 0}.
Vx1 is an open neighborhood ofx1 and using the same argument as above we can check that

x1 is a minimum off onVx1, and that

xλ = x0 + λ(x1 − x0) ∈ Vx1 andf(xλ) = f(x0) for anyλ ∈]0, 1[.

Then there existsr > 0 andλ̄ ∈]0, 1[ such thatxλ̄ is a global minimum off onB(x0, r)∩ Vx1.
Therefore0 ∈ ∂f(xλ̄), which is impossible. �
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GENERALIZED MONOTONEMULTIFUNCTIONS 5

The former proposition extends some already known results for differentiable functions (see
for instance [5]). If we denote byT (Sf (f(x); x), the tangent cone of the lower level convex set
Sf (f(x)) at the pointx ∈ X, then

T (Sf (f(x)); x) = [N(Sf (f(x)); x)]◦.

A sufficient condition that allows us to obtain the equality in Proposition 3.2 is stated in the
following proposition

Proposition 3.3. Under the hypothesis of Proposition 3.2 and if

[∂f(x)]◦ ⊂ T (Sf (f(x)); x).

Then we have

N(Sf (f(x)); x) = [∂f(x)]◦◦.

Proof. By the bipolar theorem [4] one has

[∂f(x)]◦◦ ⊃ N(Sf (f(x)); x).

And from Proposition 3.2, the equality immediately holds. �

The following condition

N(Sf (f(x)); x) = [∂f(x)]◦◦,

is in fact a certain kind of regularity condition, which holds only for a subclass of quasiconvex
functions. Another abstract aproach was developed in [15] based on Crouzeix’s representation
theorem [6] who obtained a similar equality for his quasi-subdifferential.

Consider the multifunctionΓ from X to X∗ defined by

Γ(x) = N(Sf (f(x)); x), for x ∈ X.

Then by using Proposition 3.3, we obtain

Proposition 3.4. Let X be a Banach∂-reliable space,f a l.s.c. quasiconvex function. If for
anyx ∈ X, ∂f(x) is nonempty such that

(∂f(x))◦ ⊂ T (Sf (f(x)); x).

Then, the multifunctionΓ is quasimonotone.

Proof. Sincef is quasiconvex, by Theorem 3.1∂f is quasimonotone. Using Proposition 2.8
of [12], it follows easily that the multifunctionx 7→ [∂f(x)]◦◦ is quasimonotone. Then by
Proposition 3.3,Γ is also quasimonotone.

It follows thatΓ is quasimonotone. �

A particular case of this proposition when∂ coincides with the Clarke-Rockafellar subdiffer-
ential∂CR, was treated in [13], whose exact statement is the following.

Proposition 3.5. LetX be a Banach space,f a l.s.c. function fromX to R ∪ {+∞} such that
∂CRf(x) is nonempty and0 6∈ ∂CRf(x) for all x ∈ X.

If f is quasiconvex then the multifunctionΓ is quasimonotone.
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6 A. HASSOUNI AND A. JADDAR

3.2. Pseudoconvexity and Subdifferential Properties.The original definition of pseudocon-
vexity was introduced by Mangazarian in [21] for differentiable functions. This concept was
exended later by many authors (see for instance [17, 22, 24]) for arbitrary functions. We will
here use the following form:

A functionf is said to be pseudoconvex for the subdifferential∂ if for any x, y ∈ X:

∃x∗ ∈ ∂f(x) : 〈x∗, y − x〉 ≥ 0 =⇒ f(x) ≤ f(y).

A multifunction A : X → X∗ is said to be pseudomonotone if for every pair of distinct points
x, y ∈ X

∃x∗ ∈ A(x) : 〈x∗, y − x〉 > 0 then, ∀y∗ ∈ A(y), 〈y∗, y − x〉 > 0.

As in the differentiable case, every pseudoconvex function satisfies the fundamental properties:

• every local minimum off is global.
• 0 ∈ ∂f(x) implies thatx is a global minimum off .

Another interesting property extending a result of [8] where it was stated for the Clarke-
Rockafellar subdifferential is the following.

Proposition 3.6. Let X be a Banach∂-reliable andf : X 7→ R ∪ {+∞} be a l.s.c. function
and pseudoconvex function such that∂f ⊂ ∂†f , letx, y ∈ X. Then the existence ofx∗ ∈ ∂f(x)
verifying〈x∗, y − x〉 > 0 impliesf(x) < f(y).

Proof. Let x, y ∈ X such that〈x∗, y − x〉 > 0 for somex∗ ∈ ∂f(x), then there existsε > 0
such that

〈x∗, y′ − x〉 > 0, ∀y′ ∈ B(y, ε).

By the pseudoconvexity off , we havef(y′) ≥ f(x).
In particular,f(y) ≥ f(x). If we suppose by contradiction thatf(y) = f(x), theny must be

a global minimum. On the other hand, sincef †(x, y − x) > 0 then, there exist two sequences
xn → x, tn → 0+ such that

tn
−1

[
f(xn + tn(y − xn)− f(xn))

]
> 0.

By the quasiconvexity of the functionf (see for instance the proof of Proposition 2.2 in [8]),
we getf(y) > f(xn) which is impossible. �

We use this proposition to prove a known result for the Clarke-Rockafellar subdifferential for
bigger subdifferentials

Theorem 3.7.LetX be a∂-reliable space andf : X 7→ R ∪ {+∞} a l.s.c. function such that
∂f ⊂ ∂†f . And consider the following assertions

i) f is pseudoconvex.
ii) ∂f is pseudomonotone.

Then,i) impliesii) . Andii) impliesi) if f is radially continuous.

Proof. The implicationii) =⇒ i) is in [23]. For i) =⇒ ii) , suppose by contradiction that there
existx, y ∈ X, such that there existx∗ ∈ ∂f(x) andy∗ ∈ ∂f(y) verifying

〈x∗, y − x〉 > 0 and 〈y∗, y − x〉 ≤ 0.

Then, from Proposition 3.5 and the pseudoconvexity off we have

f(x) < f(y) and f(y) ≤ f(x).

A contradiction. �

Now, we state a similar result to Proposition 3.2 for pseudoconvex functions.
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GENERALIZED MONOTONEMULTIFUNCTIONS 7

Proposition 3.8. LetX be a Banach∂-reliable space with∂ ⊂ ∂†, f a l.s.c. and pseudoconvex
function fromX to R ∪ {+∞}. Then we have

[∂f(x)]◦◦ ⊂ N(Sf (f(x)); x).

Proof. Let x∗ ∈ ∂f(x) and suppose by contradiction thatx∗ 6∈ N(Sf (f(x)); x). Then, there
existsy ∈ Sf (f(x)) such that〈x∗, y − x〉 > 0 for somex∗ ∈ ∂f(x). It follows then by
Proposition 3.6 thatf(y) > f(x), which is impossible. �

4. OPTIMALITY CONDITIONS AND VARIATIONAL I NEQUALITIES

4.1. Quasiconvex Programming.We recall the Minty variational inequality (we use the ter-
minology of Giannessi [9]) that we shall use for our subdifferential. It will be exploited to give
some conditions of optimality in nonlinear programming and necessary and sufficient condi-
tions for optimality in quasiconvex programming.

Let Γ be a multifunction fromX to X∗, S ⊂ X andx̄ ∈ S.
A point x̄ is a Minty equilibrium ofΓ if the following variational inequality holds

(D) ∀x ∈ S, 〈γ(x), x− x̄〉 ≥ 0, ∀γ(x) ∈ Γ(x).

Suppose thatf is a l.s.c. function fromX to R∪{+∞} and consider the following minimisation
problem

(4.1) minimizef(x), subject tox ∈ C.

Then we have

Proposition 4.1. Let X be a Banach∂-reliable space. If̄x is a Minty equilibrium point of∂f ,
then we have

i) If S = X, thenx̄ is a global minimum off .
ii) If S = N , whereN is a convex open neighborhood ofx̄ thenx̄ is a local minimum off .

Proof. It is enough to prove (ii). Suppose by contradiction thatx̄ is not a solution of the program
(4.1), then there existsx ∈ S such thatf(x) < f(x̄). By Lemma 2.2, there existsc ∈ [x, x̄[ and
two sequencescn →f c, c∗n ∈ ∂f(cn) with

〈c∗n, d− cn〉 > 0,

for anyd = c + t(x̄− x) wheret > 0.
SinceS is a convex open neighborhood ofx̄ then[x, x̄] ⊂ S. Furthermore, forn large enough

cn ∈ S.
In the particular case whered = x̄, we have:

〈c∗n, x̄− cn〉 > 0.

A contradiction with the variational inequality (D), thusx̄ is a local minimum off . �

This proposition extends Theorem 2.2 of [18] for nondifferentiable optimization problems.
If in the problem (4.1), the functionf to be minimized is l.s.c. and quasiconvex, then we

have

Theorem 4.2. Let X be a Banach∂-reliable, andf be a l.s.c. and quasiconvex function such
that ∂f ⊂ ∂†f , and x̄ ∈ S. If S = N , whereN is an open and convex neighborhood ofx̄ or
S = X, then the following assertions are equivalent

i) x̄ is an optimal solution of (4.1).
ii) x̄ is a Minty equilibrium point of∂f .
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8 A. HASSOUNI AND A. JADDAR

Proof. ii) =⇒i) is obtained from Proposition 4.1. Let us show that
i) =⇒ ii) . Assume that̄x is a strict minimum of (4.1), then for allx ∈ S such thatx 6= x̄ we
havef(x) > f(x̄).

According to Lemma 2.2, there existc ∈ [x̄, x[, cn →f c andc∗n ∈ ∂f(cn) such that

〈c∗n, d− cn〉 > 0,

for all d = c + t(x− x̄) wheret > 0.
Whend = x, we obtain that

〈c∗n, x− cn〉 > 0.

f being quasiconvex, by Theorem 2.1,∂f is quasimonotone. It follows then that

for all x∗ ∈ ∂f(x), 〈x∗, x− x̄〉 ≥ 0.

Hence,∂f satisfies the variational inequality (D).
Suppose that we are in the case wherex̄ is not a strict minimum of (4.1) and let us consider

the functionfx̄ defined by
fx̄(x) = max{f(x), f(x̄)},

and defineh by

(4.2) h(x) =

{
fx̄(x) for x 6= x̄

ν for x = x̄

whereν < f(x̄). We see easily thath is l.s.c. and quasiconvex and thatx̄ is a strict local
minimum ofh. Then, we have

∀x 6= x̄ 〈x∗, x− x̄〉 ≥ 0, ∀x∗ ∈ ∂h(x).

From(P3), we get∂f(x) = ∂h(x). �

In the case when0 is in the interior of∂f(x̄), i.e. 0 ∈ int(∂f(x̄)), we have the more precise
result

Proposition 4.3. LetX be a∂-reliable space andf : X 7→ R∪{+∞} a l.s.c. and quasiconvex
function. If0 ∈ int(∂f(x̄)) thenx̄ is a Minty equilibrium point of∂f . Moreoverx̄ is a global
minimum off .

Proof. Assume that0 ∈ int(∂f(x)) then

there existsε > 0 such thatBX∗(0, ε) ⊂ ∂f(x),

where
BX∗(0, ε) = {x∗ ∈ X∗ : ‖x∗‖ < ε}.

Let d ∈ X such thatd 6= 0 and consider the linear mapping`d defined by

`d(x
∗) = 〈x∗, d〉, for x∗ ∈ X∗.

By the open mapping Theorem [4] one has

〈BX∗(0, ε), d〉 ⊂ 〈∂f(x), d〉.
Sincef is quasiconvex, then∂f is quasimonotone.

We already know by Definition 2.1 of [12] that the multifunction∂fx,d defined by

∂fx,d(λ) = 〈∂f(x + λd), d〉,
is quasimonotone, and we can see easily that

〈λd, ∂f(x + λd)〉 ⊂ R+,

for all λ ∈ R andd ∈ X \ {0}, thus (D) holds for∂f . �
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GENERALIZED MONOTONEMULTIFUNCTIONS 9

4.2. Pseudoconvex Programming.For the pseudoconvex functionf , we shall get necessary
and sufficient conditions for a point̄x to be a global extremum off over a convex setC.

First consider the problem (4.1), withf is pseudoconvex, l.s.c. and radially continuous, then
we have

Theorem 4.4. Let X be a Banach space∂-reliable, andf a pseudoconvex l.s.c. such that
∂f ⊂ ∂†f , and letx̄ ∈ C. Then the following assertions are equivalent

i) x̄ is an optimal solution of (4.1).
ii) (D) holds.

Proof. Suppose that̄x is a solution of (4.1), then by Proposition 3.6, iff(x̄) ≤ f(x), then we
must have

∀x∗ ∈ ∂f(x), 〈x∗, x̄− x〉 ≤ 0.

This means that the variational inequality(D) holds.
Converesly, letx ∈ C such thatx 6= x̄ then for somey ∈ (x̄, x), we have

∀y∗ ∈ ∂f(y), 〈y∗, x̄− y〉 ≤ 0.

It follows that
∀y∗ ∈ ∂f(y), 〈y∗, x− y〉 ≤ 0.

Since∂f(y) is nonempty and from the pseudoconvexity off we have

f(y) ≤ f(x), ∀y ∈ (x̄, x).

But sincef is s.c.i., thenf(x̄) ≤ f(x). �

We now proceed to the maximisation problem

(4.3) maximizef(x), subject tox ∈ C.

For z ∈ C, we denote by
Cz = {x ∈ C; f(x) = f(z)}.

Then we have

Theorem 4.5.LetX be a∂-reliable space andf a pseudoconvex, l.s.c. and radially continuous
such that for anyx in C, ∂f(x) is nonempty and∂f(x) ⊂ ∂†f(x). Let x̄ ∈ C such that

−∞ ≤ inf
C

f < f(x̄).

Thenx̄ is a maximum off onC if and only if

for all x ∈ Cx̄, ∂f(x) ⊂ N(C, x).

Proof. Suppose that
f(y) ≤ f(x̄); ∀y ∈ C.

By Proposition 3.6 we have:

for all x ∈ Cx̄, ∂f(x) ⊂ N(C, x).

Conversely, by contradiction assume that there existsz̄ ∈ C such that

f(z̄) > f(x̄).

Since by hypothesis, we can find somez ∈ C with f(z) < f(x̄).
By the radial continuity off , there exists somex0 ∈ (z, z̄) such that

f(x0) = f(x̄).

It follows then that
for all x∗0 ∈ ∂f(x0), 〈x∗0, z − x0〉 = 0.
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Sincef is pseudoconvex then,f(x0) ≤ f(z), a contradiction. �
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