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ABSTRACT. Over the last couple of decades, significant progress for the spectral variation of a
matrix has been made in partially extending the classical Weyl and Lidskii theory [11, 7] to nor-
mal matrices and even to diagonalizable matrices for example. Recently these theories have been
established for relative perturbations. In this paper, we shall establish relative perturbation theo-
rems for generalized normal matrix. Some well-known perturbation theorems for normal matrix
are extended. As applying, some perturbation theorems for positive definite matrix (possibly
non-Hermitian) are established.

Key words and phrases:Spectral variation; Unitarily invariant norm; Hadamard product; Relative perturbation theorem.

2000Mathematics Subject Classification.15A18, 15A42, 65F15.

1. I NTRODUCTION

The set of allλ ∈ C that are eigenvalues ofA ∈ Mn(C) is called the spectrum ofA and is
denoted byσ(A). The spectral radius ofA is the nonnegative real numberρ(A) = max{|λ| :
λ ∈ σ(A)}. We shall use‖|·|‖ to denote a unitarily invariant norm (see [5, 9, 13, 3, 20, 21]).
‖X‖2, the largest singular value ofX, is a frequently used unitarily invariant norm. LetX◦Y =
(xijyij) be the Hadamard product ofX = (xij) andY = (yij). A matrix A ∈ Mn(C) is said to
be a generalized normal matrix with respect toH (It is called “generalized normal matrix” for
short) orH+-normal if there exists a positive definite Hermitian matrixH such thatA∗HA =
AHA∗, where “*” denotes the conjugate transpose. The definition was given first by [19, 18].
A generalized normal matrix is a very important kind of matrix which contains two subclasses
of important matrices: normal matrices and positive definite matrices (possibly non-Hermitian),
where a matrixA is called normal ifA∗A = AA∗ and positive definite ifRe(x∗Ax) > 0 for any
non-zerox ∈ Cn (see [5, 6]). In recent years, the geometric significance, sixty-two equivalent
conditions and many properties have been established for generalized normal matrices in [19,
17, 18]. We have
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2 SHILIN ZHAN

Lemma 1.1(see [19]). SupposeA ∈ Mn(C). Then

(1) A is a generalized normal matrix with respect toH if and only ifH1/2AH1/2 is normal.
(2) A is a generalized normal matrix with respect toH if and only if there exists a nonsin-

gular matrixP such thatH = (PP ∗)−1 and

(1.1) A = PΛP ∗,

whereΛ = diag(λ1, λ2, . . . , λn). Furthermore,λ1, λ2, . . . , λn aren eigenvalues ofHA.

Remark 1.2. (1.1) is equivalent toHA = P−∗ΛP ∗ with P−∗ = (P−1)∗, so we say thatA
has generalized eigen-decomposition (1.1), andλ1, λ2, . . . , λn are the generalized eigenvalues
of matrixA.

The spectral variation of a matrix has recently been a very active research subject in both
matrix theory and numerical linear algebra. Over the last couple of decades significant progress
has been made in partially extending the classical Weyl and Lidskii theory [11, 16] to normal
matrices and even to diagonalizable matrices for example. This note will show how certain
perturbation problems can be reformulated as simple matrix optimization problems involving
Hadamard products. WhenA andÃ are normal, we have shown one of many perturbation theo-
rems that can be interpreted as bounding the norms ofQ◦Z whereQ is unitary andZ is a special
matrix defined by the eigenalues (see [10]). In this paper, we shall extend the above result, and
shall show how certain perturbation problems can be reformulated as generalized normal matrix
optimization problems involving Hadamard products. Also, we study how generalized eigen-
values of a generalized normal matrixA change when it is perturbed tõA = D∗AD, where
D is a nonsingular matrix. As applications, some perturbation theorems for positive definite
matrices (possibly non-Hermitian) are established.

2. M AIN RESULT

Suppose thatA andÃ are generalized normal matrices with respect to a common positive
definite matrixH, and have generalized eigen-decompositions

(2.1) A = PΛP ∗ and Ã = P̃ Λ̃P̃ ∗,

where

(2.2) Λ = diag(λ1, λ2, . . . , λn) and Λ̃ = diag(λ̃1, λ̃2, . . . , λ̃n)

andλi are the generalized eigenvalues ofA, andλ̃i are the generalized eigenvalues ofÃ (i =
1, 2, . . . , n).

NoticeH = (PP ∗)−1 andH = (P̃ P̃ ∗)−1, so (P−1P̃ )∗(P−1P̃ ) = P̃ ∗HP̃ = I, thenQ =
P−1P̃ is unitary and

(2.3) P̃ = PQ

Define

(2.4) Z1 =
(
λi − λ̃j

)n

i,j=1
.

We have the following result.

Theorem 2.1. SupposeA and Ã are H+-normal with generalized eigen-decomposition (2.1),
Then

(2.5) ρ(H)−1 ‖|Q ◦ Z1|‖ ≤
∥∥∥∣∣∣A− Ã

∣∣∣∥∥∥ ≤ ρ(H−1) ‖|Q ◦ Z1|‖ ,

whereQ = P−1P̃ is unitary andZ1 is defined in Eq.(2.4).
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Proof. For A and Ã having generalized eigen-decomposition (2.1), noticing thatP̃ = PQ,
whereQ = P−1P̃ is unitary,‖|WY |‖ ≤ ‖W‖2 ‖|Y |‖ and‖|Y Z|‖ ≤ ‖|Y |‖ ‖Z‖2 (see [9, p.
961]), we have ∥∥∥∣∣∣PΛP ∗ − PQΛ̃Q∗P ∗

∣∣∣∥∥∥ ≤ ‖P‖2

∥∥∥∣∣∣Λ−QΛ̃Q∗
∣∣∣∥∥∥ ‖P ∗‖2 ,

then ∥∥∥∣∣∣A− Ã
∣∣∣∥∥∥ ≤

∥∥H−1
∥∥

2

∥∥∥∣∣∣Λ−QΛ̃Q∗
∣∣∣∥∥∥ .

Since ∥∥∥∣∣∣Λ−QΛ̃Q∗
∣∣∣∥∥∥ =

∥∥∥∣∣∣ΛQ−QΛ̃
∣∣∣∥∥∥ = ‖|Q ◦ Z1|‖

and‖H−1‖2 = ρ(H−1),

(2.6)
∥∥∥∣∣∣A− Ã

∣∣∣∥∥∥ ≤ ρ(H−1) ‖|Q ◦ Z1|‖ .

On the other hand, we have∥∥P−1
∥∥

2

∥∥∥∣∣∣PΛP ∗ − PQΛ̃Q∗P ∗
∣∣∣∥∥∥ ∥∥P−∗∥∥

2
≥

∥∥∥∣∣∣Λ−QΛ̃Q∗
∣∣∣∥∥∥

= ‖|Q ◦ Z1|‖ .

Similarly for H = (PP ∗)−1 and‖P−1‖2 = ‖P−∗‖2 =
√

ρ(H), we obtain

ρ(H)
∥∥∥∣∣∣A− Ã

∣∣∣∥∥∥ ≥ ‖|Q ◦ Z1|‖ ,

hence

(2.7)
∥∥∥∣∣∣A− Ã

∣∣∣∥∥∥ ≥ ρ(H)−1 ‖|Q ◦ Z1|‖ .

The inequality (2.5) completes the proof by inequalities (2.6) and (2.7). �

In particular, ifH = I is the identity matrix, thenH+-normal matricesA andÃ are normal
matrices, henceA andÃ have eigen-decomposition

(2.8) A = UΛU∗ and Ã = Ũ Λ̃Ũ∗,

whereU andŨ are unitary, and

Λ = diag(λ1, λ2, . . . , λn), Λ̃ = diag(λ̃1, λ̃2, . . . , λ̃n).

By Theorem 2.1, we have

Corollary 2.2 (see [10]). If A andÃ are normal matrices, then

(2.9)
∥∥∥∣∣∣A− Ã

∣∣∣∥∥∥ = ‖|Q ◦ Z1|‖ ,

whereQ = U∗Ũ andZ1 =
(
λi − λ̃j

)n

i,j=1
.

We denote the Cartesian decompositionX = H(X) + K(X), whereH(X) = 1
2
(X + X∗),

andK(X) = 1
2
(X − X∗). Let σ (H (A)) = {h1, h2, . . . , hn} be ordered so thath1 ≥ h2 ≥

· · · ≥ hn. Then we have some perturbation theorems for positie definite matrices which are
discussed as follows.

Corollary 2.3. If A = H(A) + K(A) and Ã = H(Ã) + K(Ã) are positive definite with
generalized eigen-decomposition (2.1), andQ = P−1P̃ is unitary, then

(2.10) hn ‖|Q ◦ Z1|‖ ≤
∥∥∥∣∣∣A− Ã

∣∣∣∥∥∥ ≤ h1 ‖|Q ◦ Z1|‖ ,

whereZ1 is defined in Eq.(2.4).
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Proof. SinceQ = P−1P̃ is unitary,H(A) = H(Ã). It is easy to see that

A∗H(A)−1A = AH(A)−1A∗

and
Ã∗H(Ã)−1Ã = ÃH(Ã)−1Ã∗.

So A and Ã are generalized normal matrices with respect toH(A)−1. It is easy to see that
ρ(H(A)−1)−1 = hn, ρ(H(A)) = h1. Applying Theorem 2.1, inequality (2.10) completes the
proof. �

Let B, C ∈ Mn(C). Then [B, C] = BC − CB is called a commutator and[B, C]H =
BHC − CHB is called a commutator with respect toH. The matricesB andC are said to
commute with respect toH iff [B, C]H = 0. ‖X‖F is the Frobenius norm.

Corollary 2.4. Let A and Ã beH+-normal matrices. IfA and Ã commute with respect toH,
then

(2.11) ρ(H)−1 ‖|I ◦ Z1|‖ ≤
∥∥∥∣∣∣A− Ã

∣∣∣∥∥∥ ≤ ρ(H−1) ‖|I ◦ Z1|‖ ,

whereI is the identity matrix, andZ1 is defined in Eq.(2.4).

Proof. [A, Ã]H = 0 if and only if there exists a nonsingular matrixP , such thatA = PΛP ∗ and
Ã = P Λ̃P ∗, whereQ = P−1P = I (see [17, Theorem 3] and Theorem 2.1). SoQ is taken as
the identity matrixI in Theorem 2.1, hence Eq. (2.11) holds. �

Applying Corollary 2.3 and Corollary 2.4, we have

Corollary 2.5. Let the hypotheses of Corollary 2.3 hold. Moreover if matricesA and Ã com-
mute with respect toH(A)−1, then

(2.12) hn ‖|I ◦ Z1|‖ ≤
∥∥∥∣∣∣A− Ã

∣∣∣∥∥∥ ≤ h1 ‖|I ◦ Z1|‖ ,

whereh1 = max1≤i≤n λi(H(A)), hn = min1≤i≤n λi(H(A)) andZ1 is defined in Eq.(2.4).

In the following, we shall study how generalized eigenvalues of a generalized normal matrix
A change when it is perturbed tõA = D∗AD, whereD is a nonsingular matrix. Thep−relative
distance betweenα, α̃ ∈ C is defined as

(2.13) %p (α, α̃) =
|α− α̃|

p
√
|α|p + |α̃|p

for 1 ≤ p ≤ ∞.

Theorem 2.6. SupposeA and Ã are H+-normal matrices and̃A = D∗AD, whereD is non-
singular. LetA andÃ have generalized eigen-decomposition (2.1). Then there is a permutation
τ of {1, 2, . . . , n} such that

(2.14)
n∑

i=1

[%2(λi, λ̃τ(i))]
2 ≤ c(‖I −D‖2

F +
∥∥D−∗ − I

∥∥2

F
)

wherec = max1≤i≤n λi(H)/ min1≤i≤n λi(H).

Proof. Notice that

A− Ã = A−D∗AD = A(I −D) + (D−∗ − I)Ã.

Pre- and postmultiply the equations byP−1andP̃−∗ respectively, to get

(2.15) ΛP ∗P̃−∗ − P−1P̃ Λ̃ = ΛP ∗(I −D)P̃−∗ + P−1(D−∗ − I)P̃ Λ̃.
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SetQ = P−1P̃ = (qij), thenQ is unitary andQ = P ∗P̃−∗. Let

(2.16) E = P ∗(I −D)P̃−∗ = (eij), Ẽ = P−1(D−∗ − I)P̃ = (ẽij).

Then (2.15) implies thatΛQ−QΛ̃ = ΛE+ẼΛ̃ or componentwiseλiqij−qijλ̃j = λieij + ẽijλ̃j,
so ∣∣∣(λi − λ̃j)qij

∣∣∣2 =
∣∣∣λieij + ẽijλ̃j

∣∣∣2 ≤ (|λi|2 +
∣∣∣λ̃j

∣∣∣2)(|eij|2 + |ẽij|2),

which yields[%2(λi, λ̃j)]
2 |qij|2 ≤ |eij|2 + |ẽij|2 . Hence

n∑
i,j=1

[%2(λi, λ̃j)]
2 |qij|2

≤
∥∥∥P ∗(I −D)P̃−∗

∥∥∥2

F
+

∥∥∥P−1(D−∗ − I)P̃
∥∥∥2

F

≤ ‖P ∗‖2
2 ‖I −D‖2

F

∥∥∥P̃−∗
∥∥∥2

2
+

∥∥P−1
∥∥2

2

∥∥D−∗ − I
∥∥2

F

∥∥∥P̃
∥∥∥2

2
.

Notice that

‖P ∗‖2
2 = max

1≤i≤n
λi(H) and

∥∥P−1
∥∥2

2
=

(
min

1≤i≤n
λi(H)

)−1

by σ(PP ∗) = σ(P ∗P ) = σ(H). Similarly, we have
∥∥∥P̃

∥∥∥2

2
= max1≤i≤n λi(H) and

∥∥∥P̃−∗
∥∥∥2

2
= max1≤i≤nλi(H

−1) =

(
min

1≤i≤n
λi(H)

)−1

,

so
n∑

i,j=1

[
%2

(
λi, λ̃j

)]2

|qij|2 ≤ c
(
‖I −D‖2

F +
∥∥D−∗ − I

∥∥2

F

)
,

wherec = max1≤i≤n λi(H)/min1≤i≤nλi(H).
The matrix

(
|qij|2

)
n×n

is a doubly stochastic matrix. The above inequality and [9, Lemma
5.1] imply inequality (2.14). �

If A andÃ are normal matrices, then they are generalized normal matrices with respect toH
andH = I. Applying Theorem 2.6, it is easy to get

Corollary 2.7. If A, Ã ∈ Mn(C) are normal matrices withA = UΛU∗ andÃ = Ũ Λ̃Ũ∗ where
bothU andŨ are unitary, andÃ = D∗AD, whereD is nonsingular, then

(2.17)
n∑

i=1

[%2(λi, λ̃τ(i))]
2 ≤ ‖I −D‖2

F +
∥∥D−∗ − I

∥∥2

F
.

Corollary 2.8. Let A = H(A) + K(A) and Ã = H(Ã) + K(Ã) be positive definite matrices
with generalized eigen-decomposition (2.1), andÃ = D∗AD, whereD is nonsingular. If
Q = P−1P̃ is unitary, then

(2.18)
n∑

i,=1

[
%2

(
λi, λ̃τ(i)

)]2

≤ c
(
‖I −D‖2

F +
∥∥D−∗ − I

∥∥2

F

)
,

wherec = max 1≤i≤nλi(H(A))/ min 1≤i≤nλi(H(A)).
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Proof. By the proof of Corollary 2.3,A andÃ are generalized normal matrices with respect to
H(A)−1, and

max
1≤i≤n

λi(H(A)−1)/ min
1≤i≤n

λi(H(A)−1) = max
1≤i≤n

λi(H(A))/min1≤i≤nλi(H(A)).

Inequality (2.18) is proved by Theorem 2.6. �
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