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1. INTRODUCTION

The theory of variational inequalities is a branch of the mathematical sciences dealing with
general equilibrium problems. It has a wide range of applications in economics, operations
research, industry, physical, and engineering sciences. Many research papers have been written
lately, both on the theory and applications of this field. Important connections with main areas
of pure and applied sciences have been made, see for exarnple [1] 12, 13] and the references
cited therein.

One of the typical formulations of the variational inequality problem found in the literature
is the following

(V1) Find a pointz™ € C' andy* € F(z*) satisfying (y*,x — z*) > 0, forall z € C,

whereC' is a subset of a Hilbert spadé and F : H = H is a set-valued mapping. A
tremendous amount of research has been done in the case @hsreonvex, both on the
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2 MESSAOUDBOUNKHEL, LOTFI TADJ, AND ABDELOUAHED HAMDI

existence of solutions of (VI) and the construction of solutions, see for example [7./13] 15, 19].
Only the existence of solutions ¢f (VI) has been considered in the case Whisneonconvex,

see for instance_[5]. To the best of our knowledge, nothing has been done concerning the
construction of solutions in this case.

In this paper we first generalize problefn {VI) to take into account the nonconvexity of the
setC and then construct a suitable algorithm to solve the generalizéd (VI). Noté that (VI) is
usually a reformulation of some minimization problem of some functional over convex sets.
For this reason, it does not make sense to generdlize (VI) by just replacing the convex sets by
nonconvex ones. Also, a straightforward generalization to the nonconvex case of the techniques
used when set' is convex cannot be done. This is because these techniques are strongly based
on properties of the projection operator over convex sets and these properties do not hold in
general whert' is nonconvex. Based on the above two arguments, and to take advantage of the
techniques used in the convex case, we propose to reformulate probllem (VIonBeonvex
as the following equivalent problem

(VP) Find a pointz* € C' : F(2*) N —N(C;a2*) # 0,

whereN (C; z) denotes the normal cone 6fatz in the sense of convex analysis. Equivalence

of problems|(V]) and (VP) will be proved in Propositipn 2.3 below. The corresponding problem
when C' is not convex will be denoted (NVP). This reformulation allows us to consider the
resolution of problem (NVP) as the desired suitable generalization of the proplem (VI). We
point out that the resolution df (V1) withh’ nonconvex is not, at least from our point of view, a
good way for such generalization. Our idea of the generalization is inspired[from [5] (see also
[18]) where the authors studied the existence of generalized equilibrium.

In the present paper we make use of some recent techniques and ideas from nonsmooth analy-
sis [5,/6] to overcome the difficulties that arise from the nonconvexity of th€' s8pecifically,
we will be considering the class of uniformly prox-regular sets (see Defirjitign 2.1) which is
sufficiently large to include the class of convex sptspnvex sets (se€l[8]);"! submanifolds
(possibly with boundary) ofi, the images under @*! diffeomorphism of convex sets, and
many other nonconvex sets (for more details see [8, 10]).

The paper is organized as follows: In Sectjgn 2 we recall some definitions and notation,
and prove some useful results that will be needed in the paper. In Spftion 3 we propose an
algorithm to solve problem (NVP) and prove its well-definedness and its convergence under
the uniform prox-regularity assumption @nand the strong monotonicity assumption Bn
The results proved in Sectign 3 are extended in Se€iion 4 in two ways: In the first one, we
assume that’ = F; + F5, where F; is a strongly monotone set-valued mapping dnds
a Hausdorff Lipschitz set-valued mapping not necessarily monotone. In thisftaseot
necessarily strongly monotone. In the second one, th€'sstassumed to be a set-valued
mapping ofz. In this case, problem (NVP) becomes

(SNVP) Find a point* € C(z*) : F(z*) N —=N(C(z*);z*) # 0.

2. PRELIMINARIES

Throughout the papet/ will be a Hilbert space. LeC be a nonempty closed subset of
H. We denote bylq (-) or d(-,C) the usual distance function to the subégti.e., dc(z) =
inf,cc ||z — ul|. We recall (se€ [11]) thahe proximal normal conef C' atx is given by

NP(Ciz) :={¢ € H: 3a >0 s.t.x € Projo(r + af)},

where
Projo(z) :={2" € S: deo(x) = ||z — 2||}.
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Equivalently (see for example [L1]N?(C; z) can be defined as the set of @l H for which
there existr, § > 0 such that

(&, 2 —2) <oz’ —z|? forall 2’ € (z+dB)NC.

Note that the above inequality is satisfied locally. In Proposition 1.1.5 6f [11], the authors give
a characterization oV (C'; x) where the inequality is satisfied globally. For completeness, we
reproduce that proposition as the following:-

Lemma 2.1. Let C be a nonempty closed subsetfin thené € N (C; x) if and only if there
existso > 0 such that

(€,2) —z) < o2’ —z|?* forall 2’ € C.
We recall also (see [9]) that ti@&arke normal conés given by
NY(C;x) =20 [NP(C; )],

whereco[S] means the closure of the convex hull%fltis clear that one always ha&” (C'; x) C
NY(C;x). The converse is not true in general. Note th&t(C; ) is always a closed and
convex cone and thaV”(C; z) is always a convex cone but may be nonclosed (see [9, 11]).
Furthermore, ifC' is convex all the existing normal cones coincide with the normal cone in the
sense of convex analysié“"(C; =) given by

N9 (Cix):={y € H: (y,2' —x) <0, forall 2’ € C}.

We will present an algorithm to solve problem (NVP). The algorithm is an adaptation of
the standard projection algorithm that we reproduce below for completeness (for more details
concerning this type of projection and convergence analysis in the convex case we refer the
reader to[[18] and the references therein).

Algorithm 2.1.
(1) Selectz’ € H, ¢° € F(z2"), and p > 0.
(2) Forn > 0, compute: 2" = 2™ — py" and selectz" ™ € Projc(z"™), 3"t e
F(xn—kl).

It is well known that the projection algorithm above has been introduced in the convex case
([13]) and its convergence proved. Observe that Algorithm 2.1 is well defined provided the
projection onC' is not empty. The convexity assumption@nmade by researchers considering
Algorithm|[2.1, is not required for its well definedness because it may be well defined, even in
the nonconvex case (for example whérns a closed subset of a finite dimensional space, or
when C is a compact subset of a Hilbert space, etc.). Rather, convexity is required for its
convergence analysis. Our adaptation of the projection algorithm is based on the following two
observations:

(1) The sequence of poin{s"}, that it generates must be sufficiently clos&to
(2) The projection operataProjc(-) must be Lipschitz on an open set containing the se-
quence of pointgz"},,.

Recently, a new class of nonconvex sets, calladormly prox-regular setgsee [17]/ 5])
(called proximally smooth sets in the original paper|[10]), has been introduced and studied
in [10]. It has been successfully used in many nonconvex applications such as optimization,
economic models, dynamical systems, differential inclusions, etc. For such applications see
[2,13,[4,[5]6]. This class seems particularly well suited to overcome the difficulties which arise
due to the nonconvexity assumption 6h We take the following characterization proved in
[10] as a definition of this class. We point out that the original definition was given in terms of
the differentiability of the distance function (sée[10]).

J. Inequal. Pure and Appl. Math4(1) Art. 14, 2003 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

4 MESSAOUDBOUNKHEL, LOTFI TADJ, AND ABDELOUAHED HAMDI

Definition 2.1. For a givenr €]0, +oc], a subset is uniformly prox-regular with respect to
(we will say uniformlyr-prox-regular)(see [10]) if and only if every nonzero proximal normal
to C can be realized by antball. This means that for alt € C' and all0 # ¢ € N¥(C; z) one

has
3 > 1 2
= =) < —|lz— 7|
<H§|I 2r
forallz € C.

We make the conventiob = 0 for r = 4o00. Recall that forr = +oo the uniformr-prox-
regularity ofC' is equivalent to the convexity @f, which makes this class of great importance.

The following proposition summarizes some important consequences of the uniform prox-
regularity needed in the sequel. For the proof of these results we refer the reader to [10, 17].

Proposition 2.2. Let C' be a nonempty closed subsetAnand letr €]0, +oc]. If the subset”
is uniformlyr-prox-regular then the following hold:
i) Forall z € H withdg(x) < r, one hasProjco(z) # 0;
i) Letr’ € (0,7). The operatorProjc is Lipschitz with rank"— on C,./;
iii) The proximal normal cone is closed as a set-valued mapping.
iv) Forall z € C'and all0 # £ € NP(C; z) one has

2
(repa’ =) < 2 =l + dee),

forall ' € H withdg(x') < r.

As a direct consequence of Part (jii) of Proposifior] 2.2, we hé%éC; z) = N¥(C; z). So,
we will denoteN (C; x) := N¢(C;x) = N¥(C; z) for such a class of sets.

In order to make clear the conceptoprox-regular sets, we state the following concrete
example: The union of two disjoint intervals, b] and [c, d] is r-prox-regular withr = <2,
The finite union of disjoint intervals is alseprox-regular and the depends on the distances
between the intervals (for more concrete examples and for a general study of the olass of
prox-regular sets we refer to a forthcoming paper by the first author).

The following proposition establishes the relationship betwgen (VI)[and (VP) in the convex
case.

Proposition 2.3. If C' is convex, therj (V= (VB).
Proof. It follows directly from the above definition a¥ “°*(C'; ). O

The next proposition shows that the nonconvex variational problem (NVP) can be rewritten
as the following nonconvex variational inequality:

(NVI) Findz* € Cy* € F(a") s.t. (y*,x —2™) + %Hx —z**>0, z€C.
Proposition 2.4. If C'is r-prox-regular, then[(NVI}=- (NVP).

Proof. (=) Letz* € C be a solution of[(NVl), i.e., there existg € F(z*) such that
I

<y*,l‘ - I'*> +

Yy~ w2 > 0, forallz € ¢
2r

If y* = 0, then we are done because the vector zero always belongs to any normal cone. If
y* # 0, then, for allx € C, one has

¥ ]_
<—€,x—x*> < Lo
T o
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Therefore, by Lemmia 2.1 one g%é% € N(C;z*) and so—y* € N(C;z*), which completes
the proof of the necessity part.
(«<=) It follows directly from the definition of prox-regular sets in Definition|2.1. O

In what follows we will letC' be a uniformlyr’-prox-regular subset aff with " > 0 and we
willlet € (0, r"). Now, we are ready to present our adaptation of Algorithm 2.1 to the uniform
prox-regular case.

3. MAIN RESULTS

3.1. F Strongly Monotone. Our first algorithni 3.J1 below is proposed to solve problem (NVP).
Algorithm 3.1.
(1) Selectz’ € C,y° € F(2°), and p > 0.
(2) Forn > 0, compute: 2" = z" — py" and select:a™™ € Projc(z"*), y"t €
F(anrl).
In our analysis we need the following assumptionsFon
Assumptions.A;.
(1) F : H = H is strongly monotone of' with constanty > 0, i.e., there exists > 0
such thatvz, 2’ € C
(y—y.o—2) = allz = 2'|°, Vy € F(z), y € F(a').
(2) F has nonempty compact valuesihand is Hausdorff Lipschitz continuous 6hwith
constanti > 0, i.e., there existg > 0 such thatvz, 2’ € C
H(F(z), F(2')) < Ble — 2.
HereH stands for the Hausdorff distance relative to the norm associated with the Hilbert
spaceH defined by

H(A, B) := max{supdp(a),supda(b)}.

acA beB
(3) The constants and/ satisfy the following inequality:

Oé<>ﬁ\/<2—17

where¢ = .
Theorem 3.1. Assume thatd; holds and that for each iteration the paramejesatisfies the
inequalities
«

« r
—2—6<p<min{—2+e,—},
3 g ly™ | +1

wheree = ¥ (O‘Otg(@_”, then the sequencgs”},, {z"},, and{y"}, generated by Algo-
rithm[3.3 converge strongly to somg z*, andy* respectively, and* is a solution of (NVP).

Proof. From Algorithm[3.1, we have

Hzn+1 - ZnH — H(xn o pyn) - (xnfl o pynfl)H

py" =y -

As the elementg§z"},, belong toC' by construction and by using the fact thatis strongly
monotone and Hausdorff Lipschitz continuous@ywe have:

= o 0" -

<yn - ynfl’xn - xn71> > o Hxn o mnleZ’
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and
Hyn _ yn—lll S H(F($n)7F(In_1)) S ﬁ Hl,n _ l,n—lH
respectively. Note that

oyt -y

_ Hxn _ xn—1H2 —2p <yn . yn—17$n _ :L,n—1> + p2 ||yn . yn—lHQ'

Hxn . n n71>H2

Thus, we obtain

o™ — 2" — p(y" — y" ||
< [l = 2" = 200 |fz" — 2" 4 287 o — 2"
i.e.,
" =2t = p(y =y < (1= 2pa+ 0?07 [|la” =27
So,

Hxn - xn—l . p(yn . yn—l)H S \/1 _ QpO{ +p2ﬁ2 “:L,n . xn—lH ]
Finally, we deduce directly that:
o1 = 2" < /T 2pa+ 22 4 — 2.

Now, by the choice op in the statement of the theorem < TRTT n||+1’ we can easily check that

the sequence of points:"}, belongs toC, := {x € H : dc(x) < r}. Consequently, the
Lipschitz property of the projection operator 6h mentioned in Propositign 2.2, yields

n+1 +1

—a"|| = || Projc(z")
<l =2
< CV/1—2pa + p232 Hx" — x”_lH .

Let & = (/1 — 2pa + p2(2. Our assumptiori3) in .4, and the choice of in the statement
of the theorem yield < 1. Therefore, the sequenge™}, is a Cauchy sequence and hence it
converges strongly to some poirit € H. By using the continuity of the operatér, the strong
convergence of the sequendeg },, and{z"},, follows directly from the strong convergence of

Let y* andz* be the limits of the sequencésg™}, and{:"}, respectively. It is obvious that
z* =a*—py*withz* € C, y* € F(z*). We wish to show that* is the solution of our problem
(NVP).

By construction we have, for all > 0,

H:c — Projo(z H

e Projo(2") = Projo(z"™ — py™),
which gives, by the definition of the proximal normal cone,
(a:” _ Z‘n+1> _ pyn c N(C;$n+1).

Using the closedness property of the proximal normal cone in (i) of Propositign 2.2 and by
lettingn — oo we get
py" € —N(C;z").
Finally, asy* € F(z*) we conclude that N(C; z*) N F(z*) # () with z* € C. This completes
the proof. O
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Remark 3.2. If C is given in an explicit form, then we select, for the starting poitit,in

C. However, if we do not know the explicit form af, then the choice of® € C may

not be possible. Assume we know, instead, an explicit form &haighborhood of”, with

§ < r/2. So, we start with a point° in the 5-neighborhood and instead of Algoritim B.1, we
use Algorithn 3.R below. The convergence analysis of Algorjthm 3.2 can be conducted along
the same lines under the following choicegof

P { « ) }
— €< p < min S
52 Tyl +1

Indeed, ifz° € §-neighborhood of”, thenz! := 2° — py® and so

d(z',C) < d(°,C) + plly°l < 6 + ——— ||y |<o+d=20<r.

(Il +1 OH
Therefore, we can projeet onC to getz! € C, and then all subsequent points of the sequence
" will be in C.
Algorithm 3.2.
(1) Selectr® € C + 0B, with 0 < 26 <,y € F(z°), and p > 0.
(2) Forn > 0, compute: 2" = 2" — py" and select:a™ € Projo(z"), y"™ €
F(xn—kl)_
Remark 3.3. An inspection of the proof of Theorem 8.1 shows that the sequéntk, is
bounded. We state two sufficient conditions ensuring the boundedness of the segiiénce
(1) The set-valued mapping is bounded ort.
(2) The setC is bounded and the set-valued mappindpas the linear growth property on
C, that is,
F(z) € an(1 4 [|z[))B,
for somea; and for allz € C.

3.2. F Not Necessarily Strongly Monotone.We end this section by noting that our result in
Theoreni 31 can be extended (see Thedrem 3.4 below) to the"casé; + F, where[ is

a Hausdorff Lipschitz set-valued mapping, strongly monoton€'@md £ is only a Hausdorff
Lipschitz set-valued mapping ofi, but not necessarily monotone. It is interesting to point
out that, in this case;’ is not necessarily strongly monotone 6nand so the following result
cannot be covered by our previous result. In this case Algofithin 3.1 becomes:

Algorithm 3.3.
(1) Selectr? € C, 4° € Fi(2°), w° € Fy(z°) andp > 0.
(2) Forn > 0, compute: 2" = z™ — p(y" + w") and select:z™* € Projo(2"1),
yn+1 € F1($n+1), w”+1 € FQ(LEn—H).

The following assumptions of; and F; are needed for the proof of the convergence of
Algorithm[3.3.
Assumptions.As.

(1) F; is strongly monotone o6’ with constanty > 0.

(2) Fy andF; have nonempty compact valuesihand are Hausdorff Lipschitz continuous
on C' with constant? > 0 andn > 0, respectively.

(3) The constants, ¢, n, andg satisfy the following inequality:

al >n++/ (82 —n?)(C-1).
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Theorem 3.4. Assume thatd, holds and that for each iteration the paramejesatisfies the

inequalities
ag—1n : { a¢ —1n 1 r }
———— —c< p<mng———— +¢& —, ,
(8% —n?) (B =n?) ¢y w41
wheree — YAe¢n” 0 (52;;’ €D then the sequencds”},,, {z"},, and{y"}, generated by
Algorithm[3.3 converge strongly to somg z*, andy* respectively, and:* is a solution of
(NVP) associated to the set-valued mappihg: F; + F5.

Proof. The proof follows the same lines as the proof of Thegrem 3.1 with slight modifications.
From Algorithm[3.3, we have

Hzn-l-l _ ZnH — |Hxn _ p(yn +wn)] _ [In—l _ p(yn—l 4 wn—l] H
< Hxn o mnfl - p<yn o ynfl)H +p ||wn o wnflu .

As the elementgz"},, belong toC' by construction and by using the fact that is strongly
monotone and Hausdorff Lipschitz continuous@ywe have:

<yn . yn—17xn . xn—1> > Hxn . xn—1H27
and
lv" =y | < HF "), Fi@a" ) < Bl =27
Note that

n—1 n nfl)HQ

—p(y" =y
= o =2 =20 (" =y =+ =y
Thus, a simple computation yields
— (" =y O < (1= 2pa+ g8 [|2" =2
On the other hand, sindg, is Hausdorff Lipschitz continuous ari, we have
o — w | < HOBs ("), Fafa)) < e — 2

Hx" —x

Hl,n o xn—l

Finally,

o4 = 22| < V= 2pat 232 o — 2|+ [l — 2
Now, by the choice of in the statement of the theorem and the Lipschitz property of the
projection operator ofy, mentioned in Propositidn 3.2, we have

n+1 +1

— :c”H = HProjC(z” — Projo(z H

<l - 2|

< ¢ (VI=2pa+ 2+ p) [|lo = .

|=

Leté = ¢ (\/1 — 2pa+ p?3? + pn>. Our assumptior{3) in A, and the choice op in the
statement of the theorem yiedd< 1. Therefore, the proof is completed. 0
Remark 3.5.

(1) Theorenj 34 generalizes the main resultin [15] to the case whes@onconvex.
(2) As we have observed in Remdrk]3.2, Algorithm| 3.3 may also be adapted to the case
where the starting point’ is selected in a-neighborhood of the sét with 0 < 25 < 7.
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4. EXTENSION

In this section we are interested in extending the results obtained so far to the case where
the setC’, instead of being fixed, is a set-valued mapping. Besides being a more general case,
it also has many applications, see for example [1]. The problem that will be considered is the
following:

(SNVP) Find a point* € C(z*) : F(z*) N =N (C(x*); z*) # 0.

This problem will be called the Set-valued Nonconvex Variational Problem ($NVP). We need
the following proposition which is an adaptation of Theorem 4.1 in [6] (see also Theorem 2.1
in [4]) to our problem. We recall the following concept of Lipschitz continuity for set-valued
mappings: A set-valued mappidgis said to be Lipschitz if there exists> 0 such that

|d(y, C(x)) — d(y', C@))| < lly = /| + wllz — 2/,

forall z,2',y,y € H. In such a case we also say tldats Lipschitz continuous with constant
k. It is easy to see that for set-valued mappings the above concept of Lipschitz continuity is
weaker than the Hausdorff Lipschitz continuity.

Proposition 4.1. Let r €]0,+o00] and letC' : H = H be a Lipschitz set-valued mapping
with uniformlyr-prox-regular values, then, the following closedness property holds: “For any
" — z*y" — y*, andu” — u* with y* € C(2") andu” € N(C(2");y"™), one hasu* €
N(C(x");y7)".

Proof. Let 2" — z*,y" — y*, andu™ — u* with y* € C(2™) andu™ € N(C(z");y"). If

u* = 0, then we are done. Assume thét=# 0 (henceu™ # 0 for n large enough). Observe
first thaty* € C(z*) because” is Lipschitz continuous. Ag" — y*, for n sufficiently large,

y" € y* + 5B. Therefore, the uniform-prox-regularity of the images @f and Propositiop 2|2
(iv) give

u” 2
_ _ "V < Z a2 d o ’
<Hu"\|’z Yy > = THZ Y I* + dogan) (2)

for all z € H with dc(,»)(2) < r. This inequality still holds for. sufficiently large and for all
z € y*+ B with0 < ¢ < g, because for such,

* * n r
de@n)(2) < lz =yl + lv" =" So+g<r

Consequently, the continuity of the distance function with respect to both variables (bétause
is Lipschitz continuous) and the above inequality give, by letting +oo,

<ﬁ, z— y*> < %Hz —y*|I” +de@(2) forallz € y* + 6B.
Hence,
<HZ—H . y*> < %HZ — |2 forallz e (yF + 0B) N C(x).
Trlis ensures, by the equivalent definition (given on page 2) of the proximal normal cone, that
T € N(C(z*);y*) and sou* € N(C(z*);y*). This completes the proof of the proposition.
0

In all that follows, C' will be a set-valued mapping with nonempty closégprox-regular
values for some’ > 0. We will also letr € (0,7') and¢ = .

rl—r

J. Inequal. Pure and Appl. Math4(1) Art. 14, 2003 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

10 MESSAOUDBOUNKHEL, LOTFI TADJ, AND ABDELOUAHED HAMDI

4.1. F Strongly Monotone. The next algorithm, Algorithri 4]1, solves problgm (SNVP).
Algorithm 4.1.
(1) Selectz’ € C(2°),y° € F(2°), and p > 0.
(2) Forn > 0, compute:z"™ = z" — py™ and selectz™*! € Projoem(z"), y" €
F(l.n—I—l).
We make the following assumptions on the set-valued mappgingsdC:

Assumptions.As.

(1) F has nonempty compact values and is strongly monotone with comnstarit

(2) F is Hausdorff Lipschitz continuous arddis Lipschitz continuous with constangs> 0
and0 < k < 1 respectively.

(3) For some constant< k < 1, the operatoProjq(.)(-) satisfies the condition

HijC(w)( ) — Projcy) H <kl|z—-vyl|, forall z,y,z€ H.

r(1-k)

(4) Let) be a sufficiently small positive constant such that A < 5=+

(5) The constants, 3, ¢ andk satisfy:

al > By = (1= k)2

Theorem 4.2. Assume thatd; holds and that for each iteration the paramejesatisfies the
inequalities

A
—€ < p<min + ¢, —}
62 { [yl +1

wheree = \/(a4)2_ﬂ2£;422_(1_k)2]), then the sequencgs”},, {«"},, and {y"}, generated by

Algorithm[4.] converge strongly to somg z*, andy* respectively, and:* is a solution of
(SNVR).

We prove the following lemma needed in the proof of Thedrer 4.2. Itis of interest in its own
right.

Lemma 4.3. Under the hypothesis of Theorém|4.2, the sequences of gainks and {z"},
generated by Algorithiin 4.1 are such that:

Zz"andz"t € [C(2™)], == {y € H : dcny(y) <r}, foralln>1.
Proof. Observe that by the definition of the algorithm,
d(z',C(2°)) = d(2° — py’, C(2°)) < d(a, C(2°)) + plly°]| < X
Forn = 1, we have by (2),(3), and (4) ods,
d(2*,C(a")) = d(z" — py',C(z"))
<d(z',C(a')) —d(z',C(z") + plly'|
< kllzt = 2%+ A,
and by the Lipschitz continuity af', once again, and the first inequality of this proof we get
d(z',C(z")) < d(z',C(a")) + kla’ — 27|
=d(z" — py’,C(2")) + K|z’ — 2"
< A+ gzt — 2.
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On the other hand, we have
ot =2 < flat = 2|+ ||2" =27
=d(2", 0(°)) + [|]2! = 2°
= d(z° — py’,C(2°)) + plly°|| < 2A.

Thus, we see that botti( 2%, C'(z')) andd(z', C(z')) are less tharzx\ + X which is itself
strictly less thamr. Similarly, we have for general,

("1, C(2") < d(a", C(a")) + plly"|| < sz — 2" + A
and
d(z",C(z")) < d(z",C(z" 1)) + k||a™ — 2™
| e [ N A 1| e ] | B
On the other hand,
la™ — "] < [l = 2"+ 12" — 2|

<d(z",C(z™ 1)+ A

< d(z" 7 C(z™Y) —d(z"h, C(a"72)) + 2

< Klla"t — 2" + 2.
Hence, using thatz!' — 2°|| < 2, we get

2M(1 — K"
HZE”—[En_l” < ( K )
11—k

Therefore,
2kA(1 — k")
1—x
14+ Kk —2x"H
1—k
A1+ 3k)
< —<K
1—x

(", C(a") <

+ A

<A

and
<k ||:c”_1 — a:”_2|| + A+ kK Hx" — x"‘lH
< (KP4 k) [[z" " = 2" 72| + 20k + A

20(1 — k™71

1—k
<)\(1+3/<;) _,

< (K* + k) +2Xk + A
1—r

This completes the proof. O

Proof of Theorer 4] 2Following the proof of Theorein 3.1 and using the fact thas strongly
monotone and Hausdorff Lipschitz continuous, we get, from Algorjthih 4.1,

127 = 2" < V1= 2pa + p2 32| — 2",
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On the other hand, by Lemnja 4.3, we haveand :"*! € [C(z")], and so Propositioh 2.2
yields thatProjc(,n(z") and Projc»)(z"*') are not empty, and the operatBrojc(,»)(-) is
¢-Lipschitz on[C(z™)],. Then, by the assumption (3) i#s,

n+l n+1)

[2" = "|| = [|1Projo@m (2"77) = Projegn—(")|l

< || Proje(m (2")

— Projogny(2")|| + [[Projc@n) (") — Projon-1)(2")||
< ] = 2| 4 kfja™ — 2|

< [CVT=200 % 2 + k] [l2" = 2"

Leté = (/1 — 2pa + p23% + k. Our assumptions (4) and (5) i and the choice o in the
statement of the theorem yiefd< 1. As in the proof of Theorer 3.1, we can prove that the
sequences$z”},,, {y"},, and{z"}, strongly converge to some, y*, z* € H, respectively. It
is obvious to see that* = z* — py* with 2* € C(z*), y* € F(2*). We wish to show that* is
the solution of our problen (SNVP).

By construction we have, for all > 0,

"€ Projoen (2" = Projown (z" — py™),
which gives, by the definition of the proximal normal cone,
(xn _ xn—i—l) _ py” c N(O(:En);xn+1).

Using the closedness property of the proximal normal cone in Propogitipn 4.1 and by letting
n — oo we get

py" € =N(C(z");2").
Finally, asy* € F(z*) we conclude that- N(C(z*); z*) N F(x*) # 0 with z* € C(z*). This
completes the proof. O

4.2. F Not Necessarily Strongly Monotone.We extend Theorefn 4.2 to the caSe= F + 5,
where F; is a Hausdorff Lipschitz set-valued mapping strongly monotone @nié only a
Hausdorff Lipschitz set-valued mapping. In this case Algorithm 4.1 becomes:

Algorithm 4.2.
(1) Select? € C(2°), y° € Fi(2Y), w® € F»(z°) and p > 0.
(2) Forn > 0, compute:z"™ = 2" — p(y" + w") and selectz™"! € Projcn)(z"*),
yn+1 c F1($TL+1), wn—H c F2($n+1).
The following assumptions of; and F, are needed for the proof of the convergence of
Algorithm[4.2.
Assumptions.Aj.

(1) The assumptions on the set-valued mapgiraye as inAs.

(2) Fi is strongly monotone with constant> 0.

(3) F; andF; have nonempty compact values and are Hausdorff Lipschitz continuous with
constant? > 0 andn > 0, respectively.

(4) The constants, (3, n, ¢, andk satisfy the following inequality:

a¢ > (1= k)n+ /(82 = n?)[¢2 - (1 - k).
Theorem 4.4. Assume thatd, holds and that for each iteration the paramejesatisfies the
inequalities
a¢ — (1 —k)n
(62 —n?)

al —(1—Fk)n 1—k r }

—8<p<min{ + €, ,
(8% —n?) ¢yt +wr]| + 1
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wheres = \/[acf(lfk)mtg(’%2;72)[@7(1%)2], then the sequencgs”},, {z"},, and {y"}, gen-

erated by Algorith 2 converge strongly to somie z*, and y* respectively, and:* is a
solution of [SNVP) associated to the set-valued mapping F; + F.

Proof. As we adapted the proof of Theorém|3.1 to prove Thegrem 3.4, we can adapt, in a similar
way, the proof of Theorein 4.2 to prove Theorenj 4.4. O

Remark 4.5.

(1) Theorenj 4}4 generalizes Theorem 3.4.in [14] to the case whés@onconvex.

(2) As we have observed in Remark]3.2, Algoritjmsg 4.1[and 4.2 may be also adapted to the
case where the starting point is selected in @&-neighborhood of the set (z°) with
0<26<r.

Example 4.1.In many applications (see for examplé [1]) the set-valued mapgginhgs the form
C(z) = S+ f(x), whereS is a fixed closed subset i and f is a point-to-point mapping from

H to H. In this case, assumption (3) 6hin A3 and the Lipschitz continuity of' are satisfied
provided the mapping is Lipschitz continuous. Indeed, it is not hard (using the relation below)
to show that, iff is y-Lipschitz then the set-valued mappitgis v-Lipschitz and satisfies the
assumption (3) ind3 with £ = 2. Using the well known relation

T € Projsiy(u) <= — v € Projs(u —v),
Algorithms[4.] and 4]2 can be rewritten in simpler forms. For example, Algofithm 4.2 becomes
Algorithm 4.3.
(1) Selectz® € (I — f)~1(9), y° € Fi(a®), w® € Fy(2®) and p > 0.
(2) Forn > 0, computez"*! = z"— f(2")—p(y"+w") and selectz" ™ € Projs(z"*)+
f(.iL'n), yn+1 c Fl(l‘n+1), wn+1 c F2($n+1).

Herel is the ldentity operator froni/ to H.

5. CONCLUSION

The algorithms proposed here can be extended to solve the following general variational
problem:

(9—SNVP)  Find a point:* € H with g(z*) € C(x*) : F(2*) N —=N(C(z*); g(x*)) # 0,

whereg : H — H is a point-to-point mapping. It is obvious th&G{SNVR) coincides with
(SNVR) wheng = I. An important reason for considering this general variational problem
(y—SNVR) is to extend all (or almost all) the types of variational inequalities existing in the
literature in the convex case to the nonconvex case by the same way presented in this paper.
For instance, when the set-valued mappigs assumed to have convex values the general
variational problem[d—SNVR) coincides with the so-callegeneralized multivalued quasi-
variational inequalityintroduced by Noor [16] and studied by himself and many other authors.
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