Journal of Inequalities in Pure and Applied Mathematics

SOME NEW INEQUALITIES SIMILAR TO HILBERT-PACHPATTE TYPE INEQUALITIES

Department of Basic Science of Technology College, Xuzhou Normal University, 221011, People's Republic of China. *E-Mail*: \text{1} @ 163.net

volume 4, issue 2, article 33, 2003.

Received 25 May, 2002; accepted 7 April, 2003.

Communicated by: S.S. Dragomir

©2000 Victoria University ISSN (electronic): 1443-5756 059-02

Abstract

In this paper, some new inequalities similar to Hilbert-Pachpatte type inequalities are given.

2000 Mathematics Subject Classification: 26D15.

Key words: Inequalities, Hilbert-Pachpatte inequalities, Hölder inequality.

Contents

1	Introduction	3
2	Main Results	5
3	Discrete Analogues	13

Some New Inequalities Similar to Hilbert-Pachpatte Type Inequalities

Zhongxue Lü

Title Page

Contents

Go Back

Close

Quit

Page 2 of 19

1. Introduction

In [1, Chap. 9], the well-known Hardy-Hilbert inequality is given as follows.

Theorem 1.1. Let p > 1, q > 1, $\frac{1}{p} + \frac{1}{q} = 1$, $a_m, b_n \ge 0$, $0 < \sum_{n=1}^{\infty} a_n^p < \infty$, $0 < \sum_{n=1}^{\infty} b_n^q < \infty$. Then

(1.1)
$$\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{a_m b_n}{(m+n)^{\lambda}} \le \frac{\pi}{\sin(\pi/p)} \left(\sum_{m=1}^{\infty} a_m^p\right)^{\frac{1}{p}} \left(\sum_{n=1}^{\infty} b_n^q\right)^{\frac{1}{q}}$$

where $\frac{\pi}{\sin(\pi/p)}$ is best possible.

The integral analogue of the Hardy-Hilbert inequality can be stated as follows

Theorem 1.2. Let p > 1, q > 1, $\frac{1}{p} + \frac{1}{q} = 1$, $f(x), g(y) \ge 0$, $0 < \int_0^\infty f^p(x) dx < \infty$, $0 < \int_0^\infty g^q(y) dy < \infty$. Then

$$(1.2) \int_0^\infty \int_0^\infty \frac{f(x)g(y)}{x+y} dx dy \le \frac{\pi}{\sin(\pi/p)} \left(\int_0^\infty f^p(x) dx \right)^{\frac{1}{p}} \left(\int_0^\infty g^q(y) dy \right)^{\frac{1}{q}},$$

where $\frac{\pi}{\sin(\pi/p)}$ is best possible.

In [1, Chap. 9] the following extension of Hardy-Hilbert's double-series theorem is given.

Theorem 1.3. Let p > 1, q > 1, $\frac{1}{p} + \frac{1}{q} \ge 1$, $0 < \lambda = 2 - \frac{1}{p} - \frac{1}{q} = \frac{1}{p} + \frac{1}{q} \le 1$. Then

$$\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{a_m b_n}{(m+n)^{\lambda}} \le K \left(\sum_{m=1}^{\infty} a_m^p\right)^{\frac{1}{p}} \left(\sum_{n=1}^{\infty} b_n^q\right)^{\frac{1}{q}},$$

Some New Inequalities Similar to Hilbert-Pachpatte Type Inequalities

Zhongxue Lü

Title Page

Contents

Go Back

Close

Quit

Page 3 of 19

where K = K(p, q) depends on p and q only.

The following integral analogue of Theorem 1.3 is also given in [1, Chap. 9].

Theorem 1.4. Under the same conditions as in Theorem 1.1 we have

$$\int_0^\infty \int_0^\infty \frac{f(x)g(y)}{(x+y)^{\lambda}} dx dy \le K \left(\int_0^\infty f^p dx \right)^{\frac{1}{p}} \left(\int_0^\infty g^q dy \right)^{\frac{1}{q}},$$

where K = K(p, q) depends on p and q only.

The inequalities in Theorems 1.1 and 1.2 were studied by Yang and Kuang (see [2, 3]). In [4, 5], some new inequalities similar to the inequalities given in Theorems 1.1, 1.2, 1.3 and 1.4 were established.

In this paper, we establish some new inequalities similar to the Hilbert-Pachpatte inequality.

Some New Inequalities Similar to Hilbert-Pachpatte Type Inequalities

Zhongxue Lü

2. Main Results

In what follows we denote by \mathbb{R} the set of real numbers. Let $\mathbb{N} = \{1, 2, \dots\}$, $\mathbb{N}_0 = \{0, 1, 2, \dots\}$. We define the operator ∇ by $\nabla u(t) = u(t) - u(t-1)$ for any function u defined on N. For any function $u(t) : [0, \infty) \to \mathbb{R}$, we denote by u' the derivatives of u.

First we introduce some Lemmas.

Lemma 2.1. (see [2]). Let p > 1, q > 1, $\frac{1}{p} + \frac{1}{q} = 1$, $\lambda > 2 - \min\{p, q\}$, define the weight function $\omega_1(q, x)$ as

$$\omega_1(q,x) := \int_0^\infty \frac{1}{(x+y)^{\lambda}} \left(\frac{x}{y}\right)^{\frac{2-\lambda}{q}} dy, \ x \in [0,\infty).$$

Then

(2.1)
$$\omega_1(q,x) = B\left(\frac{q+\lambda-2}{q}, \frac{p+\lambda-2}{p}\right) x^{1-\lambda},$$

where B(p,q) is β -function.

Lemma 2.2. (see [3]). Let p > 1, q > 1, $\frac{1}{p} + \frac{1}{q} = 1$, $\lambda > 2 - \min\{p, q\}$, define the weight function $\omega_2(q, x)$ as

$$\omega_2(q,x) := \int_0^\infty \frac{1}{x^\lambda + y^\lambda} \left(\frac{x}{y}\right)^{\frac{2-\lambda}{q}} dy, \ x \in [0,\infty).$$

Then

(2.2)
$$\omega_2(q,x) = \frac{1}{\lambda} B\left(\frac{q+\lambda-2}{q\lambda}, \frac{p+\lambda-2}{p\lambda}\right) x^{1-\lambda}.$$

Some New Inequalities Similar to Hilbert-Pachpatte Type Inequalities

Zhongxue Lü

Title Page

Contents

Close

Quit

Page 5 of 19

Lemma 2.3. Let p > 1, q > 1, $\frac{1}{p} + \frac{1}{q} = 1$, $\lambda > 2 - \min\{p, q\}$, define the weight function $\omega_3(q, m)$ as

$$\omega_3(q,m) := \sum_{n=1}^{\infty} \frac{1}{(m+n)^{\lambda}} \left(\frac{m}{n}\right)^{\frac{2-\lambda}{q}}, \ m \in \{1, 2, \dots\}.$$

Then

(2.3)
$$\omega_3(q,m) < B\left(\frac{q+\lambda-2}{q}, \frac{p+\lambda-2}{p}\right) m^{1-\lambda},$$

where B(p,q) is β -function.

Proof. By Lemma 2.1, we have

$$\omega_3(q,m) < \int_0^\infty \frac{1}{(m+y)^{\lambda}} \left(\frac{m}{y}\right)^{\frac{2-\lambda}{q}} dy$$
$$= B\left(\frac{q+\lambda-2}{q}, \frac{p+\lambda-2}{p}\right) m^{1-\lambda}.$$

The proof is completed.

Lemma 2.4. Let p > 1, q > 1, $\frac{1}{p} + \frac{1}{q} = 1$, $\lambda > 2 - \min\{p, q\}$, define the weight function $\omega_4(q, m)$ as

$$\omega_4(q,m) := \sum_{n=1}^{\infty} \frac{1}{m^{\lambda} + n^{\lambda}} \left(\frac{m}{n}\right)^{\frac{2-\lambda}{q}}, \ m \in \{1, 2, \dots\}.$$

Some New Inequalities Similar to Hilbert-Pachpatte Type Inequalities

Zhongxue Lü

Title Page

Contents

Go Back

Close

Quit

Page 6 of 19

Then

(2.4)
$$\omega_4(q,m) < \frac{1}{\lambda} B\left(\frac{q+\lambda-2}{q\lambda}, \frac{p+\lambda-2}{p\lambda}\right) m^{1-\lambda}.$$

Proof. By Lemma 2.2, we have

$$\omega_4(q,m) < \int_0^\infty \frac{1}{m^{\lambda} + y^{\lambda}} \left(\frac{m}{y}\right)^{\frac{2-\lambda}{q}} dy$$
$$= \frac{1}{\lambda} B\left(\frac{q + \lambda - 2}{q\lambda}, \frac{p + \lambda - 2}{p\lambda}\right) m^{1-\lambda}.$$

The proof is completed.

Our main result is given in the following theorem.

Theorem 2.5. Let p > 1, $\frac{1}{p} + \frac{1}{q} = 1$, and f(x), g(y) be real-valued continuous functions defined on $[0, \infty)$, respectively, and let f(0) = g(0) = 0, and

$$0 < \int_0^\infty \int_0^x \left| f'(\tau) \right|^p d\tau dx < \infty, \ 0 < \int_0^\infty \int_0^y \left| g'(\delta) \right|^q d\delta dy < \infty.$$

Then

(2.5)
$$\int_{0}^{\infty} \int_{0}^{\infty} \frac{|f(x)| |g(y)|}{(qx^{p-1} + py^{q-1})(x+y)} dx dy$$

$$\leq \frac{\pi}{\sin(\pi/p)pq} \left(\int_{0}^{\infty} \int_{0}^{x} |f'(\tau)|^{p} d\tau dx \right)^{\frac{1}{p}} \left(\int_{0}^{\infty} \int_{0}^{y} |g'(\delta)|^{q} d\delta dy \right)^{\frac{1}{q}}.$$

Some New Inequalities Similar to Hilbert-Pachpatte Type Inequalities

Zhongxue Lü

Title Page

Contents

Go Back

Close

Quit

Page 7 of 19

In particular, when p = q = 2, we have

(2.6)
$$\int_{0}^{\infty} \int_{0}^{\infty} \frac{|f(x)| |g(y)|}{(x+y)^{2}} dx dy$$

$$\leq \frac{\pi}{2} \left(\int_{0}^{\infty} \int_{0}^{x} |f'(\tau)|^{2} d\tau dx \right)^{\frac{1}{2}} \left(\int_{0}^{\infty} \int_{0}^{y} |g'(\delta)|^{2} d\delta dy \right)^{\frac{1}{2}}.$$

Proof. From the hypotheses, we have the following identities

$$(2.7) f(x) = \int_0^x f'(\tau)d\tau,$$

and

(2.8)
$$g(y) = \int_0^y g'(\delta)d\delta$$

for $x, y \in (0, \infty)$. From (2.7) and (2.8) and using Hölder's integral inequality, respectively, we have

(2.9)
$$|f(x)| \le x^{\frac{1}{q}} \left(\int_0^x |f'(\tau)|^p d\tau \right)^{\frac{1}{p}}$$

and

(2.10)
$$|g(y)| \le y^{\frac{1}{p}} \left(\int_0^y |g'(\delta)|^q d\delta \right)^{\frac{1}{q}}$$

Some New Inequalities Similar to Hilbert-Pachpatte Type Inequalities

Zhonaxue Lü

Title Page

Contents

Go Back

Close

Quit

Page 8 of 19

for $x, y \in (0, \infty)$. From (2.9) and (2.10) and using the elementary inequality

(2.11)
$$z_1 z_2 \le \frac{z_1^p}{p} + \frac{z_2^q}{q}, \ z_1 \ge 0, \ z_2 \ge 0, \ \frac{1}{p} + \frac{1}{q} = 1, \ p > 1,$$

we observe that

$$|f(x)||g(y)| \le x^{\frac{1}{q}} y^{\frac{1}{p}} \left(\int_0^x |f'(\tau)|^p d\tau \right)^{\frac{1}{p}} \left(\int_0^y |g'(\delta)|^q d\delta \right)^{\frac{1}{q}}$$

$$(2.12) \qquad \le \left(\frac{x^{p-1}}{p} + \frac{y^{q-1}}{q} \right) \left(\int_0^x |f'(\tau)|^p d\tau \right)^{\frac{1}{p}} \left(\int_0^y |g'(\delta)|^q d\delta \right)^{\frac{1}{q}}$$

for $x, y \in (0, \infty)$. From (2.12) we observe that

$$(2.13) \qquad \frac{|f(x)||g(y)|}{qx^{p-1} + py^{q-1}} \le \frac{1}{pq} \left(\int_0^x |f'(\tau)|^p d\tau \right)^{\frac{1}{p}} \left(\int_0^y |g'(\delta)|^q d\delta \right)^{\frac{1}{q}}.$$

Hence

$$(2.14) \int_{0}^{\infty} \int_{0}^{\infty} \frac{|f(x)| |g(y)|}{(qx^{p-1} + py^{q-1})(x+y)} dxdy$$

$$\leq \frac{1}{pq} \int_{0}^{\infty} \int_{0}^{\infty} \frac{\left(\int_{0}^{x} |f'(\tau)|^{p} d\tau\right)^{\frac{1}{p}} \left(\int_{0}^{y} |g'(\delta)|^{q} d\delta\right)^{\frac{1}{q}}}{x+y} dxdy.$$

Some New Inequalities Similar to Hilbert-Pachpatte Type Inequalities

Zhongxue Lü

Title Page

Contents

Close

Quit

Page 9 of 19

By Hölder's integral inequality and (2.1), we have

$$\int_{0}^{\infty} \int_{0}^{\infty} \frac{\left(\int_{0}^{x} |f'(\tau)|^{p} d\tau\right)^{\frac{1}{p}} \left(\int_{0}^{y} |g'(\delta)|^{q} d\delta\right)^{\frac{1}{q}}}{x+y} dxdy$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} \frac{\left(\int_{0}^{x} |f'(\tau)|^{p} d\tau\right)^{\frac{1}{p}}}{(x+y)^{\frac{1}{p}}} \left(\frac{x}{y}\right)^{\frac{1}{pq}} \frac{\left(\int_{0}^{y} |g'(\delta)|^{q} d\delta\right)^{\frac{1}{q}}}{(x+y)^{\frac{1}{q}}} \left(\frac{y}{x}\right)^{\frac{1}{pq}} dxdy$$

$$\leq \left(\int_{0}^{\infty} \int_{0}^{\infty} \frac{\int_{0}^{x} |f'(\tau)|^{p} d\tau}{x+y} \left(\frac{x}{y}\right)^{\frac{1}{q}} dxdy\right)^{\frac{1}{p}}$$

$$\times \left(\int_{0}^{\infty} \int_{0}^{\infty} \frac{\int_{0}^{y} |g'(\delta)|^{q} d\delta}{x+y} \left(\frac{y}{x}\right)^{\frac{1}{p}} dxdy\right)^{\frac{1}{q}}$$

$$\leq \frac{\pi}{\sin(\pi/p)} \left(\int_{0}^{\infty} \int_{0}^{x} |f'(\tau)|^{p} d\tau dx\right)^{\frac{1}{p}} \left(\int_{0}^{\infty} \int_{0}^{y} |g'(\delta)|^{q} d\delta dy\right)^{\frac{1}{q}}$$
(2.15)

by (2.14) and (2.15), we get (2.5). The proof of Theorem 2.5 is complete.

In a similar way to the proof of Theorem 2.5, we can prove the following theorems.

Theorem 2.6. Let p > 1, $\frac{1}{p} + \frac{1}{q} = 1$, $\lambda > 2 - \min\{p, q\}$, and f(x), g(y) be real-valued continuous functions defined on $[0, \infty)$, respectively, and let f(0) = g(0) = 0, and

$$0 < \int_0^\infty \int_0^x x^{1-\lambda} |f'(\tau)|^p d\tau dx < \infty, \quad 0 < \int_0^\infty \int_0^y y^{1-\lambda} |g'(\delta)|^q d\delta dy < \infty,$$

Some New Inequalities Similar to Hilbert-Pachpatte Type Inequalities

Zhongxue Lü

Title Page

Contents

Go Back

Close

Quit

Page 10 of 19

then

$$(2.16) \int_{0}^{\infty} \int_{0}^{\infty} \frac{|f(x)| |g(y)|}{(qx^{p-1} + py^{q-1})(x+y)^{\lambda}} dx dy$$

$$\leq \frac{B\left(\frac{q+\lambda-2}{q}, \frac{p+\lambda-2}{p}\right)}{pq} \left(\int_{0}^{\infty} \int_{0}^{x} x^{1-\lambda} |f'(\tau)|^{p} d\tau dx\right)^{\frac{1}{p}}$$

$$\times \left(\int_{0}^{\infty} \int_{0}^{y} y^{1-\lambda} |g'(\delta)|^{q} d\delta dy\right)^{\frac{1}{q}}.$$

In particular, when p = q = 2,

$$(2.17) \int_{0}^{\infty} \int_{0}^{\infty} \frac{|f(x)| |g(y)|}{(x+y)^{1+\lambda}} dx dy$$

$$\leq \frac{B\left(\frac{\lambda}{2}, \frac{\lambda}{2}\right)}{2} \left(\int_{0}^{\infty} \int_{0}^{x} x^{1-\lambda} |f'(\tau)|^{2} d\tau dx\right)^{\frac{1}{2}}$$

$$\times \left(\int_{0}^{\infty} \int_{0}^{y} y^{1-\lambda} |g'(\delta)|^{2} d\delta dy\right)^{\frac{1}{2}}.$$

Theorem 2.7. Let p > 1, $\frac{1}{p} + \frac{1}{q} = 1$, $\lambda > 2 - \min\{p, q\}$, and f(x), g(y) be real-valued continuous functions defined on $[0, \infty)$, respectively, and let f(0) = g(0) = 0, and

$$0<\int_0^\infty\int_0^x x^{1-\lambda}\left|f'(\tau)\right|^pd\tau dx<\infty,\quad 0<\int_0^\infty\int_0^y y^{1-\lambda}\left|g'(\delta)\right|^qd\delta dy<\infty.$$

Some New Inequalities Similar to Hilbert-Pachpatte Type Inequalities

Zhongxue Lü

Title Page

Contents

Go Back

Close

Quit

Page 11 of 19

Then

$$(2.18) \int_{0}^{\infty} \int_{0}^{\infty} \frac{|f(x)| |g(y)|}{(qx^{p-1} + py^{q-1})(x^{\lambda} + y^{\lambda})} dxdy$$

$$\leq \frac{B\left(\frac{q+\lambda-2}{q\lambda}, \frac{p+\lambda-2}{p\lambda}\right)}{\lambda pq} \left(\int_{0}^{\infty} \int_{0}^{x} x^{1-\lambda} |f'(\tau)|^{p} d\tau dx\right)^{\frac{1}{p}}$$

$$\times \left(\int_{0}^{\infty} \int_{0}^{y} y^{1-\lambda} |g'(\delta)|^{q} d\delta dy\right)^{\frac{1}{q}}.$$

In particular, when p = q = 2,

$$(2.19) \int_{0}^{\infty} \int_{0}^{\infty} \frac{|f(x)| |g(y)|}{(x^{\lambda} + y^{\lambda})(x + y)} dx dy$$

$$\leq \frac{\pi}{2\lambda} \left(\int_{0}^{\infty} \int_{0}^{x} x^{1-\lambda} |f'(\tau)|^{2} d\tau dx \right)^{\frac{1}{2}}$$

$$\times \left(\int_{0}^{\infty} \int_{0}^{y} y^{1-\lambda} |g'(\delta)|^{2} d\delta dy \right)^{\frac{1}{2}}.$$

Some New Inequalities Similar to Hilbert-Pachpatte Type Inequalities

Zhongxue Lü

Title Page

Contents

Go Back

Close

Quit

Page 12 of 19

3. Discrete Analogues

Theorem 3.1. Let p > 1, $\frac{1}{p} + \frac{1}{q} = 1$, and $\{a(m)\}$ and $\{b(n)\}$ be two sequences of real numbers where $m, n \in \mathbb{N}_0$, and a(0) = b(0) = 0, and $0 < \sum_{m=1}^{\infty} \sum_{\tau=1}^{m} |\nabla a(\tau)|^p < \infty$, $0 < \sum_{n=1}^{\infty} \sum_{\delta=1}^{n} |\nabla b(\delta)|^q < \infty$, then

(3.1)
$$\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{|a_m| |b_n|}{(qm^{p-1} + pn^{q-1})(m+n)}$$

$$\leq \frac{\pi}{\sin(\pi/p)pq} \left(\sum_{m=1}^{\infty} \sum_{k=1}^{m} a_k^p \right)^{\frac{1}{p}} \left(\sum_{n=1}^{\infty} \sum_{r=1}^{n} b_r^q \right)^{\frac{1}{q}}.$$

In particular, when p = q = 2, we have

(3.2)
$$\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{|a_m| |b_n|}{(m+n)^2} \le \frac{\pi}{2} \left(\sum_{m=1}^{\infty} \sum_{k=1}^m a_k^2 \right)^{\frac{1}{2}} \left(\sum_{n=1}^{\infty} \sum_{r=1}^n b_r^2 \right)^{\frac{1}{2}}.$$

Proof. From the hypotheses, it is easy to observe that the following identities hold

$$(3.3) a_m = \sum_{\tau=1} \nabla a(\tau),$$

and

$$(3.4) b_n = \sum_{\delta=1}^n \nabla b(\delta)$$

Some New Inequalities Similar to Hilbert-Pachpatte Type Inequalities

Zhongxue Lü

Title Page

Contents

Go Back

Close

Quit

Page 13 of 19

for $m, n \in \mathbb{N}$. From (3.3) and (3.4) and using Hölder's inequality, we have

(3.5)
$$|a_m| \le m^{\frac{1}{q}} \left(\sum_{\tau=1}^m |\nabla a(\tau)|^p \right)^{\frac{1}{p}},$$

and

$$(3.6) |b_n| \le n^{\frac{1}{p}} \left(\sum_{\delta=1}^n |\nabla b(\delta)|^q \right)^{\frac{1}{q}}$$

for $m, n \in \mathbb{N}$. From (3.5) and (3.6) and using the elementary inequality (2.11), we observe that

$$|a_{m}| |b_{n}| \leq m^{\frac{1}{q}} n^{\frac{1}{p}} \left(\sum_{\tau=1}^{m} |\nabla a(\tau)|^{p} \right)^{\frac{1}{p}} \left(\sum_{\delta=1}^{n} |\nabla b(\delta)|^{q} \right)^{\frac{1}{q}}$$

$$\leq \left(\frac{m^{p-1}}{p} + \frac{n^{q-1}}{q} \right) \left(\sum_{\tau=1}^{m} |\nabla a(\tau)|^{p} \right)^{\frac{1}{p}} \left(\sum_{\delta=1}^{n} |\nabla b(\delta)|^{q} \right)^{\frac{1}{q}}$$
(3.7)

for $m, n \in \mathbb{N}$. From (3.7), we observe that

(3.8)
$$\frac{|a_m| |b_n|}{qm^{p-1} + pn^{q-1}} \le \frac{1}{pq} \left(\sum_{\tau=1}^m |\nabla a(\tau)|^p \right)^{\frac{1}{p}} \left(\sum_{\delta=1}^n |\nabla b(\delta)|^q \right)^{\frac{1}{q}}.$$

Some New Inequalities Similar to Hilbert-Pachpatte Type Inequalities

Zhongxue Lü

Title Page

Contents

Go Back

Close

Quit

Page 14 of 19

Hence

(3.9)
$$\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{|a_m| |b_n|}{(qm^{p-1} + pn^{q-1})(m+n)} \le \frac{1}{pq} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{\left(\sum_{\tau=1}^{m} |\nabla a(\tau)|^p\right)^{\frac{1}{p}} \left(\sum_{\delta=1}^{n} |\nabla b(\delta)|^q\right)^{\frac{1}{q}}}{m+n}.$$

By the Hölder inequality and (2.3)

$$\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{\left(\sum_{\tau=1}^{m} |\nabla a(\tau)|^{p}\right)^{\frac{1}{p}} \left(\sum_{\delta=1}^{n} |\nabla b(\delta)|^{q}\right)^{\frac{1}{q}}}{m+n}$$

$$= \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{\left(\sum_{\tau=1}^{m} |\nabla a(\tau)|^{p}\right)^{\frac{1}{p}}}{(m+n)^{\frac{1}{p}}} \left(\frac{m}{n}\right)^{\frac{1}{pq}} \frac{\left(\sum_{\delta=1}^{n} |\nabla b(\delta)|^{q}\right)^{\frac{1}{q}}}{(m+n)^{\frac{1}{q}}} \left(\frac{n}{m}\right)^{\frac{1}{pq}}$$

$$\leq \left(\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{\sum_{\tau=1}^{m} |\nabla a(\tau)|^{p}}{m+n} \left(\frac{m}{n}\right)^{\frac{1}{q}}\right)^{\frac{1}{p}}$$

$$\times \left(\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{\sum_{\delta=1}^{n} |\nabla b(\delta)|^{q}}{m+n} \left(\frac{n}{m}\right)^{\frac{1}{p}}\right)^{\frac{1}{q}}$$

$$< \frac{\pi}{\sin(\pi/p)} \left(\sum_{m=1}^{\infty} \sum_{\tau=1}^{m} |\nabla a(\tau)|^{p}\right)^{\frac{1}{p}} \left(\sum_{n=1}^{\infty} \sum_{\delta=1}^{n} |\nabla b(\delta)|^{q}\right)^{\frac{1}{q}}$$

$$(3.10)$$

by (3.9) and (3.10), we get (3.1). The proof of Theorem 3.1 is complete.

Some New Inequalities Similar to Hilbert-Pachpatte Type Inequalities

Zhongxue Lü

Title Page

Contents

Go Back

Close

Quit

Page 15 of 19

In a similar manner to the proof of Theorem 3.1, we can prove the following theorems.

Theorem 3.2. Let p > 1, $\frac{1}{p} + \frac{1}{q} = 1$, $\lambda > 2 - \min\{p, q\}$, and $\{a(m)\}$ and $\{b(n)\}$ be two sequences of real numbers where $m, n \in \mathbb{N}_0$, and a(0) = b(0) = 0, and

$$0 < \sum_{m=1}^{\infty} \sum_{\tau=1}^{m} m^{1-\lambda} |\nabla a(\tau)|^{p} < \infty,$$
$$0 < \sum_{n=1}^{\infty} \sum_{\delta=1}^{n} n^{1-\lambda} |\nabla b(\delta)|^{q} < \infty,$$

then

$$(3.11) \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{|a_{m}| |b_{n}|}{(qm^{p-1} + pn^{q-1})(m+n)^{\lambda}}$$

$$\leq \frac{B\left(\frac{q+\lambda-2}{q}, \frac{p+\lambda-2}{p}\right)}{pq} \left(\sum_{m=1}^{\infty} \sum_{\tau=1}^{m} m^{1-\lambda} |\nabla a(\tau)|^{p}\right)^{\frac{1}{p}}$$

$$\times \left(\sum_{n=1}^{\infty} \sum_{\delta=1}^{n} n^{1-\lambda} |\nabla b(\delta)|^{q}\right)^{\frac{1}{q}}.$$

In particular, when p = q = 2, we have

(3.12)
$$\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{|a_m| |b_n|}{(m+n)^{1+\lambda}}$$

Some New Inequalities Similar to Hilbert-Pachpatte Type Inequalities

Zhonaxue Lü

Title Page

Contents

Close

Quit

Page 16 of 19

$$\leq \frac{B\left(\frac{\lambda}{2}, \frac{\lambda}{2}\right)}{2} \left(\sum_{m=1}^{\infty} \sum_{\tau=1}^{m} m^{1-\lambda} \left|\nabla a(\tau)\right|^{2}\right)^{\frac{1}{2}} \left(\sum_{n=1}^{\infty} \sum_{\delta=1}^{n} n^{1-\lambda} \left|\nabla b(\delta)\right|^{2}\right)^{\frac{1}{2}}.$$

Theorem 3.3. Let p > 1, $\frac{1}{p} + \frac{1}{q} = 1$, $\lambda > 2 - \min\{p, q\}$, and $\{a(m)\}$ and $\{b(n)\}$ be two sequences of real numbers where $m, n \in \mathbb{N}_0$, and a(0) = b(0) = 0, and

$$0 < \sum_{m=1}^{\infty} \sum_{\tau=1}^{m} m^{1-\lambda} |\nabla a(\tau)|^{p} < \infty,$$
$$0 < \sum_{n=1}^{\infty} \sum_{\delta=1}^{n} n^{1-\lambda} |\nabla b(\delta)|^{q} < \infty,$$

then

$$(3.13) \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{|a_m| |b_n|}{(qm^{p-1} + pn^{q-1})(m^{\lambda} + n^{\lambda})}$$

$$\leq \frac{B\left(\frac{q+\lambda-2}{q\lambda}, \frac{p+\lambda-2}{p\lambda}\right)}{\lambda pq} \left(\sum_{m=1}^{\infty} \sum_{\tau=1}^{m} m^{1-\lambda} |\nabla a(\tau)|^p\right)^{\frac{1}{p}}$$

$$\times \left(\sum_{n=1}^{\infty} \sum_{\delta=1}^{n} n^{1-\lambda} |\nabla b(\delta)|^q\right)^{\frac{1}{q}}.$$

In particular, when p = q = 2, we have

(3.14)
$$\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{|a_m| |b_n|}{(m+n)(m^{\lambda} + n^{\lambda})}$$

Some New Inequalities Similar to Hilbert-Pachpatte Type Inequalities

Zhongxue Lü

Title Page

Contents

Go Back

Close

Quit

Page 17 of 19

$$\leq \frac{\pi}{2\lambda} \left(\sum_{m=1}^{\infty} \sum_{\tau=1}^{m} m^{1-\lambda} \left| \nabla a(\tau) \right|^2 \right)^{\frac{1}{2}} \left(\sum_{n=1}^{\infty} \sum_{\delta=1}^{n} n^{1-\lambda} \left| \nabla b(\delta) \right|^2 \right)^{\frac{1}{2}}.$$

Some New Inequalities Similar to Hilbert-Pachpatte Type Inequalities

Zhongxue Lü

Title Page

Contents

Go Back

Close

Quit

Page 18 of 19

References

- [1] G.H. HARDY, J.E. LITTLEWOOD AND G. PÓLYA, *Inequalities*, Cambridge Univ. Press, London, 1952.
- [2] BICHENG YANG, A generalized Hilbert's integral inequality with the best constant, *Ann. of Math.*(Chinese), 21A:**4** (2000), 401–408.
- [3] JICHANG KUANG,On new extensions of Hilbert's integral inequality, *J. Math. Anal. Appl.*, **235** (1999), 608–614.
- [4] B.G. PACHPATTE, Inequalities similar to certain extensions of Hilbert's inequality, *J.Math. Anal. Appl.*, **243** (2000), 217–227.
- [5] B.G. PACHPATTE, On some new inequalities similar to Hilbert's inequality, *J. Math. Anal. Appl.*, **226** (1998), 166–179.
- [6] D.S. MITRINOVIĆ, *Analytic Inequalities*, Springer-Verlag, Berlin/New York, 1970.
- [7] E.F. BECKENBACH AND R. BELLMAN, *Inequalities*, Springer-Verlag, Berlin, 1983.

Some New Inequalities Similar to Hilbert-Pachpatte Type Inequalities

Zhonaxue Lü

Title Page

Contents

Go Back

Close

Quit

Page 19 of 19