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ABSTRACT. Matrix trace inequalities are finding increased use in many areas such as analysis,
where they can be used to generalise several well known classical inequalities, and computational
statistics, where they can be applied, for example, to data fitting problems. In this paper we give
simple proofs of two useful matrix trace inequalities and provide applications to orthogonal
regression and matrix nearness problems.
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1. I NTRODUCTION

Matrix trace inequalities are finding increased use in many areas such as analysis, where they
can be used to generalise several well known classical inequalities, and computational statistics,
where they can be applied, for example, to data fitting problems. In this paper we give simple
proofs of two useful matrix trace inequalities and provide applications to orthogonal regression
and matrix nearness problems. The trace inequalities studied have also been applied success-
fully to applications in wireless communications and networking [9], artificial intelligence [12],
predicting climate change [11] and problems in signal processing [13].

2. A M ATRIX TRACE I NEQUALITY

The following result contains the basic ideas we need when considering best approximation
problems. Although the result is well known, an alternative proof paves the way for the appli-
cations which follow.

The authors are grateful to Alexei Onatski, Columbia University for comments on an earlier version of this paper leading to improvements.
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2 I.D. COOPE ANDP.F. RENAUD

Theorem 2.1. Let X be an × n Hermitian matrix withrank(X) = r and letQk be ann × k
matrix,k ≤ r, withk orthonormal columns. Then, for givenX, tr(Q∗

kXQk) is maximized when
Qk = Vk, whereVk = [v1, v2, . . . , vk] denotes a matrix ofk orthonormal eigenvectors ofX
corresponding to thek largest eigenvalues.

Proof. Let X = V DV ∗ be a spectral decomposition ofX with V unitary andD = diag[λ1, λ2,
. . . , λn], the diagonal matrix of (real) eigenvalues ordered so that

(2.1) λ1 ≥ λ2 ≥ · · · ≥ λn.

Then,

(2.2) tr(Q∗
kXQk) = tr(Z∗

kDZk) = tr(ZkZ
∗
kD) = tr(PD),

whereZk = V ∗Qk andP = ZkZ
∗
k is a projection matrix withrank(P ) = k. Clearly, then× k

matrixZk has orthonormal columns if and only ifQk has orthonormal columns. Now

tr(PD) =
n∑

i=1

Piiλi

with 0 ≤ Pii ≤ 1, i = 1, 2, . . . , n and
∑n

i=1 Pii = k becauseP is an Hermitian projection
matrix with rankk. Hence,

tr(Q∗
kXQk) ≤ L,

whereL denotes the maximum value attained by the linear programming problem:

(2.3) max
p∈Rn

{
n∑

i=1

piλi : 0 ≤ pi ≤ 1, i = 1, 2, . . . , n;
n∑

i=1

pi = k

}
.

An optimal basic feasible solution to the LP problem (2.3) is easily identified (noting the order-
ing (2.1)) aspj = 1, j = 1, 2, . . . , k; pj = 0, j = k+1, k+2, . . . , n, with L =

∑k
1 λi. However,

P = EkE
∗
k givestr(PD) = L whereEk is the matrix with orthonormal columns formed from

the firstk columns of then× n identity matrix, therefore (2.2) provides the required result that
Qk = V Ek = Vk maximizestr Q∗

kXQk. �

Corollary 2.2. LetY be anm×n matrix withm ≥ n andrank(Y ) = r and letQk ∈ Rn×k, k ≤
r, be a matrix withk orthonormal columns. Then the Frobenius trace-norm||Y Qk||2F =
tr(Q∗

kY
∗Y Qk) is maximized for givenY , whenQ = Vk, whereUSV ∗ is a singular value

decomposition ofY andVk = [v1, v2, . . . , vk] ∈ Rn×k denotes a matrix ofk orthonormal right
singular vectors ofY corresponding to thek largest singular values.

Corollary 2.3. If a minimum rather than maximum is required then substitute thek smallest
eigenvalues/singular values in the above results and reverse the ordering (2.1).

Theorem 2.1 is a special case of a more general result established in Section 3. Alternative
proofs can be found in some linear algebra texts (see, for example [6]). The special case above
and Corollary 2.2 have applications in total least squares data fitting.

3. AN APPLICATION TO DATA FITTING

Suppose that data is available as a set ofm points inRn represented by the columns of the
n × m matrix A and it is required to find the bestk-dimensional linear manifoldLk ∈ Rn

approximating the set of points in the sense that the sum of squares of the distances of each data
point from its orthogonal projection onto the linear manifold is minimized. A general point in
Lk can be expressed in parametric form as

(3.1) x(t) = z + Zkt, t ∈ Rk,
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TRACE INEQUALITIES 3

wherez is a fixed point inLk and the columns of then × k matrix Zk can be taken to be
orthonormal. The problem is now to identify a suitablez andZk. Now the orthogonal projection
of a pointa ∈ Rn ontoLk can be written as

proj(a, Lk) = z + ZkZ
T
k (a− z),

and hence the Euclidean distance froma to Lk is

dist(a, Lk) = ||a− proj(a, Lk)||2 = ||(I − ZkZ
T
k )(a− z)||2.

Therefore, the total least squares data-fitting problem is reduced to finding a suitablez and
correspondingZk to minimize the sum-of-squares function

SS =
m∑

j=1

||(I − ZkZ
T
k )(aj − z)||22,

whereaj is thejth data point (jth column ofA). A necessary condition forSS to be minimized
with respect toz is

0 =
m∑

j=1

(I − ZkZ
T
k )(aj − z) = (I − ZkZ

T
k )

m∑
j=1

(aj − z).

Therefore,
∑m

j=1(aj − z) lies in the null space of(I −ZkZ
T
k ) or equivalently the column space

of Zk. The parametric representation (3.1) shows that there is no loss of generality in letting∑m
j=1(aj − z) = 0 or

(3.2) z =
1

m

m∑
j=1

aj.

Thus, a suitablez has been determined and it should be noted that the value (3.2) solves the
zero-dimensional case corresponding tok = 0. It remains to findZk whenk > 0, which is the
problem:

(3.3) min
m∑

j=1

||(I − ZkZ
T
k )(aj − z)||22,

subject to the constraint that the columns ofZk are orthonormal and thatz satisfies equa-
tion (3.2). Using the properties of orthogonal projections and the definition of the vector 2-
norm, (3.3) can be rewritten

(3.4) min
m∑

j=1

(aj − z)T (I − ZkZ
T
k )(aj − z).

Ignoring the terms in (3.4) independent ofZk then reduces the problem to

min
m∑

j=1

−(aj − z)T ZkZ
T
k (aj − z),

or equivalently

(3.5) max tr
m∑

j=1

(aj − z)T ZkZ
T
k (aj − z).
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4 I.D. COOPE ANDP.F. RENAUD

The introduction of the trace operator in (3.5) is allowed because the argument to the trace
function is a matrix with only one element. The commutative property of the trace then shows
that problem (3.5) is equivalent to

max tr
m∑

j=1

ZT
k (aj − z)(aj − z)T Zk ≡ max tr ZT

k ÂÂT Zk,

whereÂ is the matrix

Â = [a1 − z, a2 − z, . . . , am − z].

Theorem 2.1 and its corollary then show that the required matrixZk can be taken to be the
matrix ofk left singular vectors of the matrix̂A (right singular vectors of̂AT ) corresponding to
thek largest singular values.

This result shows, not unexpectedly, that the best point lies on the best line which lies in the
best plane, etc. Moreover, the total least squares problem described above clearly always has a
solution although it will not be unique if the(k + 1)th largest singular value of̂A has the same
value as thekth largest. For example, if the data points are the 4 vertices of the unit square in
R2,

A =

[
0 1 1 0
0 0 1 1

]
,

then any line passing through the centroid of the square is a best line in the total least squares
sense because the matrix̂A for this data has two equal non-zero singular values.

The total least squares problem above (also referred to as orthogonal regression) has been
considered by many authors and as is pointed out in [7, p 4]:

“ . . . orthogonal regression has been discovered and rediscovered many times,
often independently.”

The approach taken above differs from that in [3], [4], and [7], in that the derivation is more
geometric, it does not require the Eckart-Young-Mirsky Matrix Approximation Theorem [2],
[10] and it uses only simple properties of projections and the matrix trace operator.

4. A STRONGER RESULT

The proof of Theorem 2.1 relies on maximizingtr(DP ) whereD is a (fixed) real diagonal
matrix andP varies over all rankk projections. Since any two rankk projections are unitarily
equivalent the problem is now to maximizetr(DU∗PU) (for fixed D andP ) over all unitary
matricesU . Generalizing fromP to a general Hermitian matrix leads to the following theorem.

Theorem 4.1.LetA, B ben× n Hermitian matrices. Then

max
U unitary

tr(AU∗BU) =
n∑

i=1

αiβi,

where

(4.1) α1 ≥ α2 ≥ · · · ≥ αn and β1 ≥ β2 ≥ · · · ≥ βn

are the eigenvalues ofA andB respectively, both similarly ordered.

Clearly, Theorem 2.1 can be recovered since a projection of rankk has eigenvalues1, re-
peatedk times and0 repeatedn− k times.
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TRACE INEQUALITIES 5

Proof. Let {ei}n
i=1 be an orthonormal basis of eigenvectors ofA corresponding to the eigenval-

ues{αi}n
i=1, written in descending order. Then

tr(AU∗BU) =
n∑

i=1

e∗i AU∗BUei =
n∑

i=1

(Aei)
∗U∗BUei =

n∑
i=1

αie
∗
i U

∗BUei.

Let B = V ∗DV, whereD is diagonal andV is unitary. WritingW = V U gives

tr(AU∗BU) =
n∑

i=1

αie
∗
i W

∗DWei =
n∑

i,j=1

pijαiβj,

where theβj ’s are the elements on the diagonal ofD, i.e. the eigenvalues ofB and

pij = |(Wei)j|2 .

Note that sinceW is unitary, the matrixP = [pij], is doubly stochastic, i.e., has non-negative
entries and whose rows and columns sum to 1. The theorem will therefore follow once it is
shown that forα1 ≥ α2 ≥ · · · ≥ αn andβ1 ≥ β2 ≥ · · · ≥ βn

(4.2) max
[pij ]

n∑
i,j=1

αiβjpij =
n∑

i=1

αiβi,

where the maximum is taken over all doubly stochastic matricesP = [pij].
For fixedP doubly stochastic, let

χ =
n∑

i,j=1

αiβjpij.

If P 6= I, let k be the smallest indexi such thatpii 6= 1. (Note that forl < k, pll = 1 and
thereforepij = 0 if i < k and i 6= j, also if j < k and i 6= j). Sincepkk < 1, then for
somel > k, pkl > 0. Likewise, for somem > k, pmk > 0. These imply thatpml 6= 1. The
inequalities above mean that we can chooseε > 0 such that the matrixP ′ is doubly stochastic
where

p′kk = pkk + ε,

p′kl = pkl − ε,

p′mk = pmk − ε,

p′ml = pml + ε

andp′ij = pij in all other cases.
If we write

χ′ =
n∑

i,j=1

αiβjp
′
ij,

then

χ′ − χ = ε(αkβk − αkβl − αmβk + αmβl)

= ε(αk − αm)(βk − βl)

≥ 0

which means that the term
∑

αiβjpij is not decreased. Clearlyε can be chosen to reduce a
non-diagonal term inP to zero. After a finite number of iterations of this process it follows that
P = I maximizes this term. This proves (4.2) and hence Theorem 4.1. �
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6 I.D. COOPE ANDP.F. RENAUD

Corollary 4.2. If a minimum rather than maximum is required then reverse the ordering for
one of the sets (4.1).

Note that this theorem can also be regarded as a generalization of the classical result that
if {αi}n

i=1, {βi}n
i=1 are real sequences then

∑
αiβσ(i) is maximized over all permutationsσ of

{1, 2, . . . , n} when{αi} and{βσ(i)} are similarly ordered.

5. A M ATRIX NEARNESS PROBLEM

Theorem 4.1 also allows us to answer the following problem. IfA, B are Hermitiann × n
matrices, what is the smallest distance betweenA and a matrixB′ unitarily equivalentto B?
Specifically, we have:

Theorem 5.1.LetA, B be Hermitiann×n matrices with ordered eigenvaluesα1 ≥ α2 ≥ · · · ≥ αn

andβ1 ≥ β2 ≥ · · · ≥ βn respectively. Let|| · || denote the Frobenius norm. Then

(5.1) min
Q unitary

||A−Q∗BQ|| =

√√√√ n∑
i=1

(αi − βi)2.

Proof.

||A−Q∗BQ||2 = tr(A−Q∗BQ)2

= tr(A2) + tr(B2)− 2 tr(AQ∗BQ)

(Note that ifC, D are Hermitian,tr(CD) is real [1].)
So by Theorem 4.1

min ||A−Q∗BQ||2 = tr(A2) + tr(B2)− 2 max
Q

tr(AQ∗BQ)

=
∑

α2
i +

∑
β2

i − 2
∑

αiβi

=
∑

(αi − βi)
2

and the result follows. �

An optimalQ for problem (5.1) is clearly given byQ = V U∗ whereU, V are orthonormal
matrices of eigenvectors ofA, andB respectively (corresponding to similarly ordered eigen-
values). This follows becauseA = UDαU∗, B = V DβV ∗, whereDα, Dβ denote the diagonal
matrices of eigenvalues{αi}, {βi} respectively and so

||A−Q∗BQ||2 = ||Dα − U∗Q∗V DβV ∗QU ||2

=
∑

(αi − βi)
2 if Q = V U∗.

Problem (5.1) is a variation on the well-knownOrthogonal Procrustes Problem(see, for
example, [4], [5]) where an orthogonal (unitary) matrix is sought to solve

min
Q unitary

||A−BQ||.

In this caseA andB are no longer required to be Hermitian (or even square). A minimizingQ
for this problem can be obtained from a singular value decomposition ofB∗A [4, p 601].
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