

Journal of Inequalities in Pure and Applied Mathematics

http://jipam.vu.edu.au/

Volume 3, Issue 1, Article 12, 2002

ON WEIGHTED OSTROWSKI TYPE INEQUALITIES FOR OPERATORS AND VECTOR-VALUED FUNCTIONS

¹N.S. BARNETT, ²C. BUŞE, ¹P. CERONE, AND ¹S.S. DRAGOMIR

¹School of Communications and Informatics Victoria University of Technology PO Box 14428 Melbourne City MC 8001, Victoria, Australia.

> ²Department of Mathematics West University of Timişoara Bd. V. Pârvan 4 1900 Timişoara, România.

neil@matilda.vu.edu.au
URL: http://sci.vu.edu.au/staff/neilb.html

buse@hilbert.math.uvt.ro
URL: http://rgmia.vu.edu.au/BuseCVhtml/

pc@matilda.vu.edu.au
URL: http://rgmia.vu.edu.au/cerone

sever@matilda.vu.edu.au
URL: http://rgmia.vu.edu.au/SSDragomirWeb.html

Received 22 June, 2001; accepted 25 October, 2001. Communicated by Th. M. Rassias

ABSTRACT. Some weighted Ostrowski type integral inequalities for operators and vector-valued functions in Banach spaces are given. Applications for linear operators in Banach spaces and differential equations are also provided.

Key words and phrases: Ostrowski's Inequality, Vector-Valued Functions, Bochner Integral.

2000 Mathematics Subject Classification. Primary 26D15; Secondary 46B99.

ISSN (electronic): 1443-5756

© 2002 Victoria University. All rights reserved.

050-01

1. Introduction

In [12], Pečarić and Savić obtained the following Ostrowski type inequality for weighted integrals (see also [7, Theorem 3]):

Theorem 1.1. Let $w:[a,b] \to [0,\infty)$ be a weight function on [a,b]. Suppose that $f:[a,b] \to \mathbb{R}$ satisfies

$$(1.1) |f(t) - f(s)| \le N |t - s|^{\alpha}, \text{ for all } t, s \in [a, b],$$

where N > 0 and $0 < \alpha \le 1$ are some constants. Then for any $x \in [a, b]$

$$\left| f\left(x\right) - \frac{\int_{a}^{b} w\left(t\right) f\left(t\right) dt}{\int_{a}^{b} w\left(t\right) dt} \right| \leq N \cdot \frac{\int_{a}^{b} \left|t - x\right|^{\alpha} w\left(t\right) dt}{\int_{a}^{b} w\left(t\right) dt}.$$

Further, if for some constants c and λ

$$0 < c \le w(t) \le \lambda c$$
, for all $t \in [a, b]$,

then for any $x \in [a, b]$, we have

$$\left| f\left(x \right) - \frac{\int_{a}^{b} w\left(t \right) f\left(t \right) dt}{\int_{a}^{b} w\left(t \right) dt} \right| \leq N \cdot \frac{\lambda L\left(x \right) J\left(x \right)}{L\left(x \right) - J\left(x \right) + \lambda J\left(x \right)},$$

where

$$L(x) := \left[\frac{1}{2}(b-a) + \left|x - \frac{a+b}{2}\right|\right]^{\alpha}$$

and

$$J(x) := \frac{(x-a)^{1+\alpha} + (b-x)^{1+\alpha}}{(1+\alpha)(b-a)}.$$

The inequality (1.2) was rediscovered in [4] where further applications for different weights and in Numerical Analysis were given.

For other results in connection to weighted Ostrowski inequalities, see [3], [8] and [10].

In the present paper we extend the weighted Ostrowski's inequality for vector-valued functions and Bochner integrals and apply the obtained results to operatorial inequalities and linear differential equations in Banach spaces. Some numerical experiments are also conducted.

2. WEIGHTED INEQUALITIES

Let X be a Banach space and $-\infty < a < b < \infty$. We denote by $\mathcal{L}(X)$ the Banach algebra of all bounded linear operators acting on X. The norms of vectors or operators acting on X will be denoted by $\|\cdot\|$.

A function $f:[a,b]\to X$ is called *measurable* if there exists a sequence of simple functions $f_n:[a,b]\to X$ which converges punctually almost everywhere on [a,b] at f. We recall also that a measurable function $f:[a,b]\to X$ is *Bochner integrable* if and only if its norm function (i.e. the function $t\mapsto \|f(t)\|:[a,b]\to \mathbb{R}_+$) is Lebesgue integrable on [a,b].

The following theorem holds.

Theorem 2.1. Assume that $B : [a,b] \to \mathcal{L}(X)$ is Hölder continuous on [a,b], i.e.,

(2.1)
$$||B(t) - B(s)|| \le H |t - s|^{\alpha} \text{ for all } t, s \in [a, b],$$

where H > 0 and $\alpha \in (0, 1]$.

If $f:[a,b]\to X$ is Bochner integrable on [a,b], then we have the inequality:

for any $t \in [a, b]$, where

$$|||f|||_{[a,b],\infty} := ess \sup_{t \in [a,b]} ||f(t)||$$

and

$$|||f|||_{[a,b],p} := \left(\int_a^b ||f(t)||^p dt\right)^{\frac{1}{p}}, \quad p \ge 1.$$

Proof. Firstly, we prove that the X-valued function $s \mapsto B(s) f(s)$ is Bochner integrable on [a,b]. Indeed, let (f_n) be a sequence of X-valued, simple functions which converge almost everywhere on [a,b] at the function f. The maps $s \mapsto B(s) f_n(s)$ are measurable (because they are continuous with the exception of a finite number of points $s \in [a,b]$). Then

$$||B(s) f_n(s) - B(s) f(s)|| \le ||B(s)|| ||f_n(s) - f(s)|| \to 0$$
 a.e. on $[a, b]$

when $n \to \infty$ so that the function $s \mapsto B\left(s\right)f\left(s\right): [a,b] \to X$ is measurable. Now, using the estimate

$$\left\|B\left(s\right)f\left(s\right)\right\| \leq \sup_{\xi \in [a,b]} \left\|B\left(\xi\right)\right\| \cdot \left\|f\left(s\right)\right\|, \ \text{ for all } s \in [a,b]\,,$$

it is easy to see that the function $s \mapsto B(s) f(s)$ is Bochner integrable on [a, b]. We have successively

for any $t \in [a, b]$, proving the first inequality in (2.2).

Now, observe that

$$M(t) \leq H \||f|\|_{[a,b],\infty} \int_{a}^{b} |t-s|^{\alpha} ds$$
$$= H \||f|\|_{[a,b],\infty} \cdot \frac{(b-t)^{\alpha+1} + (t-a)^{\alpha+1}}{\alpha+1}$$

and the first part of the second inequality is proved.

Using Hölder's integral inequality, we may state that

$$M(t) \leq H\left(\int_{a}^{b} |t-s|^{q\alpha} ds\right)^{\frac{1}{q}} \left(\int_{a}^{b} \|f(s)\|^{p} ds\right)^{\frac{1}{p}}$$

$$= H\left[\frac{(b-t)^{q\alpha+1} + (t-a)^{q\alpha+1}}{q\alpha+1}\right]^{\frac{1}{q}} \||f|\|_{[a,b],p},$$

proving the second part of the second inequality.

Finally, we observe that

$$M(t) \leq H \sup_{s \in [a,b]} |t-s|^{\alpha} \int_{a}^{b} ||f(s)|| ds$$

$$= H \max \{(b-t)^{\alpha}, (t-a)^{\alpha}\} |||f|||_{[a,b],1}$$

$$= H \left[\frac{1}{2} (b-a) + \left| t - \frac{a+b}{2} \right| \right]^{\alpha} |||f|||_{[a,b],1}$$

and the theorem is proved.

The following corollary holds.

Corollary 2.2. Assume that $B : [a, b] \to \mathcal{L}(X)$ is Lipschitzian with the constant L > 0. Then we have the inequality

$$(2.3) \quad \left\| B\left(t\right) \int_{a}^{b} f\left(s\right) ds - \int_{a}^{b} B\left(s\right) f\left(s\right) ds \right\|$$

$$\leq L \int_{a}^{b} \left| t - s \right| \left\| f\left(s\right) \right\| ds$$

$$\leq L \times \begin{cases} \left[\frac{1}{4} \left(b - a\right)^{2} + \left(t - \frac{a + b}{2}\right)^{2} \right] \left\| \left\| f \right\|_{[a,b],\infty} & \text{if} \quad f \in L_{\infty}\left(\left[a,b\right];X\right); \\ \left[\frac{\left(b - t\right)^{q+1} + \left(t - a\right)^{q+1}}{q+1} \right]^{\frac{1}{q}} \left\| \left\| f \right\|_{[a,b],p} & \text{if} \quad p > 1, \ \frac{1}{p} + \frac{1}{q} = 1 \\ & \text{and} \quad f \in L_{p}\left(\left[a,b\right];X\right); \end{cases}$$

$$\left[\frac{1}{2} \left(b - a\right) + \left| t - \frac{a + b}{2} \right| \right] \left\| \left| f \right| \right\|_{[a,b],1}$$

for any $t \in [a, b]$.

Remark 2.3. If we choose $t = \frac{a+b}{2}$ in (2.2) and (2.3), then we get the following midpoint inequalities:

and

respectively.

Remark 2.4. Consider the function $\Psi_{\alpha}:[a,b]\to\mathbb{R},\ \Psi_{\alpha}(t):=\int_{a}^{b}\left|t-s\right|^{\alpha}\left\|f\left(s\right)\right\|ds,\ \alpha\in(0,1).$ If f is continuous on [a,b], then Ψ_{α} is differentiable and

$$\frac{d\Psi_{\alpha}(t)}{dt} = \frac{d}{dt} \left[\int_{a}^{t} (t-s)^{\alpha} \|f(s)\| ds + \int_{t}^{b} (s-t)^{\alpha} \|f(s)\| ds \right]
= \alpha \left[\int_{a}^{t} \frac{\|f(s)\|}{(t-s)^{1-\alpha}} ds - \int_{t}^{b} \frac{\|f(s)\|}{(s-t)^{1-\alpha}} ds \right].$$

If $t_0 \in (a, b)$ is such that

$$\int_{a}^{t_{0}} \frac{\|f(s)\|}{(t_{0}-s)^{1-\alpha}} ds = \int_{t_{0}}^{b} \frac{\|f(s)\|}{(s-t_{0})^{1-\alpha}} ds$$

and $\Psi'(\cdot)$ is negative on (a, t_0) and positive on (t_0, b) , then the best inequality we can get in the first part of (2.2) is the following one

(2.6)
$$\left\| B(t_0) \int_a^b f(s) \, ds - \int_a^b B(s) \, f(s) \, ds \right\| \le H \int_a^b |t_0 - s|^\alpha \, \|f(s)\| \, ds.$$

If $\alpha = 1$, then, for

$$\Psi(t) := \int_{a}^{b} |t - s| \|f(s)\| ds,$$

we have

$$\frac{d\Psi(t)}{dt} = \int_{a}^{t} \|f(s)\| ds - \int_{t}^{b} \|f(s)\| ds, \quad t \in (a, b),$$

$$\frac{d^{2}\Psi(t)}{dt^{2}} = 2 \|f(t)\| \ge 0, \quad t \in (a, b),$$

which shows that Ψ is convex on (a, b).

If $t_m \in (a, b)$ is such that

$$\int_{a}^{t_{m}} \|f(s)\| \, ds = \int_{t_{m}}^{b} \|f(s)\| \, ds,$$

then the best inequality we can get from the first part of (2.3) is

(2.7)
$$\left\| B(t_m) \int_a^b f(s) \, ds - \int_a^b B(s) \, f(s) \, ds \right\| \le L \int_a^b sgn(s - t_m) \, s \, \|f(s)\| \, ds.$$

Indeed, as

$$\begin{split} &\inf_{t \in [a,b]} \int_{a}^{b} |t-s| \, \|f(s)\| \, ds \\ &= \int_{a}^{b} |t_{m}-s| \, \|f(s)\| \, ds \\ &= \int_{a}^{t_{m}} (t_{m}-s) \, \|f(s)\| \, ds + \int_{t_{m}}^{b} (s-t_{m}) \, \|f(s)\| \, ds \\ &= t_{m} \left(\int_{a}^{t_{m}} \|f(s)\| \, ds - \int_{t_{m}}^{b} \|f(s)\| \, ds \right) + \int_{t_{m}}^{b} s \, \|f(s)\| \, ds - \int_{a}^{t_{m}} s \, \|f(s)\| \, ds \\ &= \int_{t_{m}}^{b} s \, \|f(s)\| \, ds - \int_{a}^{t_{m}} s \, \|f(s)\| \, ds \\ &= \int_{a}^{b} sgn \, (s-t_{m}) \, s \, \|f(s)\| \, ds, \end{split}$$

then the best inequality we can get from the first part of (2.3) is obtained for $t = t_m \in (a, b)$.

We recall that a function $F:[a,b]\to \mathcal{L}(X)$ is said to be *strongly continuous* if for all $x\in X$, the maps $s\mapsto F(s)\,x:[a,b]\to X$ are continuous on [a,b]. In this case the function $s\mapsto \|B(s)\|:[a,b]\to \mathbb{R}_+$ is (Lebesgue) measurable and bounded ([6]). The linear operator $L=\int_a^b F(s)\,ds$ (defined by $Lx:=\int_a^b F(s)\,xds$ for all $x\in X$) is bounded, because

$$||Lx|| \le \left(\int_a^b ||F(s)|| ds\right) \cdot ||x|| \text{ for all } x \in X.$$

In a similar manner to Theorem 2.1, we may prove the following result as well.

Theorem 2.5. Assume that $f:[a,b] \to X$ is Hölder continuous, i.e.,

$$(2.8) ||f(t) - f(s)|| \le K |t - s|^{\beta} \text{ for all } t, s \in [a, b],$$

where K > 0 and $\beta \in (0, 1]$.

If $B:[a,b]\to \mathcal{L}(X)$ is strongly continuous on [a,b], then we have the inequality:

$$(2.9) \quad \left\| \left(\int_{a}^{b} B(s) \, ds \right) f(t) - \int_{a}^{b} B(s) f(s) \, ds \right\|$$

$$\leq K \int_{a}^{b} |t - s|^{\beta} \|B(s)\| \, ds$$

$$\leq K \times \begin{cases} \frac{(b - t)^{\beta + 1} + (t - a)^{\beta + 1}}{\beta + 1} \||B|\|_{[a,b],\infty} & \text{if} \quad \|B(\cdot)\| \in L_{\infty} \left([a, b] ; \mathbb{R}_{+} \right) ; \\ \left[\frac{(b - t)^{q\beta + 1} + (t - a)^{q\beta + 1}}{q\beta + 1} \right]^{\frac{1}{q}} \||B|\|_{[a,b],p} & \text{if} \quad p > 1, \ \frac{1}{p} + \frac{1}{q} = 1 \\ & \text{and} \quad \|B(\cdot)\| \in L_{p} \left([a, b] ; \mathbb{R}_{+} \right) ; \\ \left[\frac{1}{2} \left(b - a \right) + \left| t - \frac{a + b}{2} \right| \right]^{\beta} \||B|\|_{[a,b],1} \end{cases}$$

for any $t \in [a, b]$.

The following corollary holds.

Corollary 2.6. Assume that f and B are as in Theorem 2.5. If, in addition, $\int_a^b B(s) ds$ is invertible in $\mathcal{L}(X)$, then we have the inequality:

(2.10)
$$\left\| f(t) - \left(\int_{a}^{b} B(s) \, ds \right)^{-1} \int_{a}^{b} B(s) \, f(s) \, ds \right\|$$

$$\leq K \left\| \left(\int_{a}^{b} B(s) \, ds \right)^{-1} \right\| \int_{a}^{b} |t - s|^{\beta} \|B(s)\| \, ds$$

for any $t \in [a, b]$.

Remark 2.7. It is obvious that the inequality (2.10) contains as a particular case what is the so called Ostrowski's inequality for weighted integrals (see (1.2)).

3. Inequalities for Linear Operators

Let $0 \le a < b < \infty$ and $A \in \mathcal{L}(X)$. We recall that the operatorial norm of A is given by

$$||A|| = \sup \{||Ax|| : ||x|| \le 1\}.$$

The resolvent set of A (denoted by $\rho(A)$) is the set of all complex scalars λ for which $\lambda I - A$ is an invertible operator. Here I is the identity operator in $\mathcal{L}(X)$. The complementary set of $\rho(A)$ in the complex plane, denoted by $\sigma(A)$, is the spectrum of A. It is known that $\sigma(A)$ is a compact set in \mathbb{C} . The series $\left(\sum_{n\geq 0} \frac{(tA)^n}{n!}\right)$ converges absolutely and locally uniformly for $t\in\mathbb{R}$. If we denote by e^{tA} its sum, then

$$||e^{tA}|| \le e^{|t|||A||}, \quad t \in \mathbb{R}.$$

Proposition 3.1. Let X be a real or complex Banach space, $A \in \mathcal{L}(X)$ and β be a non-null real number such that $-\beta \in \rho(A)$. Then for all $0 \le a < b < \infty$ and each $s \in [a, b]$, we have

(3.1)
$$\left\| \frac{e^{\beta b} - e^{\beta a}}{\beta} \cdot e^{sA} - (\beta I + A)^{-1} \left[e^{b(\beta I + A)} - e^{a(\beta I + A)} \right] \right\|$$

$$\leq \|A\| e^{b\|A\|} \cdot \left[\frac{1}{4} (b - a)^2 + \left(s - \frac{a + b}{2} \right)^2 \right] \cdot \max \left\{ e^{\beta b}, e^{\beta a} \right\}.$$

Proof. We apply the second inequality from Corollary 2.2 in the following particular case.

$$B(\tau) := e^{\tau A}, \quad f(\tau) = e^{\beta \tau} x, \quad \tau \in [a, b], \quad x \in X.$$

For all $\xi, \eta \in [a, b]$ there exists an α between ξ and η such that

$$\begin{aligned} \|B\left(\xi\right) - B\left(\eta\right)\| &= \left\| \sum_{n=1}^{\infty} \frac{(\xi^{n} - \eta^{n})}{n!} A^{n} \right\| \\ &= \left\| (\xi - \eta) A \sum_{n=0}^{\infty} \frac{(\alpha A)^{n}}{n!} \right\| \\ &\leq \|A\| \left\| e^{\alpha A} \right\| \cdot \left| \xi - \eta \right| \\ &\leq \|A\| \left\| e^{b\|A\|} \cdot \left| \xi - \eta \right| . \end{aligned}$$

The function $\tau \mapsto e^{\tau A}$ is thus Lipschitzian on [a,b] with the constant $L:=\|A\|\,e^{b\cdot\|A\|}$. On the other hand we have

$$\int_{a}^{b} e^{\tau A} \left(e^{\beta \tau} x \right) d\tau = \int_{a}^{b} e^{\tau A} \left(e^{\beta \tau} I x \right) d\tau$$
$$= \int_{a}^{b} e^{\tau (A+\beta I)} x d\tau$$
$$= (A+\beta I)^{-1} \left[e^{b(A+\beta I)} - e^{a(A+\beta I)} \right] x,$$

and

$$|\|f\||_{[a,b],\infty} = \sup_{\tau \in [a,b]} \|e^{\tau\beta}x\| = \max\{e^{\beta b}, e^{\beta a}\} \cdot \|x\|.$$

Placing all the above results in the second inequality from (2.3) and taking the supremum for all $x \in X$, we will obtain the desired inequality (3.1).

Remark 3.2. Let $A \in \mathcal{L}(X)$ such that $0 \in \rho(A)$. Taking the limit as $\beta \to 0$ in (3.1), we get the inequality

$$\|(b-a)e^{sA} - A^{-1}[e^{bA} - e^{aA}]\| \le \|A\|e^{b\|A\|} \cdot \left[\frac{1}{4}(b-a)^2 + \left(s - \frac{a+b}{2}\right)^2\right],$$

where a, b and s are as in Proposition 3.1.

Proposition 3.3. Let $A \in \mathcal{L}(X)$ be an invertible operator, $t \geq 0$ and $0 \leq s \leq t$. Then the following inequality holds:

(3.2)
$$\left\| \frac{t^2}{2} \sin(sA) - A^{-2} \left[\sin(tA) - tA \cos(tA) \right] \right\| \le \frac{2s^3 + 2t^3 - 3st^2}{6} \left\| A \right\|.$$

In particular, if $X = \mathbb{R}$, A = 1 and s = 0 it follows the scalar inequality

$$|\sin t - t\cos t| \le \frac{t^3}{3}$$
, for all $t \ge 0$.

Proof. We apply the inequality from (2.3) in the following particular case:

$$B(\tau) = \sin(\tau A) := \sum_{n=0}^{\infty} (-1)^n \frac{(\tau A)^{2n+1}}{(2n+1)!}, \quad \tau \ge 0,$$

and

$$(3.3) f(\tau) = \tau \cdot x, \text{ for fixed } x \in X.$$

For each $\xi, \eta \in [0, t]$, we have

$$||B(\xi) - B(\eta)|| = \left\| A \left(\sum_{n=0}^{\infty} (-1)^n \frac{(\xi - \eta) \alpha^{2n}}{(2n)!} A^{2n} \right) \right\|$$

$$\leq ||A|| ||\xi - \eta|| \cdot ||\cos(\alpha A)||$$

$$\leq ||A|| ||\xi - \eta||,$$

where α is a real number between ξ and η , i.e., the function $\tau \longmapsto B(\tau) : \mathbb{R}_+ \to \mathcal{L}(X)$ is ||A|| -Lipschitzian.

Moreover, it is easy to see that

$$\int_0^t B(\tau) f(\tau) d\tau = A^{-2} \left[\sin(tA) - tA \cos(tA) \right] x$$

and

(3.4)
$$\int_{0}^{t} |s - \tau| |f(\tau)| d\tau = \frac{2s^{3} + 2t^{3} - 3st^{2}}{6} ||x||.$$

Applying the first inequality from (2.3) and taking the supremum for $x \in X$ with $||x|| \le 1$, we get (3.2).

4. QUADRATURE FORMULAE

Consider the division of the interval [a, b] given by

$$(4.1) I_n : a = t_0 < t_1 < \dots < t_{n-1} < t_n = b$$

and $h_i := t_{i+1} - t_i$, $\nu(h) := \max_{i=\overline{0,n-1}} h_i$. For the intermediate points $\xi := (\xi_0, \dots, \xi_{n-1})$ with $\xi_i \in [t_i, t_{i+1}]$, $i = \overline{0, n-1}$, define the sum

(4.2)
$$S_n^{(1)}(B, f; I_n, \xi) := \sum_{i=0}^{n-1} B(\xi_i) \int_{t_i}^{t_{i+1}} f(s) \, ds.$$

Then we may state the following result in approximating the integral

$$\int_{a}^{b} B(s) f(s) ds,$$

based on Theorem 2.1.

Theorem 4.1. Assume that $B:[a,b] \to \mathcal{L}(X)$ is Hölder continuous on [a,b], i.e., it satisfies the condition (2.1) and $f:[a,b] \to X$ is Bochner integrable on [a,b]. Then we have the representation

(4.3)
$$\int_{a}^{b} B(s) f(s) ds = S_{n}^{(1)} (B, f; I_{n}, \xi) + R_{n}^{(1)} (B, f; I_{n}, \xi),$$

where $S_n^{(1)}(B, f; I_n, \xi)$ is as given by (4.2) and the remainder $R_n^{(1)}(B, f; I_n, \xi)$ satisfies the estimate

$$\begin{split} & \left\| R_{n}^{(1)}\left(B,f;I_{n},\xi\right) \right\| \\ & \leq H \times \left\{ \begin{array}{l} \frac{1}{\alpha+1} \, |||f|||_{[a,b],\infty} \sum_{i=0}^{n-1} \left[(t_{i+1} - \xi_{i})^{\alpha+1} + (\xi_{i} - t_{i})^{\alpha+1} \right] \\ \frac{1}{(q\alpha+1)^{\frac{1}{q}}} \, |||f|||_{[a,b],p} \left\{ \sum_{i=0}^{n-1} \left[(t_{i+1} - \xi_{i})^{q\alpha+1} + (\xi_{i} - t_{i})^{q\alpha+1} \right] \right\}^{\frac{1}{q}}, \\ & p > 1, \, \frac{1}{p} + \frac{1}{q} = 1 \\ \left[\frac{1}{2} \nu \left(h \right) + \max_{i=0,n-1} \left| \xi_{i} - \frac{t_{i+1} + t_{i}}{2} \right| \right]^{\alpha} \, |||f|||_{[a,b],1} \\ & \leq H \times \left\{ \begin{array}{l} \frac{1}{\alpha+1} \, |||f|||_{[a,b],\infty} \sum_{i=0}^{n-1} h_{i}^{\alpha+1} \\ \frac{1}{(q\alpha+1)^{\frac{1}{q}}} \, |||f|||_{[a,b],p} \left(\sum_{i=0}^{n-1} h_{i}^{q\alpha+1} \right)^{\frac{1}{q}}, \quad p > 1, \, \frac{1}{p} + \frac{1}{q} = 1 \\ \left[\frac{1}{2} \nu \left(h \right) + \max_{i=0,n-1} \left| \xi_{i} - \frac{t_{i+1} + t_{i}}{2} \right| \right]^{\alpha} \, |||f|||_{[a,b],1} \\ & \leq H \times \left\{ \begin{array}{l} \frac{1}{\alpha+1} \, |||f|||_{[a,b],\infty} \left[\nu \left(h \right) \right]^{\alpha} \\ \frac{(b-a)^{\frac{1}{q}}}{(q\alpha+1)^{\frac{1}{q}}} \, |||f|||_{[a,b],p} \left[\nu \left(h \right) \right]^{\alpha} \\ ||||f|||_{[a,b],1} \left[\nu \left(h \right) \right]^{\alpha}. \end{array} \right. \end{split}$$

Proof. Applying Theorem 4.1 on $[x_i, x_{i+1}]$ $(i = \overline{0, n-1})$, we may write that

$$\left\| \int_{t_{i}}^{t_{i+1}} B(s) f(s) ds - B(\xi_{i}) \int_{t_{i}}^{t_{i+1}} f(s) ds \right\|$$

$$\leq H \times \left\{ \begin{bmatrix} \frac{(t_{i+1} - \xi_{i})^{\alpha+1} + (\xi_{i} - t_{i})^{\alpha+1}}{\alpha+1} \end{bmatrix} \||f||_{[t_{i}, t_{i+1}], \infty} \right.$$

$$\left. \leq H \times \left\{ \begin{bmatrix} \frac{(t_{i+1} - \xi_{i})^{q\alpha+1} + (\xi_{i} - t_{i})^{q\alpha+1}}{q\alpha+1} \end{bmatrix}^{\frac{1}{q}} \||f||_{[t_{i}, t_{i+1}], p} \right.$$

$$\left. \begin{bmatrix} \frac{1}{2} (t_{i+1} - t_{i}) + \left| \xi_{i} - \frac{t_{i+1} + t_{i}}{2} \right| \right]^{\alpha} \||f||_{[t_{i}, t_{i+1}], 1}.$$

Summing over i from 0 to n-1 and using the generalised triangle inequality we get

$$\begin{aligned} & \|R_{n}^{(1)}\left(B,f;I_{n},\xi\right)\| \\ & \leq \sum_{i=0}^{n-1} \left\| \int_{t_{i}}^{t_{i+1}} B\left(s\right) f\left(s\right) ds - B\left(\xi_{i}\right) \int_{t_{i}}^{t_{i+1}} f\left(s\right) ds \right\| \\ & \leq \left\| \frac{1}{\alpha+1} \sum_{i=0}^{n-1} \left[\left(t_{i+1} - \xi_{i}\right)^{\alpha+1} + \left(\xi_{i} - t_{i}\right)^{\alpha+1} \right] \||f|\|_{[t_{i},t_{i+1}],\infty} \\ & \leq H \times \left\{ \frac{1}{\left(q\alpha+1\right)^{\frac{1}{q}}} \left[\sum_{i=0}^{n-1} \left(t_{i+1} - \xi_{i}\right)^{q\alpha+1} + \left(\xi_{i} - t_{i}\right)^{q\alpha+1} \right]^{\frac{1}{q}} \||f|\|_{[t_{i},t_{i+1}],p} \\ & \leq \frac{1}{\left(q\alpha+1\right)^{\frac{1}{q}}} \left[\sum_{i=0}^{n-1} \left(t_{i+1} - \xi_{i}\right)^{q\alpha+1} + \left(\xi_{i} - t_{i}\right)^{q\alpha+1} \right]^{\frac{1}{q}} \||f|\|_{[t_{i},t_{i+1}],p} \end{aligned}$$

Now, observe that

$$\sum_{i=0}^{n-1} \left[(t_{i+1} - \xi_i)^{\alpha+1} + (\xi_i - t_i)^{\alpha+1} \right] \||f|\|_{[t_i, t_{i+1}], \infty}$$

$$\leq \||f|\|_{[a,b], \infty} \sum_{i=0}^{n-1} \left[(t_{i+1} - \xi_i)^{\alpha+1} + (\xi_i - t_i)^{\alpha+1} \right]$$

$$\leq \||f|\|_{[a,b], \infty} \sum_{i=0}^{n-1} h_i^{\alpha+1}$$

$$\leq \||f|\|_{[a,b], \infty} (b-a) \left[\nu \left(h \right) \right]^{\alpha}.$$

Using the discrete Hölder inequality, we may write that

$$\begin{split} & \left[\sum_{i=0}^{n-1} \left(t_{i+1} - \xi_i \right)^{q\alpha+1} + \left(\xi_i - t_i \right)^{q\alpha+1} \right]^{\frac{1}{q}} \| \| f \|_{[t_i, t_{i+1}], p} \\ & \leq \left[\sum_{i=0}^{n-1} \left(\left[\left(t_{i+1} - \xi_i \right)^{q\alpha+1} + \left(\xi_i - t_i \right)^{q\alpha+1} \right]^{\frac{1}{q}} \right)^q \right]^{\frac{1}{q}} \times \left[\sum_{i=0}^{n-1} \| \| f \|_{[t_i, t_{i+1}], p}^p \right]^{\frac{1}{p}} \\ & = \left\{ \sum_{i=0}^{n-1} \left[\left(t_{i+1} - \xi_i \right)^{q\alpha+1} + \left(\xi_i - t_i \right)^{q\alpha+1} \right] \right\}^{\frac{1}{q}} \left(\int_a^b \| f (t) \|^p \, ds \right)^{\frac{1}{p}} \\ & \leq \left(\sum_{i=0}^{n-1} h_i^{q\alpha+1} \right)^{\frac{1}{q}} \| \| f \|_{[a,b], p}^p \\ & \leq (b-a)^{\frac{1}{q}} \| \| f \|_{[a,b], p} \left[\nu \left(h \right) \right]^{\alpha} \, . \end{split}$$

Finally, we have

$$\begin{split} \sum_{i=0}^{n-1} \left[\frac{1}{2} h_i + \left| \xi_i - \frac{t_{i+1} + t_i}{2} \right| \right]^{\alpha} \| |f| \|_{[t_i, t_{i+1}], 1} \\ & \leq \left[\frac{1}{2} \max_{i=\overline{0}, n-1} h_i + \max_{i=\overline{0}, n-1} \left| \xi_i - \frac{t_{i+1} + t_i}{2} \right| \right]^{\alpha} \| |f| \|_{[a, b], 1} \\ & \leq \left[\nu \left(h \right) \right]^{\alpha} \| |f| \|_{[a, b], 1} \end{split}$$

and the theorem is proved.

The following corollary holds.

Corollary 4.2. If B is Lipschitzian with the constant L, then we have the representation (4.3) and the remainder $R_n^{(1)}(B, f; I_n, \xi)$ satisfies the estimates:

$$\begin{aligned} \|R_{n}^{(1)}\left(B,f;I_{n},\xi\right)\| & \qquad \left\{ \begin{array}{l} \|f\|\|_{[a,b],\infty} \left[\frac{1}{4}\sum_{i=0}^{n-1}h_{i}^{2} + \sum_{i=0}^{n-1}\left(\xi_{i} - \frac{t_{i+1} + t_{i}}{2}\right)^{2}\right] \\ \leq L \times \left\{ \begin{array}{l} \frac{1}{(q+1)^{\frac{1}{q}}} \||f|\|_{[a,b],p} \left\{ \sum_{i=0}^{n-1}\left[(t_{i+1} - \xi_{i})^{q+1} + (\xi_{i} - t_{i})^{q+1}\right]\right\}^{\frac{1}{q}}, \\ p > 1, \ \frac{1}{p} + \frac{1}{q} = 1 \\ \left[\frac{1}{2}\nu\left(h\right) + \max_{i=0,n-1}\left|\xi_{i} - \frac{t_{i+1} + t_{i}}{2}\right|\right] \||f|\|_{[a,b],1} \\ \leq L \times \left\{ \begin{array}{l} \frac{1}{2} \||f|\|_{[a,b],\infty} \sum_{i=0}^{n-1}h_{i}^{2} \\ \left[\frac{1}{2}\nu\left(h\right) + \max_{i=0,n-1}\left|\xi_{i} - \frac{t_{i+1} + t_{i}}{2}\right|\right] \||f|\|_{[a,b],1} \\ \left[\frac{1}{2} \||f|\|_{[a,b],\infty} \left(b-a\right)\nu\left(h\right) \\ \leq L \times \left\{ \begin{array}{l} \frac{1}{2} \||f|\|_{[a,b],\infty} \left(b-a\right)\nu\left(h\right) \\ \left(\frac{b-a}{q+1}\right)^{\frac{1}{q}} \||f|\|_{[a,b],p}\nu\left(h\right) \\ \||f|\|_{[a,b],1} \nu\left(h\right). \end{array} \right. \end{aligned}$$

The second possibility we have for approximating the integral $\int_a^b B(s) f(s) ds$ is embodied in the following theorem based on Theorem 2.5.

Theorem 4.3. Assume that $f:[a,b] \to X$ is Hölder continuous, i.e., the condition (2.8) holds. If $B:[a,b] \to \mathcal{L}(X)$ is strongly continuous on [a,b], then we have the representation:

(4.5)
$$\int_{a}^{b} B(s) f(s) ds = S_{n}^{(2)} (B, f; I_{n}, \xi) + R_{n}^{(2)} (B, f; I_{n}, \xi),$$

where

(4.6)
$$S_n^{(2)}(B, f; I_n, \xi) := \sum_{i=0}^{n-1} \left(\int_{t_i}^{t_{i+1}} B(s) \, ds \right) f(\xi_i)$$

and the remainder $R_n^{(2)}(B, f; I_n, \xi)$ satisfies the estimate:

(4.7)
$$\|R_n^{(2)}(B, f; I_n, \xi)\|$$

$$\leq K \times \left\{ \begin{array}{l} \frac{1}{\beta+1} \, |||B|||_{[a,b],\infty} \sum_{i=0}^{n-1} \left[(t_{i+1} - \xi_i)^{\beta+1} + (\xi_i - t_i)^{\beta+1} \right] \\ \frac{1}{(q\beta+1)^{\frac{1}{q}}} \, |||B|||_{[a,b],p} \left\{ \sum_{i=0}^{n-1} \left[(t_{i+1} - \xi_i)^{q\beta+1} + (\xi_i - t_i)^{q\beta+1} \right] \right\}^{\frac{1}{q}}, \\ p > 1, \, \frac{1}{p} + \frac{1}{q} = 1 \\ \left[\frac{1}{2} \nu \left(h \right) + \max_{i=0,n-1} \left| \xi_i - \frac{t_{i+1} + t_i}{2} \right| \right]^{\beta} \, |||B|||_{[a,b],1} \\ \leq K \times \left\{ \begin{array}{l} \frac{1}{\beta+1} \, |||B|||_{[a,b],\infty} \sum_{i=0}^{n-1} h_i^{\beta+1} \\ \frac{1}{(q\beta+1)^{\frac{1}{q}}} \, |||B|||_{[a,b],p} \left\{ \sum_{i=0}^{n-1} h_i^{q\beta+1} \right\}^{\frac{1}{q}}, \quad p > 1, \, \frac{1}{p} + \frac{1}{q} = 1; \\ \left[\frac{1}{2} \nu \left(h \right) + \max_{i=0,n-1} \left| \xi_i - \frac{t_{i+1} + t_i}{2} \right| \right]^{\beta} \, |||B|||_{[a,b],1} \\ \leq K \times \left\{ \begin{array}{l} \frac{1}{\beta+1} \, |||B|||_{[a,b],\infty} \left(b - a \right) \left[\nu \left(h \right) \right]^{\beta} \\ \frac{(b-a)^{\frac{1}{q}}}{(q\beta+1)^{\frac{1}{q}}} \, |||B|||_{[a,b],p} \left[\nu \left(h \right) \right]^{\beta}, \quad p > 1, \, \frac{1}{p} + \frac{1}{q} = 1 \\ |||B|||_{[a,b],1} \left[\nu \left(h \right) \right]^{\beta}. \end{array} \right. \right. \right.$$

If we consider the quadrature

(4.8)
$$M_n^{(1)}(B, f; I_n) := \sum_{i=0}^{n-1} B\left(\frac{t_i + t_{i+1}}{2}\right) \int_{t_i}^{t_{i+1}} f(s) \, ds,$$

then we have the representation

(4.9)
$$\int_{a}^{b} B(s) f(s) ds = M_{n}^{(1)}(B, f; I_{n}) + R_{n}^{(1)}(B, f; I_{n}),$$

and the remainder $R_n^{(1)}(B, f; I_n)$ satisfies the estimate:

$$\leq H \times \left\{ \begin{array}{l} \frac{1}{2^{\alpha}(\alpha+1)} \left(b-a\right) \left\| |f| \right\|_{[a,b],\infty} \left[\nu \left(h\right)\right]^{\alpha} \\ \\ \frac{\left(b-a\right)^{\frac{1}{q}}}{2^{\alpha}(q\alpha+1)^{\frac{1}{q}}} \left\| |f| \right\|_{[a,b],p} \left[\nu \left(h\right)\right]^{\alpha}, \quad p > 1, \ \frac{1}{p} + \frac{1}{q} = 1; \\ \\ \frac{1}{2^{\alpha}} \left\| |f| \right\|_{[a,b],1} \left[\nu \left(h\right)\right]^{\alpha}, \end{array} \right.$$

provided that B and f are as in Theorem 4.1.

Now, if we consider the quadrature

(4.11)
$$M_n^{(2)}(B, f; I_n) := \sum_{i=0}^{n-1} \left(\int_{t_i}^{t_{i+1}} B(s) \, ds \right) f\left(\frac{t_i + t_{i+1}}{2}\right),$$

then we also have

(4.12)
$$\int_{a}^{b} B(s) f(s) ds = M_{n}^{(2)}(B, f; I_{n}) + R_{n}^{(2)}(B, f; I_{n}),$$

and in this case the remainder satisfies the bound

(4.13)
$$\|R_n^{(2)}(B, f; I_n)\|$$

$$\begin{array}{l} \text{the remainder satisfies the bound} \\ \frac{1}{2^{\beta}}\left(B,f;I_{n}\right) \Big\| \\ \leq K \times \left\{ \begin{array}{l} \frac{1}{2^{\beta}\left(\beta+1\right)} \left\| |B| \right\|_{[a,b],\infty} \sum\limits_{i=0}^{n-1} h_{i}^{\beta+1} \\ \\ \frac{1}{2^{\beta}\left(q\beta+1\right)^{\frac{1}{q}}} \left\| |B| \right\|_{[a,b],p} \left(\sum\limits_{i=0}^{n-1} h_{i}^{q\beta+1} \right)^{\frac{1}{q}}, \quad p>1, \ \frac{1}{p}+\frac{1}{q}=1; \\ \frac{1}{2^{\beta}} \left[\nu\left(h\right) \right]^{\beta} \left\| |B| \right\|_{[a,b],1} \\ \leq K \times \left\{ \begin{array}{l} \frac{1}{2^{\beta}\left(\beta+1\right)} \left(b-a\right) \left\| |B| \right\|_{[a,b],\infty} \left[\nu\left(h\right) \right]^{\beta} \\ \\ \frac{\left(b-a\right)^{\frac{1}{q}}}{2^{\beta}\left(q\beta+1\right)^{\frac{1}{q}}} \left\| |B| \right\|_{[a,b],p} \left[\nu\left(h\right) \right]^{\beta}, \quad p>1, \ \frac{1}{p}+\frac{1}{q}=1; \\ \\ \frac{1}{2^{\beta}} \left\| |B| \right\|_{[a,b],1} \left[\nu\left(h\right) \right]^{\beta}, \end{array} \right. \end{array} \right.$$

provided B and f satisfy the hypothesis of Theorem 4.3.

Now, if we consider the equidistant partitioning of [a, b],

$$E_n: t_i := a + \left(\frac{b-a}{n}\right) \cdot i, \quad i = \overline{0, n},$$

then $M_n^{(1)}(B, f; E_n)$ becomes

$$(4.14) M_n^{(1)}(B,f) := \sum_{i=0}^{n-1} B\left(a + \left(i + \frac{1}{2}\right) \cdot \frac{b-a}{n}\right) \int_{a + \frac{b-a}{n} \cdot i}^{a + \frac{b-a}{n} \cdot (i+1)} f(s) \, ds$$

and then

(4.15)
$$\int_{a}^{b} B(s) f(s) ds = M_{n}^{(1)}(B, f) + R_{n}^{(1)}(B, f),$$

where the remainder satisfies the bound

Also, we have

(4.17)
$$\int_{a}^{b} B(s) f(s) ds = M_{n}^{(2)}(B, f) + R_{n}^{(2)}(B, f),$$

where

$$M_{n}^{(2)}\left(B,f\right):=\sum_{i=0}^{n-1}\left(\int_{a+\frac{b-a}{n}\cdot i}^{a+\frac{b-a}{n}\cdot (i+1)}B\left(s\right)ds\right)f\left(a+\left(i+\frac{1}{2}\right)\cdot\frac{b-a}{n}\right),$$

and the remainder $R_n^{(2)}\left(B,f\right)$ satisfies the estimate

(4.18)
$$\|R_{n}^{(2)}(B,f)\| \leq K \times \begin{cases} \frac{(b-a)^{\beta+1}}{2^{\beta}(\beta+1) n^{\beta}} \|B\|_{[a,b],\infty} \\ \frac{(b-a)^{\beta+\frac{1}{q}}}{2^{\beta}(\beta+1) n^{\beta}} \||B|\|_{[a,b],p}, & p > 1, \frac{1}{p} + \frac{1}{q} = 1; \\ \frac{(b-a)^{\beta}}{2^{\beta}n^{\beta}} \||B|\|_{[a,b],1}. \end{cases}$$

5. APPLICATION FOR DIFFERENTIAL EQUATIONS IN BANACH SPACES

We recall that a family of operators $\mathcal{U} = \{U(t,s) : t \geq s\} \subset \mathcal{L}(X)$ with $t,s \in \mathbb{R}$ or $t,s \in \mathbb{R}$, is called an *evolution family* if:

- (i) U(t,t) = I and $U(t,s)U(s,\tau) = U(t,\tau)$ for all $t \ge s \ge \tau$; and
- (ii) for each $x \in X$, the function $(t,s) \longmapsto U(t,s) x$ is continuous for $t \geq s$.

Here I is the identity operator in $\mathcal{L}(X)$.

An evolution family $\{U(t,s): t \geq s\}$ is said to be exponentially bounded if, in addition,

(iii) there exist the constants $M \geq 1$ and $\omega > 0$ such that

(5.1)
$$||U(t,s)|| \le Me^{\omega(t-s)}, \ t \ge s.$$

Evolution families appear as solutions for abstract Cauchy problems of the form

$$\dot{u}\left(t\right) = A\left(t\right)u\left(t\right), \ u\left(s\right) = x_{s}, \ x_{s} \in \mathcal{D}\left(A\left(s\right)\right), \ t \geq s, \ t, s \in \mathbb{R} \text{ (or } \mathbb{R}_{+}),$$

where the domain $\mathcal{D}\left(A\left(s\right)\right)$ of the linear operator $A\left(s\right)$ is assumed to be dense in X. An evolution family is said to solve the abstract Cauchy problem (5.2) if for each $s\in\mathbb{R}$ there exists a dense subset $Y_s\subseteq D\left(A\left(s\right)\right)$ such that for each $x_s\in Y_s$ the function

$$t \longmapsto u(t) := U(t,s) x_s : [s,\infty) \to X,$$

is differentiable, $u\left(t\right)\in D\left(A\left(t\right)\right)$ for all $t\geq s$ and

$$\frac{d}{dt}u(t) = A(t)u(t), \quad t \ge s.$$

This later definition can be found in [15]. In this definition the operators A(t) can be unbounded. The Cauchy problem (5.2) is called *well-posed* if there exists an evolution family $\{U(t,s):t\geq s\}$ which solves it.

It is known that the well-posedness of (5.2) can be destroyed by a bounded and continuous perturbation [13]. Let $f : \mathbb{R} \to X$ be a locally integrable function. Consider the inhomogeneous Cauchy problem:

(5.3)
$$\dot{u}(t) = A(t)u(t) + f(t), \ u(s) = x_s \in X, \ t \ge s, \ t, s \in \mathbb{R} \text{ (or } \mathbb{R}_+).$$

A continuous function $t \mapsto u(t) : [s, \infty) \to X$ is said to a *mild solution* of the Cauchy problem (5.3) if $u(s) = x_s$ and there exists an evolution family $\{U(t, \tau) : t \ge \tau\}$ such that

$$(5.4) u\left(t\right) = U\left(t,s\right)x_{s} + \int_{s}^{t} U\left(t,\tau\right)f\left(\tau\right)d\tau, \ t \geq s, \ x_{s} \in X, \ t,s \in \mathbb{R} \text{ (or } \mathbb{R}_{+}\text{)}.$$

The following theorem holds.

Theorem 5.1. Let $\mathcal{U} = \{U(\nu, \eta) : \nu \geq \eta\} \subset \mathcal{L}(X)$ be an evolution family and $f : \mathbb{R} \to X$ be a locally Bochner integrable and locally bounded function. We assume that for all $\nu \in \mathbb{R}$ (or \mathbb{R}_+) the function $\eta \longmapsto U(\nu, \eta) : [\nu, \infty) \to \mathcal{L}(X)$ is locally Hölder continuous (i.e. for all $a, b \geq \nu$, a < b, there exist $\alpha \in (0, 1]$ and H > 0 such that

$$||U(\nu,t) - U(\nu,s)|| \le H |t-s|^{\alpha}$$
, for all $t, s \in [a,b]$).

We use the notations in Section 4 for a=0 and b=t>0. The map $u\left(\cdot\right)$ from (5.4) can be represented as

(5.5)
$$u(t) = U(t,0) x_0 + \sum_{i=0}^{n-1} U(t,\xi_i) \int_{t_i}^{t_{i+1}} f(s) ds + R_n^{(1)}(\mathcal{U}, f, I_n, \xi)$$

where the remainder $R_n^{(1)}(\mathcal{U}, f, I_n, \xi)$ satisfies the estimate

$$||R_n^{(1)}(\mathcal{U}, f, I_n, \xi)|| \le \frac{H}{\alpha + 1} |||f|||_{[0,t],\infty} \sum_{i=0}^{n-1} \left[(t_{i+1} - \xi_i)^{\alpha+1} + (\xi_i - t_i)^{\alpha+1} \right].$$

Proof. It follows by representation (4.3) and the first estimate after it.

Moreover, if n is a natural number, $i \in \{0, \dots, n\}$, $t_i := \frac{t \cdot i}{n}$ and $\xi_i := \frac{(2i+1)t}{2n}$, then

(5.6)
$$u(t) = U(t,0) x_0 + \sum_{i=0}^{n-1} U\left(t, \frac{(2i+1)t}{2n}\right) \int_{\frac{t\cdot i}{n}}^{\frac{t\cdot (i+1)}{n}} f(s) ds + R_n^{(1)}$$

and the remainder $R_n^{(1)}$ satisfies the estimate

(5.7)
$$||R_n^{(1)}|| \le \frac{H}{\alpha + 1} \cdot \frac{t^{\alpha + 1}}{2^{\alpha} \cdot n^{\alpha}} |||f|||_{[0,t],\infty}.$$

The following theorem also holds.

Theorem 5.2. Let $\mathcal{U} = \{U(\nu, \eta) : \nu \geq \eta\} \subset \mathcal{L}(X)$ be an exponentially bounded evolution family of bounded linear operators acting on the Banach space X and $f: \mathbb{R} \to X$ be a locally Hölder continuous function, i.e., for all $a, b \in \mathbb{R}$, a < b there exist $\beta \in (0, 1]$ and K > 0 such that (2.8) holds. We use the notations of Section 4 for a = 0 and b = t > 0. The map $u(\cdot)$ from (5.4) can be represented as

(5.8)
$$u(t) = U(t,0) x_0 + \sum_{i=0}^{n-1} \left(\int_{t_i}^{t_{i+1}} U(t,\tau) d\tau \right) f(\xi_i) + R_n^{(2)} (\mathcal{U}, f, I_n, \xi)$$

where the remainder $R_n^{(2)}(\mathcal{U}, f, I_n, \xi)$ satisfies the estimate

$$||R_n^{(2)}(\mathcal{U}, f, I_n, \xi)|| \le \frac{KM}{\beta + 1} e^{\omega t} \sum_{i=0}^{n-1} \left[(t_{i+1} - \xi_i)^{\beta+1} + (\xi_i - t_i)^{\beta+1} \right].$$

Proof. It follows from the first estimate in (4.7) for B(s) := U(t, s), using the fact that

$$|||B(\cdot)|||_{[0,t],\infty} = \sup_{\tau \in [0,t]} ||U(t,\tau)|| \le \sup_{\tau \in [0,t]} Me^{\omega(t-\tau)} \le Me^{\omega t}.$$

Moreover, if n is a natural number, $i \in \{0, \dots, n\}$, $t_i := \frac{t \cdot i}{n}$ and $\xi_i := \frac{(2i+1)t}{2n}$ then

(5.9)
$$u(t) = U(t,0) x_0 + \sum_{i=0}^{n-1} \left(\int_{\frac{t \cdot i}{n}}^{\frac{t \cdot (i+1)}{n}} U(t,\tau) d\tau \right) f\left(\frac{(2i+1)t}{2n}\right) + R_n^{(2)}$$

and the remainder $R_n^{(2)}$ satisfies the estimate

(5.10)
$$||R_n^{(2)}|| \le \frac{KM}{\beta + 1} e^{\omega t} \cdot \frac{t^{\beta + 1}}{2^{\beta} \cdot n^{\beta}}.$$

6. SOME NUMERICAL EXAMPLES

1. Let $X=\mathbb{R}^2$, $x=(\xi,\eta)\in\mathbb{R}^2$, $\|x\|_2=\sqrt{\xi^r+\eta^2}$. We consider the linear 2-dimensional system

(6.1)
$$\begin{cases} \dot{u}_1(t) = (-1 - \sin^2 t) u_1(t) + (-1 + \sin t \cos t) u_2(t) + e^{-t}; \\ \dot{u}_2(t) = (1 + \sin t \cos t) u_1(t) + (-1 - \cos^2 t) u_2(t) + e^{-2t}; \\ u_1(0) = u_2(0) = 0. \end{cases}$$

If we denote

$$A(t) := \begin{pmatrix} -1 - \sin^2 t & -1 + \sin t \cos t \\ 1 + \sin t \cos t & -1 - \cos^2 t \end{pmatrix}, \quad f(t) = (e^{-t}, e^{-2t}), \quad x = (0, 0)$$

and we identify (ξ, η) with $\begin{pmatrix} \xi \\ \eta \end{pmatrix}$, then the above system is a Cauchy problem. The evolution family associated with A(t) is

$$U(t,s) = P(t) P^{-1}(s), t \ge s, t, s \in \mathbb{R},$$

where

(6.2)
$$P(t) = \begin{pmatrix} e^{-t} \cos t & e^{-2t} \sin t \\ -e^{-t} \sin t & e^{-2t} \cos t \end{pmatrix}, \quad t \in \mathbb{R}.$$

The exact solution of the system (6.1) is $u = (u_1, u_2)$, where

$$u_1(t) = (e^{-t}\cos t) E_1(t) + (e^{-2t}\sin t) E_2(t)$$

$$u_{2}(t) = -(e^{-t}\sin t) E_{1}(t) + (e^{-2t}\cos t) E_{2}(t), t \in \mathbb{R},$$

and

$$E_{1}(t) = \sin t + \frac{1}{2}e^{-t}(\cos t + \sin t) - \frac{1}{2},$$

$$E_{2}(t) = \sin t + \frac{1}{2}e^{t}(\sin t - \cos t) + \frac{1}{2},$$

see [2, Section 4] for details. The function $t\mapsto A\left(t\right)$ is bounded on $\mathbb R$ and therefore there exist M>1 and $\omega>0$

$$||U(t,s)|| \le Me^{\omega|t-s|}$$
, for all $t, s \in \mathbb{R}$.

Let $\xi \geq 0$ be fixed and $t, s \geq \xi$. Then there exists a real number μ between t and s such that

$$\left\|U\left(\xi,t\right)-U\left(\xi,s\right)\right\|=\left|t-s\right|\left\|U\left(\xi,\mu\right)A\left(\mu\right)\right\|\leq Me^{\omega\mu}\left|\left\|A\left(\cdot\right)\right\|\right|_{\infty}\cdot\left|t-s\right|,$$

that is, the function $\eta \mapsto U(\xi, \eta)$ is locally Lipschitz continuous on $[\xi, \infty)$. Using (6.2), it follows

$$U(t,s) = \begin{pmatrix} a_{11}(t,s) & a_{12}(t,s) \\ a_{21}(t,s) & a_{22}(t,s) \end{pmatrix},$$

where

$$\begin{array}{rcl} a_{11} \left(t,s \right) & = & e^{(s-t)} \cos t \cos s + e^{2(s-t)} \sin t \sin s; \\ a_{12} \left(t,s \right) & = & -e^{(s-t)} \cos t \sin s + \frac{1}{2} e^{2(s-t)} \sin t \cos s; \\ a_{21} \left(t,s \right) & = & -e^{(s-t)} \sin t \cos s + e^{2(s-t)} \cos t \sin s; \\ a_{22} \left(t,s \right) & = & e^{(s-t)} \sin t \sin s + \frac{1}{2} e^{2(s-t)} \cos t \cos s. \end{array}$$

Then from (5.6) we obtain the following approximating formula for $u(\cdot)$:

$$u_{1}(t) = -\sum_{i=0}^{n-1} \left[a_{11} \left(t, \frac{(2i+1)t}{2n} \right) \left(e^{-\frac{t(i+1)}{n}} - e^{-\frac{ti}{n}} \right) + \frac{1}{2} a_{12} \left(t, \frac{(2i+1)t}{2n} \right) \left(e^{-\frac{2t(i+1)}{n}} - e^{-\frac{2ti}{n}} \right) \right] + R_{1,n}^{(1)}$$

Figure 6.1: The behaviour of the error $\varepsilon_n\left(t\right):=\left\|\left(R_{1,n}^{(1)},R_{2,n}^{(1)}\right)\right\|_2$ for n=200.

and

$$u_{2}(t) = -\sum_{i=0}^{n-1} \left[a_{21} \left(t, \frac{(2i+1)t}{2n} \right) \left(e^{-\frac{t(i+1)}{n}} - e^{-\frac{ti}{n}} \right) + \frac{1}{2} a_{22} \left(t, \frac{(2i+1)t}{2n} \right) \left(e^{-\frac{2t(i+1)}{n}} - e^{-\frac{2ti}{n}} \right) \right] + R_{2,n}^{(1)},$$

where the remainder $R_n^{(1)} = \left(R_{1,n}^{(1)}, R_{2,n}^{(1)} \right)$ satisfies the estimate (5.7) with $\alpha = 1$, $H = Me^{\omega t} \left| \|A\left(\cdot\right)\| \right|_{\infty}$ and $\left| \|f\| \right|_{[0,t],\infty} \leq 2$.

Figure 6.1 contains the behaviour of the error $\varepsilon_n(t) := \left\| \left(R_{1,n}^{(1)}, R_{2,n}^{(1)} \right) \right\|_2$ for n = 200.

2. Let $X=\mathbb{R}$ and $U(t,s):=\frac{t+1}{s+1},\ t\geq s\geq 0$. It is clear that the family $\{U(t,s):t\geq s\geq 0\}\subset \mathcal{L}(\mathbb{R})$ is an exponentially bounded evolution family which solves the Cauchy problem

$$\dot{u}(t) = \frac{1}{t+1}u(t), \ u(s) = x_s \in \mathbb{R}, \ t \ge s \ge 0.$$

Consider the inhomogeneous Cauchy problem

(6.3)
$$\begin{cases} \dot{u}(t) = \frac{1}{t+1}u(t) + \cos\left[\ln(t+1)\right], & t \ge 0\\ u(0) = 0. \end{cases}$$

The solution of (6.3) is given by

$$u(t) = \int_0^t \frac{t+1}{\tau+1} \cos(\ln(\tau+1)) d\tau = (t+1) \sin[\ln(t+1)], \ t \ge 0.$$

Figure 6.2: The behaviour of the error $\varepsilon_n(t) := |R_n|$ for n = 400.

From (5.9) we obtain the approximating formula for $u(\cdot)$ as,

$$u(t) = (t+1)\sum_{i=0}^{n-1} \ln\left[\frac{n+ti+t}{n+ti}\right] \cos\left\{\ln\left[1+\frac{(2i+1)t}{2n}\right]\right\} + R_n,$$

where R_n satisfies the estimate (5.10) with $K=M=\omega=\beta=1.$ Indeed,

$$\frac{t+1}{s+1} \le e^t$$
, for all $t \ge s \ge 0$

and

$$\left|\cos\left[\ln{(t+1)}\right] - \cos\left[\ln{(s+1)}\right]\right| = |t-s| \left|\frac{1}{c+1}\sin\left[\ln{(c+1)}\right]\right| \le |t-s|$$

for all $t \ge s \ge 0$, where c is some real number between s and t.

The following Figure 6.2 contains the behaviour of the error $\varepsilon_n(t) := |R_n|$ for n = 400.

REFERENCES

- [1] G.A. ANASTASSIOU, Ostrowski type inequalities, *Proc. of Amer. Math. Soc.*, **123**(12) (1999), 3775–3781.
- [2] C. BUŞE, S.S. DRAGOMIR AND A. SOFO, Ostrowski's inequality for vector-valued functions of bounded semivariation and applications, *New Zealand J. Math.*, in press.
- [3] S.S. DRAGOMIR, N.S. BARNETT AND P. CERONE, An *n*-dimensional version of Ostrowski's inequality for mappings of Hölder type, *Kyungpook Math. J.*, **40**(1) (2000), 65–75.
- [4] S.S. DRAGOMIR, P. CERONE, J. ROUMELIOTIS AND S. WANG, A weighted version of Ostrowski inequality for mappings of Hölder type and applications in numerical analysis, *Bull. Math. Soc. Sc. Math. Roumanie*, **42**(90)(4) (1992), 301–304.
- [5] A.M. FINK, Bounds on the derivation of a function from its averages, *Czech. Math. J.*, **42** (1992), 289–310.

- [6] E. HILLE AND R.S. PHILIPS, Functional Analysis and Semi-Groups, Amer. Math. Soc. Colloq. Publ., Vol. 31, Providence, R.I., (1957).
- [7] M. MATIĆ, J.E. PEČARIĆ AND N. UJEVIĆ, Generalisation of weighted version of Ostrowski's inequality and some related results, *J. of Ineq. & App.*, **5** (2000), 639–666.
- [8] G.V. MILOVANOVIĆ, On some integral inequalities, *Univ. Beograd Publ. Elektrotehn Fak. Ser. Mat. Fiz.*, No. 498-541 (1975), 119–124.
- [9] G.V. MILOVANOVIĆ, O nekim funkcionalnim nejednakostima, *Univ. Beograd Publ. Elektrotehn Fak. Ser. Mat. Fiz.*, No. 599 (1977), 1–59.
- [10] D.S. MITRINOVIĆ, J.E. PEČARIĆ AND A.M. FINK, *Inequalities Involving Functions and Their Integrals and Derivatives*, Kluwer Academic Publishers, Dordrecht, 1991.
- [11] A. OSTROWSKI, Uber die Absolutabweichung einer differentienbaren Funktionen von ihren Integralmittelwert, *Comment. Math. Hel*, **10** (1938), 226–227.
- [12] J.E. PEČARIĆ AND B. SAVIĆ, O novom postupku razvijanja funkcija u red i nekim primjenama, *Zbornik radova V A KoV (Beograd)*, **9** (1983), 171–202.
- [13] R.S. PHILIPS, Perturbation theory from semi-groups of linear operators, *Trans. Amer. Math. Soc.*, **74** (1953), 199–221.
- [14] J. ROUMELIOTIS, P. CERONE AND S.S. DRAGOMIR, An Ostrowski type inequality for weighted mappings with bounded second derivatives, *J. KSIAM*, **3**(2) (1999), 107–119. *RGMIA Res. Rep. Coll.*, **1**(1) (1998), http://rgmia.vu.edu.au/vln1/index.html.
- [15] R. SCHNAUBELT, Exponential bounds and hyperbolicity of evolution families, Dissertation, Tubingen, 1996.