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2 N.S. BARNETT, C. BUSE, P. CERONE, AND S.S. DRAGOMIR

1. INTRODUCTION

In [12], Pe&aric and Sawi obtained the following Ostrowski type inequality for weighted
integrals (see also[7, Theorem 3]):

Theorem 1.1.Letw : [a, b] — [0, 00) be a weight function of, b] . Suppose that : [a,b] — R
satisfies

(1.1) f(t)— f(s)| < N|t—s|" forallt,s € [a,b],
whereN > 0 and0 < « < 1 are some constants. Then for an¥ [a, b]
[P () f(¢)dt . [P0t — ] w (1) dt

[Pw(tydt |~ [Pw(tydt
Further, if for some constantsand A

(1.2) ‘f (z) -

0<c<w(t) <A forall t € [a,b],

then for anyz € [a, b], we have

C[Jw(t) f ()t AL () J (x)
(1.3) ‘f(:c) () dt <N RGN ICESYICE
where
1 a+0bl]”
L(x):= [§(b—a)+ T = — 1
and

T — a)1+oz + (b . :L‘)H_a
(14+a)(b—a)

The inequality[(I.R) was rediscovered in [4] where further applications for different weights
and in Numerical Analysis were given.

For other results in connection to weighted Ostrowski inequalities| se¢ [3], [8] and [10].

In the present paper we extend the weighted Ostrowski’s inequality for vector-valued func-
tions and Bochner integrals and apply the obtained results to operatorial inequalities and linear
differential equations in Banach spaces. Some numerical experiments are also conducted.

J(z) = (

2. WEIGHTED INEQUALITIES

Let X be a Banach space anto < a < b < co. We denote by (X) the Banach algebra
of all bounded linear operators acting &n The norms of vectors or operators actingomwill
be denoted by-|| .

A function f : [a,b] — X is calledmeasurablef there exists a sequence of simple functions
fn @ la,b] — X which converges punctually almost everywhere[arb] at f. We recall also
that a measurable functigh: [a, b] — X is Bochner integrabléf and only if its norm function
(i.e. the functiort — || f (¢)|| : [a,b] — R,) is Lebesgue integrable da, b].

The following theorem holds.

Theorem 2.1. Assume thaB : [a,b] — L (X) is Holder continuous ofu, b], i.e.,
(2.1) |B(t)— B(s)|| < H|t—s|* forall t,s € [a,b],

whereH > 0 anda € (0, 1].
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WEIGHTED OSTROWSKITYPE INEQUALITIES 3

If f:[a,b] — X is Bochner integrable ofu, b], then we have the inequality:

(ZZ)H /f ds—/ (s) f (s) ds

SH/u—wwwmw

f (b—t)a+1+(t—a)a+l
a+1

11 11a5,00 it feLlo(la,b];X);

—(b _ t)']a-i—l (- a)qa+1 g _
< 1« Ay, £ p>1 2+L=1

- qo + 1
and fEqua?b}vX)u

a+b
2

(b—a)+‘t—

]HVWWJ

T 1
DN | —

for anyt € [a, b], where

[ fllf0.51,00 := €58 sup [Lf (£)]]

te[a,b]

b .
mmmﬁf—(/nfwwm), p>1

Proof. Firstly, we prove that the&l —valued functions — B (s) f (s) is Bochner integrable on
la,b]. Indeed, let(f,) be a sequence of —valued, simple functions which converge almost
everywhere orja, b] at the functionf. The mapss — B (s) f, (s) are measurable (because
they are continuous with the exception of a finite number of poittga, b]). Then

1B (s) fu(s) = B(s) [ ()| < |[B(s)[[ I /n (5) = f (s)] = O @.e. onfa, b]

whenn — oo so that the functios — B (s) f (s) : [a,b] — X is measurable. Now, using the
estimate

and

1B (s) f (s)Il < S IBOI-1If (), foralls € fa,0],

it is easy to see that the functien— B (s) f (s) is Bochner integrable ofa, b].
We have successively

HB(t)/abf(s)ds—/abB(s)f(s)ds

(B(t) = B(s)) f(s)ds

/H&NQ—B@Df@M%

/|| (DI ()] ds

IN

IN

SH/ﬁ—ﬂﬂU@m%
= M(t)
for anyt € [a, b], proving the first inequality iff (22).
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4 N.S. BARNETT, C. BUSE, P. CERONE, AND S.S. DRAGOMIR

Now, observe that

b
MO < H e [ 1=l ds

(b—t)"" + (t —a)*™

= H o —

and the first part of the second inequality is proved.
Using Holder’s integral inequality, we may state that

M) < H(/ju—swads)é(/ab||f<s)||f’ds);

1
_ (b_t)qu-l + (t . a)qoc-‘rl q
= e 171 ia -
proving the second part of the second inequality.
Finally, we observe that
b
M) < H s t—=s[" [ IS (s)]l ds
s€|a, a
= Hmax{(b—1)", (= a)*} .
1 a+bl]”
= m{50-a+|e= 5| Wl
and the theorem is proved. O

The following corollary holds.

Corollary 2.2. Assume thaB : [a,b] — £ (X) is Lipschitzian with the constart > 0. Then
we have the inequality

(2.3) HB(t)/abf(s)ds—/abB(s)f(s)ds

b
SL/ 1t — | [I£ ()] ds

( ]_ 2 a+b 2
1

I Mg pee € Loo ([a,0]; X))

b=+ (t—a)™
- qg+1

q
. 1 -
] H|fH|[a7b]7p if p > 1’ ; + .= 1

and f € L, ([a,b]; X);

a+b
2

1
5 0=+t = "5 Wl

for anyt € [a, b].
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_Remarlk 2.3. If we chooset = “* in (2.2) and[(2.B), then we get the following midpoint
inequalities:

(2.4) H(“”)/f m—/ (5) f (s)ds

a—+b|®
SH/ 2 s

S —

( m(b—@)w1 I lgpoe T f € Lo ([a,b]; X);
x| e g, P> 1 =
and fELP([ 9 ]aX)
L 55 (0= )" 1| Flll sy
and
(2.5) HB(”b)/f ds—/ (s) f (s) ds
SL/ ~ 7 ) ds
( i(b—a) 11,00 if  f€Lux([a,b];X);

L (b—a)'ta if 1 L_
S L X 2(q+1)% ( CL) K |||f|||[a,b],p p > ) + q

and felL, ([ B3 X
L3 (0= a) 11 lljap

respectively.

Remark 2.4. Consider the function,, : [a,b] — R, ¥, = f [t —s|*||f(s)|lds, a €
(0,1). If fis continuous ona, b], then¥, is differentiable and

t b
Wl = S eorirenass (-0l
M, e,
B U (t—s)"" T /t(s—t) e }
If o € (a,b) is such that

S VO L VO] o
/a (to—S) ads_/to (S_to) o—to) "

and¥’ (-) is negative oria, ty) and positive orit,, b) , then the best inequality we can get in the
first part of [2.2) is the following one

(2.6) HB(tO) /:f(s) ds—/abB(s)f(s) ds

If « =1, then, for

b
SH/uerU@Ms

ww:/w—mU@wa
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we have

¢ b
W /auf(s)nds—[ 1f ()l ds, te (ab),

>V (t)
dt?

which shows that’ is convex ona, b).

If ¢,, € (a,b)is such that
tm b
/ ||f(8)||ds=/t 1 ()] ds,

then the best inequality we can get from the first parf of| (2.3) is

= 2||f(t>‘|207 te(CL?b)?

en B [rea- [Berea] < [ne-msiiones

Indeed, as

b
in / 1t — | IIf ()] ds

t€la,b)]

b
= [t = sl17 )
—/m(tm—s) |\f(s)|yds+/t (s = tm) IS (s)] ds

([ ||f(8)||ds—/t: I£ ol s +/t:8||f(8)||d8—/atm8||f(8>||ds

:/tb5Hf(s)Hds—/atms”f(s)nds

.
_ / sgn (s — t) s[| ()] ds,

then the best inequality we can get from the first parf of| (2.3) is obtainedat;,, € (a,b).

We recall that a functiorf” : [a,b] — £ (X) is said to bestrongly continuousf for all
x € X, the mapss — F'(s)x : [a,b] — X are continuous ofu, b]. In this case the function
s — ||B(s)] : [a,b] — R, is (Lebesgue) measurable and bounded ([6]). The linear operator

L= fab F (s)ds (defined byLz := f;’ F (s) zds for all z € X) is bounded, because

b
1Lz < (/ ||F(s)||ds) x| forall z € X.

In a similar manner to Theorem 2.1, we may prove the following result as well.
Theorem 2.5. Assume thaf : [a,b] — X is Holder continuous, i.e.,

(2.8) 1f @)= f(s)|| <K|t—s|” forall t,sea,b],

whereK > 0andg € (0, 1].
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WEIGHTED OSTROWSKITYPE INEQUALITIES 7

If B : [a,b] — £ (X) is strongly continuous ofw, b] , then we have the inequality:

2.9) H(/:B(s)ds>f(t)—/abB(s)f(s)ds

b
SK/ |t—srﬂuB<s>Hds

( A+l a) .
Gt 1Bl 100 it B ()] € Loo ([0, b] ;R
_n\gB+1 aq6+ .
SR x{ [t gy ps 1, Lo
and || B ()| € L, ([a,b];R,);
[50—a)+]t- H 1B 19,1

\
for anyt € [a, b].
The following corollary holds.

Corollary 2.6. Assume thaif and B are as in Theorer.S If, in addltlor)fh s)ds is
invertible in £ (X) , then we have the inequality:

(2.10) Hf(t)— (/abB(s)ds>_1/abB(s)f(s)ds

§KH</abB(s)ds)_1
for anyt € [a, b].

Remark 2.7. It is obvious that the inequality (2.[L.0) contains as a particular case what is the so
called Ostrowski’s inequality for weighted integrals (dee|(1.2)).

b
t—s|”|B(s)] ds

3. INEQUALITIES FOR LINEAR OPERATORS
Let0 <a<b< ocandA € L (X). We recall that the operatorial norm dfis given by
| Al = sup {||Az]| : [lz]} < 1}

Theresolvent sebf A (denoted by (A)) is the set of all complex scaladsfor which \I — A
is an invertible operator. Herkis the identity operator it (X). The complementary set of

p (A) in the complex plane, denoted by(A), is thespectrumof A. It is known thato (A) is
a compact set iC. The series(ZnZO (tﬁ!)n) converges absolutely and locally uniformly for

t € R. If we denote by*4 its sum, then

HetAH < e\tlHAH7 t € R.

Proposition 3.1. Let X be a real or complex Banach spacé,c £ (X) and 3 be a non-null
real number such that 5 € p(A). Then forall0 < a < b < co and eachs € [a, b], we have

2
< A E b-af s (s-150)

et — efa

(3.1) —5 ¢ — (BT + A) 7! [PBIHA) _ celBIHA)]

5 - max {eﬁb,e’ga}.
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Proof. We apply the second inequality from Coroll@ry]2.2 in the following particular case.
B(r):=¢e™, f(r)=¢"2, 7€a,b], 2 X.
For all¢, n € [a, b] there exists an betweert andn such that

(e 9]

iBEO-mI = Y

= fe-may el

n

AT [le*][ - I€ = nl
1A] €40 Je —n].

The functionr — e7# is thus Lipschitzian ora, b] with the constant, := || A|| ¢*I4ll, On the
other hand we have

b b
/ e (eﬂTx) dr = / e (eﬁTIm) dr
_ /b eT(AJrﬁI):L,dT

_ (A-Fﬂ[)_l [6b(A+BI) . ea(AJr/BI)} z,

<
<

and
11 lap00 = Sup [[e™z]| = max {”, e} - ]
T€[a,b]

Placing all the above results in the second inequality frjonj (2.3) and taking the supremum for
all z € X, we will obtain the desired inequality (3.1). O

Remark 3.2. Let A € £(X) such that € p(A). Taking the limit as3 — 0 in (3.1), we get
the inequality

9

sA —1 7 bA aA A 1 2 a+b 2
|6 —a)et — A kb—e}Hsnme“IZw—@~+G— )

wherea, b ands are as in Propositign 3.1.

Proposition 3.3. Let A € £ (X) be an invertible operatort > 0 and0 < s < ¢t. Then the
following inequality holds:
253 + 213 — 3st?
< Sl
In particular, if X = R, A =1 ands = 0 it follows the scalar inequality

t3
|sint — tcost| < 3 forall ¢t > 0.

(3.2)

: ‘

2 g (54) ~ A~ on (1) A cos (1)

Proof. We apply the inequality fronj (2.3) in the following particular case:

. S (TP
B(T)ISIH(TA) :;(—1) m, TEO,
and
(3.3) f(r)=71-x, forfixedz € X.
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For eackt,n € [0,t] , we have

1B© - Bl = A(Z}qyg%%fiﬁﬂ|
< JAIE =l eos ()]
< JAlle -,

whereq is a real number betweenand, i.e., the functionr — B (1) : R, — L(X) is
| A|| —Lipschitzian.
Moreover, it is easy to see that

/Ot B(7) f(r)dr = A *[sin (tA) — tAcos (tA)] x

and

! 253 4 2% — 3st?
34 [l =rllr (o ar = =S .
0

Applying the first inequality from[(2]3) and taking the supremumafaz X with ||z|| < 1, we

get (3.2). 0

4. QUADRATURE FORMULAE

Consider the division of the interval, b] given by
(41) In:a:t0<t1<-~-<tn_1<tn:b

andh; := t;,1 — t;, v(h) :== max_h;. For the intermediate points:= (&, ...,&,_1) with
i=0,n—1

& € [ti,tiva], i =0,n— 1, define the sum

n—1
(4.2) SO(B, fi 1,€) = _ B(&) f(s)ds.
=0

t;

Then we may state the following result in approximating the integral

lzﬂ@f@ﬂ&

based on Theorem2.1.

Theorem 4.1. Assume thaB3 : [a,b] — L (X) is Holder continuous offu, ], i.e., it satisfies
the condition[(2.l) andf : [a,b] — X is Bochner integrable ofa,b]. Then we have the
representation

4.3) Q/B®f@% (B, f1,.6) + R (B, [:1,.€).
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where S\ (B, f;1,,€) is as given by2) and the remaindaf” (B, f;1,,,€) satisfies the
estimate

|RY (B, f: 1. €)||
4 n—1

1
P 1Tl 9,00 Z% [(fie1 — €)°T + (& — t)°™Y]

1

111 { S [ =0+ (6= ]|

< H x (qa+ )é

p>1, %—i—% 1
1 ticn + |1
\b”“*bﬂﬁlg‘ s T
7 11l Zh”l
1 1
SHx 4 il () oL el
(g + 1)a a6 S
1 tign + 11
| [3rm+ mas [e -
——wumw v (m)]°
SHX (b ) [’
————;Mﬂmmﬂ<)1
(g +1)9 .
1 g [ ()

Proof. Applying Theoren 41 of;, z;.1] (i = 0,n — 1) , we may write that

tit1

| Bereas-ne) [
([t — )" + (& - ti)aH]

7

a+1 [titit1],00
_ 1
< H % (ti+1 _ gi)qa+1 + (51 _ ti)qa—i-l q
goa +1 isti+1],p

tiy1 +1;
2

(s — 1)+ € — }nummwm.
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Summing ovet from 0 to n — 1 and using the generalised triangle inequality we get
HR(I) B f 1,,,€) H

z+1 tit1
f(s)ds — B (&) f(s)ds
t;
( — +1 +1
a+1 ;} [(ti-l-l - gt) + (gl - tl) } itit1],00
1
1 n—1
< H X —T |:Z (tiz1 — gi)anrl + (& —ti )qa+1:| istit1]p
(qa + 1) L
=l tiv +ti|]°
S o f = ]

Now, observe that

Z tin — &)+ (& - ti)aﬂ}

=0

istit1],00

n—1
<M Miasgoo > (s — &) + (& — t)*H]
=0

n—1
< F Mo ggo0 D B
=0
< M g pp,00 (b = @) [ ()]

Using the discrete Hoélder inequality, we may write that

1

n—1 q
[Z i1 — &) an + (& — ti)an]

=0

[tistiva]p

1

< ["z_:l ([(ti—H — &) (& — )] E) ] q [

=0

:{ (i1 — " + (6= } ([ des)

=0

(Z hqa“) 111 1.0

< (b= )7 [ 1l [ ()"

Finally, we have

-
3=

z+1] p]

IN

n—1

z+1+t
] e e
tis +ti|]°
g{_.max e | LT
i=0,n—1 1=0,n—1

< [ (I 1 M a0
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and the theorem is proved. O

The following corollary holds.

Corollary 4.2. If B is Lipschitzian with the constatit, then we have the representatipn {4.3)
and the remainderR!" (B, f;1,,¢) satisfies the estimates:

44)  |[RY (B, fi 1,9
( n—1 tz tz 2
|Hf|”[a’b]m[ th Z(g_ +12+ )
1=0
n—1 %
< Lx 1 Mg § 2o [t = G G-t
( + ) 1=0
p>1, l—l-l:l
; t;
[ )+ max ¢, - “* Tmﬂu[ab}l
(1
5 111 e 2h2
<L 1|r|f\||[ab (Zh)
( ) =0
; t;
500+ s e = 2 g
(1
5 171y (b= @) v ()
Y
<xq | l 1Al ()
(g+ 1)«
L |Hf|”[a,b],1y(h>'

The second possibility we have for approximating the intega?dl? (s) f (s)ds is embodied
in the following theorem based on Theorgm| 2.5.

Theorem 4.3. Assume thaf : [a,b] — X is Holder continuous, i.e., the conditidn (2.8) holds.
If B : [a,b] — L£(X) is strongly continuous ofu, b], then we have the representation:

b
(4.5) / B (s) f(s)ds = SP (B, f; 1,,€) + R? (B, f; I,,,€) ,
where
n—1 t1+1
(4.6) SO (B, f: 1. €) ( )f(@)
=0 /tl
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and the remaindeR'? (B, f; 1,,,€) satisfies the estimate:

@.7) |R? (B, f:1,.9)|

( 1 n—1
T57 Bl e = [t = 67+ (6 = 10%]
Bl { [0 - 0077 6 -0 }‘11
S K x (qﬁ + 1)% [a,b],p =
p>1, }% + % =1
1 tis +:]1°
500+ ma Je - Ly
(1 B+1
541 1Bl z h
<kx{ —1 B ot 1 >1, 1417,
= (qﬁ_i_l)% [ab = ) p > p q_ )
1 tisr +t:[1°
EROR S e T
(1
T 1Bl 0= @) b (1))
<Kkx{ (b-a)
=n mmBHhab S’ p>1, 4l
q q
1Bl v ()

\

If we consider the quadrature

n—1 tiv1
(4.8) MO (B, f: 1,) ZB(t ”Z“) £ (s)ds

then we have the representation

(4.9) / B (s) f (s)ds = MY (B, f; 1) + R (B, f; 1) ,

J. Inequal. Pure and Appl. Math3(1) Art. 12, 2002 http://jipam.vu.edu.au/
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and the remaindeR” (B, f; I,) satisfies the estimate:

(4.10) [RY (B, f: L)
( n—1
ey 11l o 2 P
<H 1 .
X n— q
= paotl 1, 141=1
Wl [S 0] o1 b3 =
\ ﬁg[V(h”a’HthmﬂJ
' iqﬁifs(b—-a)H!thmmﬂm[V(hHa
< H « >1,1+1=1,
< Hx QA () p> 1 S =
L 5w I e, (v (D)
provided thatB and f are as in Theorein 4.1.
Now, if we consider the quadrature
n—-l1 tz+1 ) .
(4.11) )(B, f: 1) :Z(/ s)f(%)
then we also have
b
(4.12) / B(s) f(s)ds = M® (B, f; I,) + R (B, f; 1) ,

and in this case the remainder satisfies the bound
(413)  ||RP(B.f:L)||

( 1

2 (B+1)

< K x 1
1
20 (g3 +1)a

1
| 5 v (R)]° 1Bl ja,61.1
( 1 b B
75D 0 DBl
1
< K x (b CL)q

2% (qB + 1)
1 s
L 2_/3 |HB|H[¢1,b],1 [V (h‘)] )

1B fa,61.00 E: hit

providedB and f satisfy the hypothesis of Theor¢m4.3.
Now, if we consider the equidistant partitioning|ef b],

h—
En:ti::a—|—< a)~i, 1 =0

n

J. Inequal. Pure and Appl. Math3(1) Art. 12, 2002

v (1))
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1
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thenAs” (B, f; E,) becomes

n—1 N a b;—a(l )
(4.14) M"(B.f):=)_B (a+ <z - %) 2 a) / e f(s)ds
i=0 atd

and then

b
(4.15) / B(s) [ (s)ds = MO (B, ) + RV (B, ]).

where the remainder satisfies the bound

[ O=a™ 4
2 (a+1)no [a,b],00

a+i
(4.16) RO(B, f|<Hx{ (b—a) L 111
& 5.0 s Wl =1 b+ i =1
(b—a)
Sama [{FalorE
Also, we have
b
(4.17) | B F@)ds =M (B + R (B.1),
where
n—1 a+2=2(i+1) 1 .
M® (B, f) = (/ B(s)ds>f<a+<i+—)-b a),
im0 \Jatiii 2 n

and the remaindeR’” (B, f) satisfies the estimate

r (b o a)5+1 5
2B+ )P 1Bl {0,900

1
@) b—a)’ta
(418)  [|R2 (B )] = K x —nggl)nﬂ 1Bl P>1 545 =1
(b—a)’

L 281,8 |||B|||[a,b},1 :

5. APPLICATION FOR DIFFERENTIAL EQUATIONS IN BANACH SPACES
We recall that a family of operatoté = {U (t,s) :t > s} C L(X) witht,s e Rort,s €
R, is called arevolution familyif:

(i) U(t,t) =TandU (t,s)U (s,7) =U (t,7) forallt > s > 7; and
(ii) for eachz € X, the function(t, s) — U (¢, s) = is continuous fot > s.

Here! is the identity operator itf (X).
An evolution family{U (t, s) : t > s} is said to beexponentially boundeid, in addition,

(iii) there exist the constant®/ > 1 andw > 0 such that
(5.1) U (t,s)]| < Me*t=9) t > s,

J. Inequal. Pure and Appl. Math3(1) Art. 12, 2002 http://jipam.vu.edu.au/
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Evolution families appear as solutions for abstract Cauchy problems of the form
(5.2) w(t)=A{t)u(t), u(s) =z, s € D(A(s)), t > s, t,s € R(orR,),

where the domai® (A (s)) of the linear operatod (s) is assumed to be dense ih An evo-
lution family is said to solve the abstract Cauchy problgm]|(5.2) if for eaeR there exists a
dense subsét, C D (A (s)) such that for each, € Y; the function

t—u(t):=U(t,s)zs: [s,00) = X,
is differentiablew (t) € D (A (t)) forallt > s and

d
dtu(t) =At)u(t), t>s.
This later definition can be found in_[15]. In this definition the operatdrg) can be un-
bounded. The Cauchy problein (5.2) is calledll-posedif there exists an evolution family
{U (t,s) : t > s} which solves it.

It is known that the well-posedness pf (5.2) can be destroyed by a bounded and continuous
perturbation/[13]. Lef : R — X be alocally integrable function. Consider the inhomogeneous
Cauchy problem:

(5.3) wt)=A)ut)+ f(t), u(s) =zs€ X, t>s, t,s € R(orR,).

A continuous functiont —— w (t) : [s,00) — X is said to amild solutionof the Cauchy
problem [(5.8) ifu (s) = z, and there exists an evolution famiy/ (¢, 7) : t > 7} such that

(5.4) u(t) = U(t,s)xs—l—/tU(t,T)f(T)dT, t>s, z,€ X, t,s e R(orRy).

The following theorem holds.

Theorem 5.1.Letd = {U (v,n) : v > n} C L(X) be an evolution family and : R —X be
a locally Bochner integrable and locally bounded function. We assume that foralR (or
R,) the functionn — U (v,n) : [v,00) — L (X) is locally Holder continuous (i.e. for all
a,b>v, a < b, there existv € (0, 1] and H > 0 such that

\U (v, t) = U (v,8)|| < H |t —s|*, forallt,s e [a,b]).

We use the notations in Sectioh 4 for= 0 andb = ¢ > 0. The mapu (-) from (5.4) can be
represented as

n—1 i1

(5.5) w(t) =Ut0)xo+ Y Ut&) [ f(s)ds+RP U, f,1,€)
=0

t;

where the remaindeR." U, f,1,,€) satisfies the estimate

H ey a
HR’Ezl) (uafalnvg)H < Oé——|-1|||f||’0t OOZ ’H‘l _57, +1+(§i _tl) +1} :

Proof. It follows by representation (4.3) and the first estimate after it. O
Moreover, ifn is a natural number, € {0, ..., n}, t; := £ and¢, := 22U then
Qi+ 1)\ [
(5.6) u(t) = tO:L‘0+ZU( ! )/ f(s)ds+ R

n
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and the remaindeRS) satisfies the estimate
ta+1

(5.7) 172 <

The following theorem also holds.

Theorem 5.2. Lettd = {U (v,n) : v > n} C L(X) be an exponentially bounded evolution
family of bounded linear operators acting on the Banach spdand f : R — X be a locally
Hdélder continuous function, i.e., for all b € R, a < b there exist3 € (0,1] and K > 0 such
that (2.8) holds. We use the notations of Sedtjon 4fer0 andb = t > 0. The mapu (-) from
(5.4) can be represented as

e e

(5.8) u(t) =U(t,0)zo+ Z (/ ZH U(t,T) dT) fE&) +RPWU, f,1,,€)

where the remaindeRr” (1, f, I,,, ) satisfies the estimate

KM &L
HRSE) (u’ f’ [n’ f)” < mGWt Z [( i+l Sz)ﬁJrl (Sz ti)ﬂ+1 .
1=0

Proof. It follows from the first estimate iff (4.7) faB (s) := U (, s), using the fact that
‘HB(')Hho,t],oo = suop |U (t,7)]| < sup Me® w(t=T) < \fett,

T€[0,t]

Moreover, ifn is a natural numbet, € {0,...,n}, t; := & and¢; := " then

(5.9) u(t) = t0x0+z</ tr)d7>f<<2i+nl>t>+3g)

2
$6+1

t- (z+l)

and the remaindeli‘fiz&2 satisfies the estimate

KM

(2) .
(5.10) | RS ||g6+1e SEpE

6. SOME NUMERICAL EXAMPLES

1. LetX =R? z = (&, n) € R, |lz]l, = /& + n?. We consider the linear 2-dimensional
system

Uy () = (=1 —sin®t) uy (£) + (=1 4 sint cost) up (t) + e

(6.1) Uy (t) = (1 +sintcost)uy (t) + (—1 — cos® t) ug (t) + e

If we denote

—1 —sin%t —1 +sintcost

A(t) = . ()= (e’t,e’%) , = =1(0,0)

1+4sintcost —1—cos®t
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and we identify(§, n) with ( 757 ) , then the above system is a Cauchy problem. The evolution
family associated withi (t) is

U(t,s)=P{t)P ' (s), t>s, t scR,
where

e tcost e ?tsint

(6.2) P(t) = . teR.

—etsint e *cost
The exact solution of the systefn (6.1)is= (u1, u2) , where
uy (t) = (e "cost) By (t) + (e *sint) Es (t)
up (t) = — (e 'sint) By (t) + (e * cost) B (t), t € R,
and
: L _, , 1
Ey(t) = sint+ 3¢ (cost + sint) — 2
1 1
Ey(t) = sint+ iet (sint — cost) + 3

see([2, Section 4] for details. The functior- A (¢) is bounded ofR and therefore there exist
M >1andw >0

|U (t,s)|| < Me“lt=*l, forallt,s € R.
Let¢ > 0 be fixed and, s > &. Then there exists a real numhebetweent ands such that
U (&,8) =U (& s)l =t = s IU () A(p)|| < Me* |[|A(| - [t = sl,

that is, the functiom — U (&, n) is locally Lipschitz continuous of, o).
Using [6.2), it follows

ayy (t,s) az (t,s)

Ult,s)= )
asn (t,s)  axn(t,s)
where
ary (t,s) = el Ycostcoss + > D sintsin s;
a1a (t,s) = —elDcostsins + %e%t) sint cos s;
an (t,s) = —elDsintcoss+ 2™ costsin s;
agg (t,s) = e Dsintsins + %eﬂs_t} cost cos s.

Then from (5.5) we obtain the following approximating formula fdf) :

1 2i4+ 1)t i i
+ Zap (¢ (20 4+ 1) <€_2t<n+1> B e_%) " Rglgz
2 2n ’
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Figure 6.1: The behaviour of the erra, (t) := H (Rgl,)l, Rél,)l)

’ for n = 200.
2

and

n—1 .
21+ 1)t (i) b
up (t) = — |:a21 (ta %) (e n —€ ")

1 21+ 1)t (i i
+ sax |t @it (6_ - 6_2%> + Rgly)u
2 2n ’

where the remaindeR!’ = <R§1) Réﬂ{) satisfies the estimat.?) with = 1, H =

Me" || A ()l and][Lfl1]ip,9,00 < 2-
Figur contains the behaviour of the errprft) := H <R§17)L, RSBL) for n. = 200.
’ ’ 2
2. LetX =RandU (t,s) :== 2=, t > s > 0. Itis clear that the famil{U (¢,s) : t > s > 0} C

+17
L (R) is an exponentially bounded evolution family which solves the Cauchy problem

1
u(t):t_i_—lu(t), u(s)=az;€R, t >s>0.

Consider the inhomogeneous Cauchy problem

i (t) = ggu(t) +cos[ln(t+1)], t>0

(6.3)
u(0) = 0.

The solution of[(6.8) is given by

u(t):/Otf_:llcos(ln(T—i-l))dT:(t—i—l)sin[ln(t—l—l)], t>0.
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ot EI'?::
4—:55
.’-i-'rflﬁ-_:
:'I.L-EE_

le{l'i-:

. 2 4 B 1 i
Figure 6.2: The behaviour of the errer, (t) := |R,| for n = 400.

From [5.9) we obtain the approximating formula fof-) as
n+ti+t (2i+1)t
(t+1) Zln[ i } os{ln [1+T”+Rn,
whereR,, satisfies the estimate (5]10) with= M = w = § = 1. Indeed,

t+1

<eé', forallt>s>0
s+1

and

cos i ¢+ 1)) — cosfIn s + 1) = ¢ — sf|

1Sin[ln(c—|—1)]‘ < |t—s|

forallt > s > 0, wherec is some real number betweemndt.
The following Figure 6.2 contains the behaviour of the etrpft) := |R,| for n = 400.
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