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ABSTRACT. By means of the convex properties of functiai’(x), we obtain a new proof of a
generalization of a double inequality on the Euler gamma function, obtained by Jozsef Sandor.
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The Euler gamma functioki(z) is defined forz > 0 by

+oo
['(x) = / et
0

Recently, by using a geometrical method, C. Alsina and M.S. Tomas [1] have proved the
folowing double inequality:
Theorem 1. For all = € [0, 1] and all nonnegative integers, one has
1 < (14 )"
n! = I'(14+nx) —
By using a representation theorem of the “digamma funct%%), J. Sandori[2] proved the
following generalized result:
Theorem 2. For all « > 1 and allx € |0, 1], one has
1 < I'(1+az)*
I'l4+a) ~ T(1+ax) —

In this paper, by means of the convex properties of fundtidn(z), for 0 < = < 400, we
will prove that
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Theorem 3. Forall « > 1 and allz > —%, one has
I'(1+ax)°
I'l+azx) —
(i) Foralle > 1and allz € [0, 1], one has
1 < I'(l1+2)°
F'l+a) ~ T(1+ax)
(i) Foralla > 1andallz > 1, one has
1 - I'(l1+ax)°
F'l+a) — T(1+ax)
(iii) Foralla € [0,1]and allz € [0, 1], one has
1 - I'(1+2)°
Fl+a) ~ T(1+ax)
(iv) Forall e € [0,1] and allz > 1, one has
1 < (14 x)®
I'(14a) = I'(1+4ax)
Our method is elementary. We only need the following simple lemmal see [3].

Lemma 4.
@ I'(x+1)=2zl(z), for 0 < x < +o0.
() '(n+1)=nlforn=1,2,....
(c) InI'(x) is convex on(0, +00).
Proof of Theorer|3Whena = 1, it is obvious.
Whena > 1, by (c) of Lemma #, we have

r (% + g) < D(uw)T(v)s,

wherep > 1,¢ > 1,5 + . =1,u> 0,0 > 0.
Letp = a,q = -%5. Then

1 1 ! !
r(- 1—= <T(u)aT'(v)'~a
(au+( ))_ (w)+T(v)"" =,
foru > 0,v > 0.

Letv =1,u =ax + 1. Note thatl'(1) = 1, 2u+ (1 — 2v) =z + 1.

We obtain

u—1 1
>

(x+1)>T(ar+ 1)% for z= .
a a

Remark 5. Theorenj B is a generalization of the right side inequality of Thegiem 2.

Proof of Theorem|3.
() Let
f(z) =1In (a:z:—l— 1) —InT'(1+a) —alnl'(zx +1).
Sincel'(2) = 1, We havef(1) =
oy (Tax+1) T'(z+1)
) = (F(ax—i—l) F(x—i—l))
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Seth(t) = In F( ). By (c) of the Lemma JIn I'(z) is convex on(0, +c0). So(InT'(¢))” > 0.

That |s<r((f))> > 0. Therefore( Fgf) is increasing. Because> 1 andx € [0, 1], one has

ar+1>x+1.S0
Max+1) _ TM(z+1)
Flax+1) = I'(z+ 1)
Thusf'(x) > 0. In addition tof (1) = 0, we obtain thaff (z) < 0, fora > 1 andz € [0, 1].
So (i) is proved.

>

Note that
ar+1>x+1, for a>1 and z>1;
ar+1<z+4+1, for a€(0,1] and z€[0,1];
ar+1<z+1, for a€[0,1] and z>1.
So (ii), (i), (iv) are obvious. O
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