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ABSTRACT. In this paper, a class of generalized general mixed quasi variational inequalities is
introduced and studied. We prove the existence of the solution of the auxiliary problem for the
generalized general mixed quasi variational inequalities, suggest a predictor-corrector method
for solving the generalized general mixed quasi variational inequalities by using the auxiliary
principle technique. If the bi-function involving the mixed quasi variational inequalities is skew-
symmetric, then it is shown that the convergence of the new method requires the partially relaxed
strong monotonicity property of the operator, which is a weak condition than cocoercivity. Our
results can be viewed as an important extension of the previously known results for variational
inequalities.
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1. INTRODUCTION

In recent years, variational inequalities have been generalized and extended in many different
directions using novel and innovative techniques to study wider classes of unrelated problems
in mechanics, physics, optimization and control, nonlinear programming, economics, regional,
structural, transportation, elasticity, and applied sciences, etc!,/see |1] — [8] and the references
therein. An important and useful generalization of variational inequalities is called the general
mixed quasi variational inequality involving the nonlinear bifunction. It is well-known that due
to the presence of the nonlinear bifunction, projection method and its variant forms including
the Wiener-Hopf equations, descent methods cannot be extended to suggest iterative methods
for solving the general mixed quasi variational inequalities. In particular, it has been shown that
if the nonlinear bifunction is proper, convex and lower semicontinuous with respect to the first
argument, then the general mixed quasi variational inequalities are equivalent to the fixed-point
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problems. This equivalence has been used to suggest and analyze some iterative methods for
solving the general mixed quasi variational inequalities. In this approach, one has to evaluate
the resolvent of the operator, which is itself a difficult problem. To overcome these difficul-
ties, Glowinski et al. [[6] suggested another technique, which is called the auxiliary principle
technique. Recently, Noor/[1] extended the auxiliary principle technique to suggest and ana-
lyze a new predictor-corrector method for solving general mixed quasi variational inequalities.
However, the main results ihl[1, Algorithm 3.1, Lemma 3.1 and Theorem 3.1] are wrong. Also,
Algorithm 3.1 in [1] is based on the assumption that auxiliary problem has a solution, but the
author did not show the existence of the solution for this auxiliary problem. On the other hand,
in 1999, Huang et al[[7] modified and extended the auxiliary principle technique to study the
existence of a solution for a class of generalized set-valued strongly nonlinear implicit varia-
tional inequalities and suggested some general iterative algorithms. Inspired and motivated by
recent research going on in this fascinating and interesting field, in this paper, a class of gener-
alized general mixed quasi variational inequalities is introduced and studied, which includes the
general mixed quasi variational inequality as a special case. We prove the existence of the so-
lution of the auxiliary problem for the generalized general mixed quasi variational inequalities,
and suggest a predictor-corrector method for solving the generalized general mixed quasi vari-
ational inequalities by using the auxiliary principle technique. If the bi-function involving the
mixed quasi variational inequalities is skew-symmetric, then it is shown that the convergence
of the new method requires the partially relaxed strong monotonicity property of the operator,
which is a weaker condition than cocoercivity. Our results extend, improve and modify the
main results of Noor [1].

2. PRELIMINARIES

Let H be a real Hilbert space whose inner product and norm are denotéd-fand| - ||,
respectively. Let CB(H) be the family of all nonempty closed and bounded sétsliet K be
a nonempty closed convex setih Lety(-,-) : H x H — H be a nondifferentiable nonlinear
bifunction. For given nonlinear operatady-,-) : H x H — H,g : H — H and two set-valued
operatorsl,V : H — C'B(H), consider the problem of finding € H,w € T'(u),y € V(u)
such that

(2.1) (N(w,y),g(v) — g(u)) + ¢(g(v), g(uw)) — w(g(u), g(u)) > 0,Vg(v) € H.

The inequality of type (Z2]1) is called the generalized general multivalued mixed quasi variational
inequality.

For a suitable and appropriate choice of the operatos ¢ and the spacé/, one can obtain
a wide class of variational inequalities and complementarity problems| see [1]. Furthermore,
problem [2.1) has important applications in various branches of pure and applied sciences.

Lemma 2.1. For all u,v € H, we have
(2.2) 2 (u,v) = [Ju+ ol = ul® — [v]l*.

Definition 2.1. For alluy, us, z € H,x1 € T(uy), x2 € T(us), an operatai (-, -) is said to be:

(i) g-partially relaxed strongly monotone with respect to the first argument, if there exists
a constanty > 0 such that

(N(21,) = N(22,), 9(2) — 9(u2)) = —allg(u1) — g(2)|*
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(i) g-cocoercive with respect to the first argument, if there exists a constarit such that
(N(21,) = N(22,-), 9(w1) = g(uz)) = pl| N(z1,-) = N(z, )%,
(iif) T is said to be M-lipschitz continuous, if there exists a constant) such that
M(T (ur), T(uz)) < 0flur — usl],
whereM (-, -)is the Hausdorff metric on CB(H).

We remark that ifV(z, -) = Tz, then Definitiorf 2.]1 is exactly the Definition 2.1 of Noor and
Memon [1]. If z = uy, N(x,-) = Tz, g-partially relaxed strongly monotone with respect to
the first argument ofV (-, -) is exactly g-monotone df’, and g- cocoercive implies g- partially
relaxed strongly monotonél[3]. This shows that g-partially relaxed strongly monotone with
respect to the first argument &f(-, -) is a weaker condition than g-cocoercive with respect to
the first argument oiV (-, -).

Definition 2.2. For allu, v € H,the bifunctiony(-, -) is said to be skew-symmetric, if

QD(U, u) - (P(U, ’U) - QO(U7 U) + QO(U, 'U) > 0.
Note that if the bifunctionp(-, -) is linear in both arguments, then it is nonnegative.
In order to obtain our results, we need the following assumption.
Assumption 2.2. The mappingsV(-,-) : H x H — H, g : H — H satisfy the following

conditions:
(1) forallw,y € H, there exists a constant> 0 such that| N (w, y)|| < 7(||w| + |ly
(2) for agivenr € H, mappingv —< x, g(v) > iS convex;
(3) »(u,v)is bounded, that is, there exists a constant 0 such that
o (u, v)| < Allullllv]l, Vu, v e H;
(4) o(u,v) is linear with respect ta.
(5) ©(-,-) is continuous ang(g(-), -) is convex with respect to the first argument.

Remark 2.3. If ¢ = I, itis easy to see that the conditions (2), (5) in Assumgtioh 2.2 can be
easily satisfied.

);

We also need the following lemma.

Lemma 2.4. [4,/5]. Let X be a nonempty closed convex subset of Hausdorff linear topological
spaceF, ¢,1 : X x X — R be mappings satisfying the following conditions:
1) Y(z,y) < d(2,y), Y,y € X;
(2) for eachx € X, ¢(x,y) is upper semicontinuous with respectto
(3) for eachy € X, the sef{x € X : ¢(z,y) < 0} is a convex set;
(4) there exist a nonempty compact $etC X andz, € K such that)(zq,y) < 0, for any
y € X \ K. Then there existsa € K such thaty(x,y) > 0,Vz € X.

3. MAIN RESULTS

In this section, we give an existence theorem of a solution of the auxiliary problem for the
generalized general set-valued quasi variational inequplity (2.1). Based on this existence theo-
rem, we suggest and analyze a new iterative method for solving the prgblém (2.1).

For givenu € H, w € Tu, y € Vu, consider the problem of finding a uniquec H
satisfying the auxiliary general mixed quasi variational inequality

B1)  (pN(w,y) +g(z) — g(u),g(v) — g(2)) + pp(g(v), 9(2)) — pe(9(2),9(z)) > 0,
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forall v € H, wherep > 0 is a constant.
Remark 3.1. We note that itz = u, then clearly: is a solution of[(2.]L).

Theorem 3.2.If Assumptiof 2]2 holdg, : H — H is invertible and Lipschitz continuous, and
0 < pvy < 1, thenP(u,w,y) has a solution.

Proof. Define¢,vy : H x H — H by

o(v,2) = (g9(v), g(v) — g(2)) — (g(u), g(v) — g(2)) + p (N (w,y), g(v) — g(2))
—pp(9(2),9(2)) + pp(g(v), 9(2))
and

Y(v,2) = (9(2),9(v) — g9(2)) — (g9(u), g(v) — g(2)) + p(N(w,y),g(v) — g(2))
—pp(9(2),9(2)) + pp(g(v), 9(2)),

respectively. Now we show that the mappings) satisfy all the conditions of Lemnja 2.4.
Clearly, ¢ andy satisfy condition (1) of Lemmfa 3.4. It follows from Assumptjon|2.2(5) that
¢(v, z) is upper semicontinuous with respect:toBy using Assumption 2|2 (2) and (5), it is
easy to show that the sét € H|¢ (v, z) < 0} is a convex set for each fixede H and so the
conditions (2) and (3) of Lemma 2.4 hold.
Now let
w=llg)ll + pr(lwl +llyl), K ={z € H: (1 =p)llg(2)|| <w}.

Sinceg : H — H is invertible, K is a weakly compact subset éf. For any fixed: € H \ K,
takewv, € K such thay(vy) = 0. From Assumptioh 2|2, we have

Y(vo, 2) = —(9(2),9(2)) + (g(u), 9(2)) + p (N(w,y), —g(2)) — pp(g(2),9(2))
< =llg@)* + Ng@)lllg()Il + pr(llwll + lyDllg()I + pvllg(2)]1?
= —llg) gl = llg()ll = pr(llwll + lyll) — pyllg()Il)

< 0.
Therefore, the condition (4) of Lemma 2.4 holds. By Lenjma 2.4, there exists & such
thatop(v,z) > 0, forallv € H, that is,
3.2) {g(v),9(v) = 9(2)) = (9(u), g(v) = 9()) + p (N(w,y), 9(v) — 9(2))
— pp(9(2),9(Z)) + pp(g(v), 9(2)) > 0,Vv € H.

For arbitraryt € (0,1) andv € H, letg(z;) = tg(v) + (1 — t)g(z). Replacing by z, in (3.3),
we obtain

0 <{g(x:),9 (l‘t) 9(2) —<g(U),g($t)—9(7)>+p<N(w,y),g($t)—9(5)>
)
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and so

(9(x1),9(v) = 9(2)) > (g(u), g(v) — g(Z)) — p(N(w,y),9(v) — g(%))
—pp(9(v),9(Z)) + pp(9(%), 9(%)).
Lettingt — 0, we have

(9(2), 9(v) — 9(z)) = (9(u), g(v) — 9(Z)) — p(N(w,y), g(v) — g(2))
= pe(9(v),9(z)) + pe(9(2), 9(2))-
Thereforez € H is a solution of the auxiliary probler?(u, w, y). This completes the proof.
O

By using Theorer 3|2, we now suggest the following iterative method for solving the gener-
alized general set-valued quasi variational inequdlity (2.1).

Algorithm 3.1. For givenuy, € H,& € Tug,no € Vug, compute the approximate solution
u,41 by the iterative scheme

Ty € T(wy) @ |20 — 20| < M(T(wny1),
Yn S V(wn> : Hyn—l—l - ynH S M<V<wn+1)’

))7
),

(3:3) (PN(Tn,yn) + g(unt1) — g(wn), 9(v) — g(un+1)) + pp(g(v), g(un+1))
— po(g(unt1), g(unt1)) >0, Vv € H,

(wy,
w,

T
V(

and
§n € T(un) : [[€nt1 — &all < M(T(unt1), T'(un)),
M € V(Un) t [Mns1 — mall < MV (1), V(un)),

(3:4) (BN (&nsmn) + g(wn) — glun), g(v) — g(wn)) + Bp(g(v), g(wn))
- 590(9(1071)79(1%)) 2 07 VU € Ha
wherep > 0, 3 > 0 are constants.

For the convergence analysis of Algorithm|3.1, we need the following result.

Lemma 3.3.Letu € H, x € Tu, y € Vu be the exact solution of (2.1) and,;; be the
approximate solution obtained from Algorithm[3.1. If the operald, -) is g- partially relaxed
strongly monotone with respect to the first and second argument with congtants b > 0,
respectively, the bifunctiop(-, ) is skew-symmetric and the conditions in Theofem 3.2 are
satisfied, then

(35)  llg(unr1) = gl* < llg(un) = g(w)|* = (1 = 2p(a + b))llg(uns1) — g(un)||*.
Proof. Letu € H,z € Tu,y € Vu be a solution of( (2]1). Then

(3.6)  (pN(x,y),9(v) —g(u)) + po(g(v), g(uw)) — pe(g(u), g(u)) > 0,Vv € H,
(B.7)  (BN(z,y),9(v) — g(u)) + Bp(g(v), g(u)) — Bp(g(u), g(u)) > 0,Vv € H,
wherep > 0, 5 > 0 are constants. Now taking= u,, in (3.6) andv = « in (3.3), we have

(3.8) (PN (2,y), g(uni1) — g(u)) + po(g(tuni1), g(u)) — pe(g(u), g(u)) > 0,
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(3.9) (pN(zn,Yn) + 9(unt1) — g(wn), g(u) — g(unt1)) + pp(g(w), g(un+1))
— po(g(tni1), 9(tns1)) > 0.
Adding (3.8) and[(3]9), we have (3]10)
(3.10) (9(un+1) — g(wn), g(u) — g(Unt1))
> p (N (@0, Yn) — N(2,9), g(uni1) — g(u)) + ple(g(u), g(u))
—p(g(u), g(unt1)) — @(g(unt1), g(u)) + @(g(unt1), g(tns1))}
> p (N (20, Yn) — N(@n, y), 9(tns1) — g(u))
+p(N(xn,y) — N(2, ), 9(unt1) — g(u))
> —pla+b)[lg(wn) — g(uni)|?

where we have used the fact tht-, -)is ¢g- partially relaxed strongly monotone with respect
to the first and second argument with constants 0,b > 0, respectively, and the bifunction

©(+, -) is skew-symmetric. Setting = g(u) — g(un+1),v = g(tny1) — g(w,) in (2.7), we obtain
(8.11) (g(unt1) — g(wn), g(u) — g(uni1))
= %{IIQ(U) = g(wa)lI” = llg(uns1) — g(wn)lI* = llg(u) — g(uns1)lI*}-

Combining [3.1D) and (3.11), we have

(3:12)  flg(unt1) = g(@)|* < llg(wn) = g()|* = (1 = 2p(a + b)) [|g(uwn+1) — glwa) %,

Similarly, we have

(3.13) lg(u) = g(wn)[* < llg(un) = g(@)|* = (1 = 28(a + b)) llg(un) — g(wn)|,
< llg(un) = g(u)||*,0 < B < 1/2(a +b).

and
(3.14) 19(tnt1) — g(wn) [ = lg(tns1) — g(un) + g(un) — g(wy)||?

= lg(tns1) — g(un)|I> + [lg(un) — g(wn)
+2(g(un+1) — g(un), g(un) — g(wn)) -

I

Combining [3.1R) {(3.14), we have
(1) — g()I* < llg(un) — g(@)|I* = (1 = 2p(a + b)) lg(tnr1) — glun)||*.
The required result. O

Theorem 3.4. Let H be finite dimensionaly : H — H be invertible,g~! is Lipschitz contin-

uous and) < p < 1(a +b). Let{u,},{&}, {n.} be the sequences obtained from Algorithm

[3.1,u € H be the exact solution of (2.1) and the conditions in Lerpmia 3.3 are satisfied, then
{u,},{&}, and{n,} strongly converge to a solution ¢f (2.1).
Proof. Letu € H be a solution of (2]1). Sinde< p < 3(a + b), from (3.5), it follows that the

sequencd ||g(u) — g(u, )|} is nonincreasing and consequently, } is bounded. Furthermore,
we have

B(1 = 2p(a+0))lg(uns1) = g(ua)* < [lg(uo) — g(w)]?,
which implies that

(3.15) im ||g(tny1) — g(un)|| = 0.

n—oo
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Let & be the cluster point ofu,, } and the subsequende,, .} of the sequencéu, } converge
to u, which implies{u,, } is a Cauchy sequence fii. By (3.4), we know that botf¢,,; } and
{nn,} are Cauchy sequencesih Let¢,, — 2 andn,, — y. Since

A&, T(@)) < & — &, | + M(T(un,), T(i)) = 0, n; — oo.

So we can obtaint € T'(). Similarly, we can obtaify € V(u). Replacingw, by u,,, in (3.3)
and (3.4), the limit2; — oo and using|(3.14), we have

(N(2,9), g(v) — g(@)) + ¢(g(v), g(@)) — ¢(g(a), g(a)) = 0, Vo € H,
which implies that. € H, 2 € T'u, y € Vu is a solution of[(2.]1), and
lg(unsr = g < llg(un) — g(w)[|*.
Thus it follows from the above inequality that the sequdngé has exactly one cluster poifat

andlim,, ., g(u,) = g(@). Sinceg is invertible and;~* is Lipschitz continuoudim,, .. u,, =
@. The required result. O

Remark 3.5. Lemmg 3.8 and Theorejm 3.4 improve and modify the main results of Noor [1].
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