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ABSTRACT. In this paper, we use the auxiliary principle technique to suggest and analyze a
predictor-corrector method for solving general mixed quasi variational inequalities. If the bi-
function involving the mixed quasi variational inequalities is skew-symmetric , then it is shown
that the convergence of the new method requires the partially relaxed strong monotonicity prop-
erty of the operator, which is a weaker condition than cocoercivity. Since the general mixed quasi
variational inequalities includes the classical quasi variational inequalities and complementarity
problems as special cases, results obtained in this paper continue to hold for these problems. Our
results can be viewed as an important extension of the previously known results for variational
inequalities.
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1. I NTRODUCTION

In recent years, variational inequalities have been generalized and extended in many different
directions using novel and innovative techniques to study wider classes of unrelated problems
arising in optimal control, electrical networks, transportation, finance, economics, structural
analysis, optimization and operations research in a general and unified framework, see [1] – [22]
and the references therein. An important and useful generalization of variational inequalities
is called the general mixed quasi variational inequality involving the nonlinear bifunction. For
applications and numerical methods, see [1], [4], [6] – [8], [10], [11], [17], [18]. It is well
known that due to the presence of the nonlinear bifunction, projection method and its variant
forms including the Wiener-Hopf equations, descent methods cannot be extended to suggest
iterative methods for solving the general mixed quasi variational inequalities. This fact has
motivated researchers to develop other kinds of methods for solving the general mixed quasi
variational inequalities. In particular, it has been shown that if the nonlinear bifunction is proper,
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convex and lower semicontinuous with respect to the first argument, then the general mixed
quasi variational inequalities are equivalent to the fixed-point problems. This equivalence has
been used to suggest and analyse some iterative methods for solving the general mixed quasi
variational inequalities. In this approach, one has to evaluate the resolvent of the operator,
which is itself a difficult problem. On the other hand, this technique cannot be extended for
the nondifferentiable bifunction. To overcome these difficulties, we use the auxiliary principle
technique. In recent years, this technique has been used to suggest and analyze various iterative
methods for solving various classes of variational inequalities. It can be shown that several
numerical methods including the projection and extragradient can be obtained as special cases
from this technique, see [9, 17, 18, 19, 22] and references therein. In this paper, we again use the
auxiliary principle to suggest a class of predictor-corrector methods for solving general mixed
quasi variational inequalities. The convergence of these methods requires that the operator
is partially relaxed strongly monotone, which is weaker than co-coercive. Consequently, we
improve the convergence results of previously known methods, which can be obtained as special
cases from our results.

2. PRELIMINARIES

Let H be a real Hilbert space whose inner product and norm are denoted by〈·, ·〉 and‖ · ‖
respectively. LetK be a nonempty closed convex set inH. Let ϕ(·, ·) : H ×H → R ∪ {+∞}
be a nondifferentiable nonlinear bifunction.

For given nonlinear operatorsT : H → H andg : H −→ H, consider the problem of finding
u ∈ H such that

(2.1) 〈Tu, g(v)− g(u)〉+ ϕ(g(v), g(u))− ϕ(g(u), g(u)) ≥ 0, for all g(v) ∈ H.

The inequality of type (2.1) is called the general mixed quasi variational inequality. If the
bifunctionϕ(·, ·) is proper, convex and lower-semicontinuous with respect to the first argument,
then problem (2.1) is equivalent to findingu ∈ H such that

(2.2) 0 ∈ Tu + ∂ϕ(g(u), g(u)),

where∂ϕ(·, ·) is the subdifferential of the bifunctionϕ(·, ·) with respect to the first argument,
which is a maximal monotone operator. Problem (2.2) is known as finding the zero of the sum of
the two (or more) maximal operators. It can be shown that a wide class of linear and nonlinear
equilibrium problems arising in pure and applied sciences can be studied via the general mixed
variational inequalities (2.1) and (2.2).

Special Cases
We remark that ifg ≡ I, the identity operator, then problem (2.1) is equivalent to finding

u ∈ H such that

(2.3) 〈Tu, v − u〉+ ϕ(v, u)− ϕ(u, u) ≥ 0, for all v ∈ H,

which are called the mixed quasi variational inequalities. For the applications and numerical
methods of the mixed quasi variational inequalities, see [1], [4], [6] – [8], [10], [11], [17], [18].

We note that ifϕ(·, ·) is the indicator function of a closed convex-valued setK(u) in H, that
is,

ϕ(u, u) ≡ IKu(u) =

{
0, if u ∈ K(u)
+∞, otherwise,

then problem (2.1) is equivalent to findingu ∈ H, g(u) ∈ K(u) such that

(2.4) 〈Tu, g(v)− g(u)〉 ≥ 0, for all g(v) ∈ K(u).
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Equation (2.4) is known as the general quasi variational inequality. ForK(u) ≡ K, a convex
set inH, problem (2.4) was introduced and studied by Noor [12] in 1988. It turned out that a
wide class of odd-order and nonsymmetric free, unilateral, obstacle and equilibrium problems
can be studied by the general quasi variational inequality, see [13] – [15], [19].

If K∗(u) = {u ∈ H : 〈u, v〉 ≥ 0, for all v ∈ K(u)} is a polar cone of a convex-valued cone
K(u) in H andg is ontoK, then problem (2.4) is equivalent to findingu ∈ H such that

(2.5) g(u) ∈ K(u), Tu ∈ K∗(u), and 〈Tu, g(u)〉 = 0,

which is known as the general quasi complementarity problem. We note that ifg(u) = u−m(u),
wherem is a point -to-point mapping, then problem (2.5) is called the quasi(implicit) comple-
mentarity problem. Forg ≡ I, problem (2.5) is known as the generalized complementarity
problem. For the formulation and numerical methods of complementarity problems, see the
references.

Forg ≡ I, the identity operator, problem (2.4) collapses to: findu ∈ K(u) such that

(2.6) 〈Tu, v − u〉 ≥ 0, for all v ∈ K(u),

which is called the classical quasi variational inequality, see [2, 3, 14, 15, 19].
It is clear that problems (2.4) – (2.6) are special cases of the general mixed quasi variational

inequality (2.1). In brief, for a suitable and appropriate choice of the operatorsT , g, ϕ(·, ·)
and the spaceH, one can obtain a wide class of variational inequalities and complementarity
problems. This clearly shows that problem (2.1) is quite general. Furthermore, problem (2.1)
has important applications in various branches of pure and applied sciences.

We also need the following concepts.

Lemma 2.1. For all u, v ∈ H, we have

(2.7) 2〈u, v〉 = ||u + v||2 − ||u||2 − ||v||2.

Definition 2.1. For allu, v, z ∈ H, an operatorT : H → H is said to be:

(i) g-partially relaxed strongly monotone, if there exists a constantα > 0 such that

〈Tu− Tv, g(z)− g(v)〉 ≥ −α||g(u)− g(z)||2

(ii) g-cocoercive, if there exists a constantµ > 0 such that

〈Tu− Tv, g(u)− g(v)〉 ≥ µ‖Tu− Tv‖2.

We remark that ifz = u, theng-partially relaxed strongly monotone is exactlyg-monotone of
the operatorT. It has been shown in [9] thatg-cocoercivity impliesg-partially relaxed strongly
monotonicity. This shows that partially relaxed strongly monotonicity is a weaker condition
than cocoercivity.

Definition 2.2. For allu, v ∈ H, the bifunctionϕ(·, ·) is said to beskew-symmetric,if

ϕ(u, u)− ϕ(u, v)− ϕ(v, u) + ϕ(v, v) ≥ 0.

Note that if the bifunctionϕ(·, ·) is linear in both arguments, then it is nonnegative. This
concept plays an important role in the convergence analysis of the predictor-corrector methods.
For the properties and applications of the skew-symmetric bifunction, see Noor [18].

3. M AIN RESULTS

In this section, we suggest and analyze a new iterative method for solving the problem (2.1)
by using the auxiliary principle technique of Glowinski, Lions and Tremolieres [5] as developed
by Noor [9, 13, 14, 18].
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For a givenu ∈ H, consider the problem of finding a uniquew ∈ H satisfying the auxiliary
general mixed quasi variational inequality

(3.1) 〈ρTu + g(w)− g(u), g(v)− g(w)〉+ ρϕ(g(v), g(u))

− ρϕ(g(u), g(u)) ≥ 0, for all v ∈ H,

whereρ > 0 is a constant.
We note that ifw = u, then clearlyw is a solution of the general mixed variational inequality

(2.1). This observation enables us to suggest the following iterative method for solving the
general mixed variational inequalities (2.1).

Algorithm 3.1. For a givenu0 ∈ H, compute the approximate solutionun+1 by the iterative
scheme

(3.2) 〈ρTwn + g(un+1)− g(un), g(v)− g(un+1)〉+ ρϕ(g(v), g(un+1))

− ρϕ(g(un+1), g(un+1)) ≥ 0, for all v ∈ H

and

(3.3) 〈βTun + g(wn)− g(un), g(v)− g(wn)〉+ βϕ(g(v), g(wn))

− βϕ(g(wn), g(wn)) ≥ 0, for all v ∈ H,

whereρ > 0 andβ > 0 are constants.

Note that ifg ≡ I, the identity operator, then Algorithm 3.1 reduces to:

Algorithm 3.2. For a givenu0 ∈ H, computeun+1 by the iterative scheme

〈ρTwn + un+1 − wn, v − un+1〉+ ρϕ(v, un+1)− ρϕ(un+1, un+1) ≥ 0, for all v ∈ H,

and

〈βTun + wn − un, v − wn〉+ βϕ(v, wn)− βϕ(wn, wn) ≥ 0, for all v ∈ H.

For the convergence analysis of Algorithm 3.2, see [18].
If the bifunctionϕ(·, ·) is a proper, convex and lower-semicontinuous function with respect

to the first argument, then Algorithm 3.1 collapses to:

Algorithm 3.3. For a givenu0 ∈ H, computeun+1 by the iterative scheme

g(un+1) = Jϕ(un+1)[g(wn)− ρTwn],

g(wn) = Jϕ(wn)[g(un)− βTun], n = 0, 1, 2, . . .

whereJϕ(·) is the resolvent operator associated with the maximal monotone operator∂ϕ(·, ·),
see [17, 18].

If the bifunctionϕ(·, ·) is the indicator function of a closed convex-valued setK(u) in H, then
Algorithm 3.1 reduces to the following method for solving general quasi variational inequalities
(2.4) and appears to be new.

Algorithm 3.4. For a givenu0 ∈ H such thatg(u0) ∈ K(u0), computeun+1 by the iterative
schemes

〈ρTwn + g(un+1)− g(wn), g(v)− g(un+1)〉 ≥ 0, for all g(v) ∈ K(u)

and

〈βTun + g(wn)− g(un), g(v)− g(wn)〉 ≥ 0, for all g(v) ∈ K(u).
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For a suitable choice of the operatorsT, g and the spaceH, one can obtain various new and
known methods for solving variational inequalities.

For the convergence analysis of Algorithm 3.1, we need the following result, which is mainly
due to Noor [9, 18]. We include its proof to convey an idea.

Lemma 3.1. Let ū ∈ H be the exact solution of (2.1) andun+1 be the approximate solution
obtained from Algorithm 3.1. If the operatorT : H −→ H is g−partially relaxed strongly
monotone operator with constantα > 0 and the bifunctionϕ(·, ·) is skew-symmetric, then

(3.4) ||g(un+1)− g(ū)||2 ≤ ||g(un)− g(ū)||2 − (1− 2ρα)||g(un+1)− g(un)||2.

Proof. Let ū ∈ H be solution of (2.1). Then

(3.5) 〈ρT ū, g(v)− g(ū)〉+ ρϕ(g(v), g(ū))− ρϕ(g(ū), g(ū)) ≥ 0, for all v ∈ H,

and

(3.6) 〈βT ūg(v)− g(ū)〉+ βϕ(g(v), g(ū))− βϕ(g(ū), g(ū)) ≥ 0, for all v ∈ H,

whereρ > 0 andβ > 0 are constants.
Now takingv = un+1 in (3.5) andv = ū in (3.2), we have

(3.7) 〈ρT ū, g(un+1)− g(ū)〉+ ρϕ(g(un+1), g(ū))− ρϕ(g(ū), g(ū)) ≥ 0

and

(3.8) 〈ρTwn + g(un+1)− g(un), g(ū)− g(un+1)〉+ ρϕ(g(ū), g(un+1))

− ρϕ(g(un+1), g(un+1)) ≥ 0.

Adding (3.7) and (3.8), we have

〈g(un+1)− g(un), g(ū)− g(un+1)〉
≥ ρ〈Twn − T ū, g(un+1)− g(ū)〉+ ρ{ϕ(g(ū), g(ū))

− ϕ(g(ū), g(un+1))− ϕ(g(un+1), g(ū)) + ϕ(g(un+1), g(un+1))}
≥ −αρ||g(un+1)− g(wn)||2,(3.9)

where we have used the fact thatN(·, ·) is g-partially relaxed strongly monotone with constant
α > 0, and the fact that the bifunctionϕ(·, ·) is skew-symmetric.

Settingu = g(ū)− g(un+1) andv = g(un+1)− g(un) in (2.7), we obtain

(3.10) 〈g(un+1)− g(un), g(ū)− g(un+1)〉

=
1

2
{||g(ū)− g(un)||2 − ||g(ū)− g(un+1)||2 − ||g(un+1)− g(un)||2}.

Combining (3.9) and (3.10), we have

(3.11) ||g(un+1)− g(ū)||2 ≤ ||g(un)− g(ū)||2 − (1− 2αρ)||g(un+1)− g(wn)||2.

Takingv = ū in (3.3) andv = wn in (3.6), we have

(3.12) 〈βT ū, g(wn)− g(ū)〉+ βϕ(g(wn), g(ū))− βϕ(g(ū), g(ū)) ≥ 0

and

(3.13) 〈βTun + g(wn)− g(un), g(ū)− g(wn)〉
+ βϕ(g(ū), g(wn))− βϕ(g(wn), g(wn)) ≥ 0.

J. Inequal. Pure and Appl. Math., 3(4) Art. 59, 2002 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


6 MUHAMMAD ASLAM NOOR AND ZULFIQAR ALI MEMON

Adding (3.12) and (3.13) and rearranging the terms, we have

〈g(wn)− g(un), g(ū)− g(wn)〉
≥ β〈Tun − T ū, g(wn)− g(ū)〉+ β{ϕ(g(ū), g(ū))

− ϕ(g(ū), g(wn))− ϕ(g(wn), g(ū)) + ϕ(g(wn), g(wn))}
≥ −βα||g(un)− g(wn)||2,(3.14)

sinceN(·, ·) is ag-partially relaxed strongly monotone operator with constantα > 0 and the
bifunctionϕ(·, ·) is skew-symmetric.

Now takingv = g(wn)− g(un) andu = g(ū)− g(wn) in (2.7), (3.14) can be written as

||g(ū)− g(wn)||2 ≤ ||g(ū)− g(un)||2 − (1− 2βα)||g(un)− g(wn)||2

≤ ||g(ū))− g(un)||2, for 0 < β < 1/2α.(3.15)

Consider

||g(un+1)− g(wn)||2 = ||g(un+1)− g(un) + g(un)− g(wn)||2

= ||g(un+1)− g(un)||2 + ||g(un)− g(wn)||2

+ 2〈g(un+1)− g(un), g(un)− g(wn)〉.(3.16)

Combining (3.11), (3.15) and (3.16), we obtain

||g(un+1)− g(ū)||2 ≤ ||g(un)− g(ū)||2 − (1− 2ρα)||g(un+1)− g(un)||2,
the required result. �

Theorem 3.2. Let g : H −→ H be invertible and0 < ρ < 1
2α

. Let un+1 be the approx-
imate solution obtained from Algorithm 3.1 and̄u ∈ H be the exact solution of (2.1), then
limn→∞ un = ū.

Proof. Let ū ∈ H be a solution of (2.1). Since0 < ρ < 1
2α

. From (3.4), it follows that the
sequence{||g(ū)− g(un)||} is nonincreasing and consequently{un} is bounded. Furthermore,
we have

∞∑
n=0

(1− 2αρ)||g(un+1)− g(un)||2 ≤ ||g(u0)− g(ū)||2,

which implies that

(3.17) lim
n→∞

||g(un+1)− g(un)|| = 0.

Let û be the cluster point of{un} and the subsequence{unj
} of the sequence{un} converge to

û ∈ H. Replacingwn by unj
in (3.2) and (3.3), taking the limitnj −→∞ and using (3.17), we

have
〈T û, g(v)− g(û)〉+ ϕ(g(v), g(û))− ϕ(g(û), g(û)) ≥ 0, for all v ∈ H,

which implies that̂u solves the general mixed variational inequality (2.1) and

‖g(un+1)− g(ū)‖2 ≤ ‖g(un)− g(ū)‖2.

Thus it follows from the above inequality that the sequence{un} has exactly one cluster point
û and

lim
n→∞

g(un) = g(û).

Sinceg is invertible,
lim

n→∞
(un) = û,

the required result. �
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