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Abstract

Three results dealing with probability distributions (p, ¢) over a two-element set
are presented. The first two give bounds for the entropy function H (p, ¢) and
are referred to as the logarithmic and the power-type bounds, respectively. The
last result is a refinement of well known Pinsker-type inequalities for information
divergence. The refinement readily extends to general distributions, but the key
case to consider involves distributions on a two-element set.

The discussion points to some elementary, yet non-trivial problems concern-
ing seemingly simple concrete functions.
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Denote byM/: (N) the set of discrete probability distributions owértypically
identified by the set of point probabilitie® = (p1,ps,...),Q = (¢1,¢2,.-.)

or what the case may béntropy, (Kullback-Leibler—)divergenceand (total)
variation are defined as usual:

(1.1) H(P) = —Zpilnpi,

Bounds for Entropy and
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(1.2) D(P”Q) = Z Di ]n aid over a Two-element Set
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(1.3) V(PQ) = Z i — ail.
i=1 Title Page
Here, ‘In” denotes natural logarithm. Thus we measure entropy and divergence Contents
in “nits” (natural units) rather than in “bits”. Admittedly, some of our results, «“ b
especially the power—type bounds, would look more appealing had we chosen
to work with logarithms to the basg i.e. with bits. < >
By M} (n) we denote the set d? € M (N) with p; = 0 for i > n. o TRk
We shall pay special attention 1@ (2). Our first two results give bounds E—
for H(P) with P = (p,q) = (p,¢,0,0,...) € M} (2):
uit
Theorem 1.1 (Logarithmic bounds). For any P = (p,q) € M3 (2), 2
Page 3 of 30
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Theorem 1.2 (Power-type bounds)For any P = (p,q) € M1(2),
(1.5) In2- (4pq) <H(p,q) <In2- (4pg)"/™".

The proofs are given in Sectior’ssand 3 and the final section contains a

discussion of these inequalities. Here we only remark that the results are best

possible in a natural sense, e.g. in Theorethe exponentl/In4 is the
largest one possible.

The lastinequality we shall prove concerns the relation betuieenD(P||Q)
andV = V (P, Q). We are interested in lower bounds Bfin terms ofV/. The
start of research in this direction is Pinsker’s inequality

1 2
(1.6) D > 5\/ :
cf. Pinsker [.1] and a later improvement by Csiszét,[where the best constant

for this inequality is found/2 as stated inX.6)). The best two term inequality
of this type is

(1.7) Dz;ﬂ+iw

36
as proved by Krafft [].

A further term1 /288 V¢ was added by Krafft and Schmitz][and Toussaint
[13]. For further details see Vajda {] and also Tops@e![] where an improve-
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best constants**, v = 0, 1,2, ..., are defined recursively by taking"** to
be the largest constaafor which the inequality

(1.8) D> e ViV

<v

holds generally (for any’ and@ in M} (N)). Clearlyc™™, v =0,1,2,..., are
well defined non-negative real constants.
By the datareduction inequality, cf. Kullback and Leibldrdnd also Csiszar

[1], it follows that the determination of lower bounds of the type considered Bounds for Entropy and
only depends on the interrelationship betwdemndV for distributionsP, D"ggfg‘}ewfgfelﬂzigggfé%fgs
in M} (2). In particular, in the relation1(8) defining the best constants, we
may restrict attention to distribution8 and @ in M} (2). Thus, researching RIS
lower bounds as here, belongs to the theme of the present paper as it essen-
tially amounts to a study of distributions i/} (2). Our contribution is easily Title Page
summarized:
Contents

Theorem 1.3.

1 <4< 44
(19) Cg = %, < >

221
(1.10) M = 340900° Go Back
Corollary 1.4 (Refinement of Pinsker’s inequality). For any set of probability Close
distributionsP and @), the inequality Quit

1 1 1 221

1.11 D> _V2 —V4 _V() VS Page 5 of 30
( ) -2 * 36 + 270 * 340200
h0|dS W|thD — D(PHQ) andV — ‘/(P7 Q) J. Ineq. Pure and Appl. Math. 2(2) Art. 25, 2001
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Note also that the termh/270 V¢ is better than the terrh/288 V¢ which is
the term given in the papers by Krafft and Schmitz and by Toussaint. Indeed,
the term is the best one in the sense described and so is the last terhl)n (
The proofs of these facts depend on an expansian of terms ofV which is
of independent interest. The expansion in question is due to Kambo and Kotz,
[6], and is presented in Sectigh The proof of (.9) is given in all details in
Section5, whereas the proof ofi(10), which is similar, is here left to the reader
(it may be included in a later publication).

We stress once more that though the proofs deal with distributions on a two-
element set, Corollary.4 applies to general distributions.
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In this section we prove Theorefnl. The original proof found by the author
and supplied for the first version of the manuscript was not elegant but cumber-
some (with seven differentiations!). The idea of the simple proof we shall now
present is due to O.N. Arjomand, M. Bahramgiri and B.D. Rouhani, Tehran,
(private communication). These authors remark that the fungtiginen by

@) 1) =

0<p<l1

(with g =1 —pandf(0) and f(1) defined by continuity fop = 0 andp = 1)
can be written in the form

f(p) = ¢(p) + ¢(q)
wherey denotes the function given by

(22) o)=L 2> 0

Inz -

(with (0) = 1), and they observe thatis concave (details below). It follows
that f is concave too, and agis also symmetric aroungd = % f must be
increasing in0, 1], decreasing in3,1]. Thusf(0) < f < f(3) which is the
inequalities claimed in Theorefnl.

The essential concavity of is proved by differentiation. Indeed,

(2) = — - (x)

22(In x)3
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with
Y(x)=(x+1)Inz+21—2).
As .
V(x)=Inz— (1——> >0,

T

and asy(1) = 0, inspection of the sign ap” shows thaty”(z) < 0 for all
x > 0, and concavity ofp follows.
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In this section we prove Theorein2.

The lower bound of (p, q) is a special case of Theorem 2.6 of Harremoés

and Topsge .

A direct proof of this bound is quite easy. We may also apply the technique

of the previous section. Indeed, It andy* be the “dual” functions off and

©:
(3.1) Fp) = 10D oy
pq
)= L mx
(3.2) " (x) @) " ro1 "2

(f*(0) = f*(1) = ¢*(0) = o0). Theny* is convex and*(p) = ¢*(p) +¢*(q),
SO f* is convex too. Noting also the symmetry f, we see thaf* is decreasing
in [0, 3], increasing in[3,1]. Thus f*(3) < f* < f*(0) which shows that
41n 2 < f* < oo, thereby establishing the lower bound in Theore

For the proof of the upper bound, we parametiize= (p,q) by p = “T’”
g = 5% and consider only values aof in [0,1]. From the cited reference it

follows that for no larger exponentthana = (In4)~! can the inequality

(3.3) H(p,q) <In2- (4pq)”
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hold generally (see also the discussion). For the remainder of this section we
put

1

3.4 -
(34) @ In4

With this choice ofo we have to prove thaB(3) holds generally. Let) denote
the auxiliary function

(3.5) w =In2- (4pq)a — H(p, q), Bounds for Entropy and
Divergence for Distributions
over a Two-element Set

conceived as a function af € [0, 1], i.e.
Flemming Topsge
1+ 1—=

(3.6) ¥(x)=In2-(1—2%)*—In2+ In(1+4 )+ In(1 — z).
Title Page
We have to prove thap > 0. Clearly(0) = ¢ (1) = 0. In contrast to the c
. . . . . ontents
method used in the previous section we now prefer to base the analysis mainly
on the technique of power series expansion. Frérmg) (ve find that, at least for 44 44
0<z<1, < >
=1 1 o o} o Go Back
@7 (o) —;E(zy_l —(—a)(1-D)-(1- V_l))x . L
Actually (3.7) also holds forz = 1 but we do not need this fact. The compu- Quit
tation behind this formula is straight forward when noting that the coefficient Page 10 of 30
In2 - (¢)(—1)” which occurs in the expansion of the first term téj can be
written as—%(l — a)(l — %) e (1 — ﬁ) J. Ineq. Pure and Appl. Math. 2(2) Art. 25, 2001
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We cannot conclude directly from3 (/) thaty) > 0, as @3.7) contains negative
terms, but8.7) does show that'(0) = 0 and that)(z) > 0for 0 < x < ¢ with
e > 0 sufficiently small. Fob < = < 1, we find from (3.7) that

o0
1— 22

« (0]
" =3a—2— 2 — 20 — I—a)---(1==)a*
w (l’) 72 Q ;( Q V+1)( CY) ( V)‘T ’
thus, still for0 < = < 1, the equivalence
0o Bounds for Entropy and
Divergence for Distributions
¢’/<I) =0& ; (2 — 20 — » i 1) (1 — a) s (1 — %)xzy =3a—2 over a Two-element Set

Flemming Topsge

holds. As all terms in the infinite series occuring here are positive, it is clear
thatv only has one inflection point if0, 1[. Combining with the facts stated

regarding the behaviour of at (or near) the end points, we conclude that 0 Title Page
in ]0, 1], thusy > 0. Contents
44 44
< >
Go Back
Close
Quit
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The proof of Theoreni.3 will be based on th&Kambo—Kotz expansiorcf.
Kambo and Kotz §] *, which we shall now discuss. Two distributiofsand@
in M} (2) are involved. For these we choose the basic parametrization

p_ 1—04’1—1—04 0= 1—}—5’1—6 ’

2 2 2 2
and we consider values of the parameters as follewis< o < 1 and0 < G <
1. We shall also work with another parametrizatianl’) where

(4.1)

(%
P ==
B

Here,V is the total variatiorl/ (P, Q), the essential parameter in Pinsker-type
inequalities. We may avoid the inconvenient case 0 simply by noting that
this case corresponds @ = U, (the uniform dlStI‘IbUtIOF(Q, 2)) which will
never cause difficulties in view of the simple expansion

(4.2) = |la+ 3|

2v

D(P[t2) = Z 2020 — 1)

v=1

4.3)

with V' = V (P, Q) (actually derived in Sectiofi in view of the identity
D(P||Uy) = 1In2 — H(P)).

1The result is contained in the proof of Lemma 3 of that paper; there is a minor numerical
error in the statement of this lemma, cf. Krafft]
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-1 1 2

. . . L . Flemming Topsge
Fig. 1. Parameter domain for the Kambo-Kotz expansion with indication of the

critical domain(for explanation see further on in the text).

Title Page
Denote by() the subset of thép, V')-plane sketched in Figure 1. To be FE——
precise,
<44 44
(4.4) Q={(-1,00} UQ Uy U Qs < >
with Go Back
(4.5) QU ={(p,V) | p<—-1,0<V <1+41/p}, Close
(4.6) Q={(pV)| ~1<p<1,0<V<1+p}, Quit
4.7) Q={(p,V)|1<p, 0<V <1+1/p}. Page 13 of 30
From [5] we have (adapting notation etc. to our setting): 58, o el Gl Y 2 o, 25, 0
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Theorem 4.1 (Kambo-Kotz expansion).ConsiderP and @ of the form(4.1),
assume that > 0 and defingp andV by (4.2). Then(p,V) € Q2 and

(4.8) D(P||Q) = Z () VQV

V —
wheref,; v > 1, are rational functions defined by

p2”+2y,0+2y—1_

4.9 L(p) = ; —1.
(4.9) fo(p) e P

We note that the value of, for p = —1 is immaterial in §.8) asV = 0
whenp = —1 hence, with the usual conventiong, &) gives the correct value

D = 0in this case too. However, we do find it natural to deffpe-1) = 1 and
fu(=1) =occforv > 2.

The functionsf, are essential for the further analysis. We shall refer to them
as theKambo—Kotz functiondVe need the following result:

Lemma 4.2 (Basic properties of the Kambo—Kotz functions) All functions
fui v > 1, are everywhere positive; is the constant functioh and all other
functions f, assume their minimal value at a uniquely determined ppjnt
which is the only stationary point of,. We havep, = 2,1 < p, < 2 for
v >3andp, — 1 asv — oc.

Forv > 2, f, is strictly increasing in the two intervals- co, —1[ and[2, o]
and f, is strictly decreasing i — 1, 1]. Furthermore,f, is strictly convex in
[1,2] and, finally,f,(p) — 1 for p — +oc.
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Proof. Clearly, f; = 1. For the rest of the proof assume that 2. Forp > 0,
fu(p) > 0 by (4.9 and forp < 0, we can use the formula

(p+ 1)~ i(—l)k(k — 1)k

and realize thaf, (p) > 0 in this case, too.
We need the following formulae:

(4.11) f(p) =

(4.10) fo(p) =

2v(p+1)" (1 — (20— 1)p — (2v — 2))
and

(4.12) f(p) =2v(p+ 1)~ g,(p),

with the auxiliary functiorny, given by

(4.13) g,(p) = 20"+ v — 1)p* 2+ 220 — 1)p+ 4% —4v — 1.

By (4.11), f, > 0in] —oo,—1] andf, < 0in] — 1,1]. The sign off/ in
[1,2] is the same as that pf*~! — (20 — 1)p — (2v — 2) and by differentiation
and evaluation ap = 2, we see thaff/(p) = 0 at a unique poinp = p,
n |1,2]. Furthermorep, = 2,1 < p, < 2forv > 3 andp, — 1 for
v — oo. Investigating further the sign gf,, we find thatf, is strictly increasing
in [2,00[. As f,(p) — 1for p — +oo by (4.9), we now conclude thaf, has

the stated monotonicity behaviour. To prove the convexity assertion, note that ; ineq. rure and Appl. Math. 22) Art 25, 2001
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g, defined by ¢.13 determines the sign ¢f’. Forv = 2, g2(p) = 2(2—p)p*+
p(12 — p) + 7 which is positive in[1, 2]. A similar conclusion can be drawn in
casev = 3 sincegs(p) = 2p*(2 — p) + p* + 30p + 23. For the general case
v > 4, we note thay, (1) = 4(v — 1)(2v + 1) > 0 and we can then close the
proof by showing thay, is increasing i1, 2]. Indeed,g, = (2v — 1)h, with
ho(p) = —2p*2 + (2v — 2)p* =3 + 2v, henceh, (1) = 4(v — 1) > 0 and
R (p) = (2v — 2)(2v — 3 — 2p)p*~* which is positive in[1, 2]. O

In the sequel, we shall writ®(p, V') in place of D(P||Q) with P andQ Bounds for Ent |
ounds for Entropy an

parametrized as explained b@’l) and @'2) Divergence for Distributions
over a Two-element Set

A Flemming Topsge
Title Page
Contents
<4« »»
| 2
-1 1 2
Go Back
Close
Fig. 2. A typical Kambo-Kotz function shown in normal/logarithmic scale. Quit
Figure 2 illustrates the behaviour of the Kambo—Kotz functions. In order to Page 16 of 30
illustrate as clearly as possible the nature of these functions, the graph shown is
actually that of the logarithm of one of the Kambo-Kotz functions. 3. Ineq. Pure and Appl. Math. 2(2) Art. 25, 2001
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Note that if we extend the domainby the pointg+oco, V) with0 < V' < 1,
then @.8) reduces to4.3). Therefore, we may consider the case= 0 as a
singular or limiting case for which4(8) also holds.

Motivated by the lemma, we define thatical domainas the set

O ={(pV)eQ|1<p<2}
(4.14) ={(p,V)eQ|1<p<2,0<V <1+1/p}.

We then realize that in the search for lower bound®ah terms oflV we may
restrict the attention to the critical domain. In particular:

Corollary 4.3. For eachyy, > 1

(4.15) ¢ —inf {V‘”O (D(p, DY c;mvu) ‘(p, V) e Q}

v<vg
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In this section we prove Theorein3.

We use notation and results from the previous section. We shall determine
the best constants®™, v = 0,1, ...,8 in the inequalityD > "> ¢, V", cf.
the explanation in the introductory section. In fact, we shall mainly focus on the
determination ot;"**. The reason for this is that the valuegf** for v < 4
is known and that it is pretty clear (see analysis below) ¢fat = c;"** = 0.
Further, the determination ef"**, though more complicated, is rather similar

Bounds for Entropy and

to that OfCGmaX. Divergence for Distributions
Before we continue, let us briefly indicate that from the Kambo—Kotz expan- over a Two-element Set
sion and the identitieg, = 1 and Flemming Topsze
1 2(2 — p)?
(5.1) falp) = 3 (1 + ﬁ) Title Page
] ] Contents
one deduces the results regardiffg™ for v < 4 (in fact forv < 5).
Now then, let us determing™*. From the identity « dd
< >
D(p,V) = 2v2 = Ly
(e, )_5 36 Go Back
1/2-p\ 1 6p+5,,
(5.2) = T (1 p) e gop 11“ P+ Z VQZ/ Close
T (1+p)° 4 Quit
we see that"®x < 1/270 (takep = 2 and consider smaW’s). In order to Page 18 of 30

show thatf"* > 1/270, we recall (Lemmatl.2) that each term in the suin,°
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in (5.2) is non-negative, hence it suffices to show, that

1 (2—_p)2vg+f3(p> falp) o 1

5.3 —
(®-3) 18\ 1+p *

30 56 =270

Here we could restrictp, V') to the critical domairf2*, but we may also argue
more directly as follows: I{p > 2, the middle term alone in5(3) dominates
1/270. Then, since for fixed non-negativeandt, the minimal value oV 2 +
tV2is 2¢/st, it suffices to show that

Bounds for Entropy and
fs(ﬂ) 2\/(2 - p)z(pS + 8p + 7) > 1 Divergence for Distributions
—_ Two-element Set
30 18-56- (1+p)10 = 270 overa

Flemming Topsge

for p < 2, i.e. we must check that

45 .
8p® — 6p* +9p — 22 < W\/pG — 205+ 3pt —4pP +5p2 —6p+ 7 Title Page
Contents
holds (here, factors of + p and2 — p have been taken out). In fact, even the
square of the left-hand term is dominated by the square of the right-hand term 44 44
for all p € R. This claim amounts to the inequality < >
(5.4) Go Back
45%(p5 — 2p° + 3p* — 4p® +5p* — 6p +7) > 7(8p® — 6p* 4+ 9p — 22)°.
Close
An elementary way to verifyH.4) runs as follows: Write the equation in the _
form Quit
6 Page 19 of 30

(5.5) > (=DYa,p” =0,
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and note that, for ap € R

6 3 1
> (=DYayp” = xpt + > (DY ayp” Zyp*+ Y (—1) a,p” > 2,
v=0 v=0 v=0
with ) ) )
g %5 g 83 g
T = Gy 4@67 Yy = a2 Ay’ Z = Qg 4y

(sinceag,  andy are all positive). Since > 0 (in fact, z ~ 6949.51), (5.5) and
therefore also.4) follow. Thusci® = 1/270.
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Theoreml.1:

Emphasis here is on the quite precise upper bounid @f ¢). An explana-
tion of the origin of the upper bound may not be all that helpful to the reader.
Basically, the author stumbled over the inequality (in the search for a natural
proof of Theoreml.2, cf. below), and has no special use in mind for it. The
reader may take it as a curiosity, an ad-hoc inequality. It is not known if the
inequality has natural generalisations to distribution&/ih(3), M3 (4), .. ..

Bounds for Entropy and

Theoreml.2: Divergence for Distributions
This result, again with emphasis on the upper bound, is believed to be of "2 Toelement Set
greater significance. It is discussed, together with generalizations!t), Flemming Topsge
in Harremoés and Tops@€][ Applications to statistics (decision theory, Cher-
noff bound) appear promising. The terng in the inequality should best be Title Page
thought of asl minus therelative measure of roughnesdroduced in {]. The
term may, qualitatively, be taken to measure the closeness to the “flat” uniform Contents
distribution (1/2,1/2). It varies from0 (for a deterministic distribution) tad P Y
(for the uniform distribution). p >

As stated in the introduction, the exponéntn 4 ~ 0.7213 is best possible.
A previous result by Lin [(] establishes the inequality with expondn®, i.e. Go Back

H(p,q) < In2/4pq.

Theoreml.2was stated in4] but not proved there. Clos_e
Comparing the logarithmic and the power-type bounds: Ul
The two lower bounds are shown graphically in Figure 3. The power bound Page 21 of 30

is normally much sharper and it is the best bound, except for distributions close

to a deterministic distribution (m#&y, ¢) >0.9100). 3. Ineq. Pure and Appl. Math. 2(2) Art. 25, 2001
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Both upper bounds are quite accurate for all distributiong/ih(2) but,
again, the power bound is slightly better, except wlgny) is very close to

a deterministic distribution

(max(p, ¢) >0.9884). Because of the accuracy of the two upper bounds, a sim-
ple graphical presentation together with the entropy function will not enable

us to distinguish between the three functions. Instead, we have shown in Fig-
ure 4 the difference between the two upper bounds (logarithmic bound minus

power-type bound).

Fig. 3: Lower bounds

0.015

0.01

0.005

o=

—0.005
Fig. 4. Difference of upper bounds
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Bounds for Entropy and
Divergence for Distributions

O ,p 0 ,p over a Two-element Set
0 1 1 0 1 1
2 2 Flemming Topsge
Fig. 5: Ratios regarding lower Fig. 6: Ratios regarding upper
bounds bounds _
Title Page
Thus, for both upper and lower bounds, the power—type bound is usually the Contents
best one. However, an attractive feature of the logarithmic bounds is that the
guotient between the entropy function and e In ¢ function is bounded. On <44 >
Figures 5 and 6 we have shown the ratios: entropy to lower bounds, and: upper p >
bounds to entropy. Note (hardly visible on the graphs in Figure 6), that for the
upper bounds, the ratios shown approaches infinity for the power bound but has Go Back
a finite IimiF (1./ lg2 ~ 1.44) for the logarithmic bound whefp, ¢) approaches Close
a deterministic distribution.
Quit

Other proofs of Theorerh. 1:
As already indicated, the first proof found by the author was not very satis- Page 23 of 30
factory, and the author asked for more natural proofs, which should also display

the monotonicity property of the functiofi given by (12). Several reSponses  3ineq. Pure and Appl. Math. 2(2) Art. 25, 2001
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were received. The one by Arjomand, Bahramgiri and Rouhani was reflected
in Section2. Another suggestion came from losif Pinelis, Houghton, Michigan
(private communication), who showed that the following general L'Hospital —
type of result may be taken as the basis for a proof:

Lemma. Let f and g be differentiable functions on an intervial, b[ such that
fla+) = g(a+) =0o0r f(b—) = g(b—) = 0, ¢’ is nonzero and does not change
sign, andf’/4’ is increasing (decreasing) ofu,b). Thenf/g is increasing
(respectively, decreasing) o, b|.

Other proofs have been obtained as response to the author’s suggestion to  Bounds for Entropy and
work with power series expansions. As the feed-back obtained may be of inter-  Pergence for bistribufions
est in other connections (dealing with other inequalities or other type of prob-
lems), we shall indicate the considerations involved, though for the specific
problem, the methods discussed above are more elementary and also more ex-
pedient. Title Page

Let us parametrizép, q) = (p, 1 — p) by x € [—1, 1] via the formula

Flemming Topsge

Contents
po 1t “« | »
’ < >
and let us first consider the analytic function
1 Go Back
T)=—; |z <1l
p(x) n HTx Ed Close
Let Quit
- Page 24 of 30
(6.1) p(r) = wa*s |a| <1,
=0 J. Ineq. Pure and Appl. Math. 2(2) Art. 25, 2001
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be the Taylor expansion gf and introduce the abbreviation= In 2. One finds
thaty, = —1/X and that

oo

1+x 1 5
(6.2) f( ) =< (Yow — Yav—1)2™; |z < L.
2 A —
Numerical evidence indicates that > ~, > 76 > -+, thaty; < 73 <
~v5 < --- and that both sequences converge-tb However, it appears that the
natural question to ask concerns the Taylor coefficients of the analytic function Bounds for Enzopy and
5 ] Divergence for Distributions
over a Two-element Set
(6.3) (z) = el < 1.
14z ln( 5 ) Flemming Topsge
Let us denote these coefficients By, v < 0, i.e.
- Title Page
(6.4) Y(o) =) Beasfal < 1. Contents
<44 >
The following conjecture is easily seen to imply the desired monotonicity < >
property of f as well as the special behaviour of the:
Go Back
Conjecture 6.1. The sequencgs, ), ~o is decreasing with limio.
h Close
In fact, this conjecture was settled in the positive, independently, by Chris- Quit

tian Berg, Copenhagen, and by Miklés Laczkovich, Budapest (private commu-
nications). Laczkovich used the residue calculus in a straightforward manner Page 25 of 30
and Berg appealed to the theory of so-called Pick-functions — a theory which is

of great significance for the study of many inequalities, including matrix type  inea. Pure and Appl. Math. 2(2) Art. 25, 2001
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inequalities. In both cases the result is an integral representation for the coeffi-
cientsj,, which immediately implies the conjecture.

It may be worthwhile to note that thé,’s can be expressed as combina-
tions involving certain symmetric functions, thus the settlement of the conjec-
ture gives information about these functions. What we have in mind is the
following: Guided by the advice contained in Henrig] fve obtain expressions
for the coefficients3, which depend on numbers, ; defined forv > 0 and
eachj =0,1,...,v,byh, o =1and

.. cN—1
hoj= Y (iviaee-iy)
1<) << <p

Then, fork > 1,

1 (=1)"!
_ k
(6.5) B =2(=1)" - 5% ; o Lot
A natural proof of Theorer.2:
Denote byy the function
H(p,
(6.6) (p) 1(1(52(1)) 0<p<i1
. P)= V7"~ >p> 4
ST Tn(dpg)

with ¢ = 1 — p. This function is defined by continuity at the critical points, i.e.
g(0) = g(1) = 1andg(1/2) = 1/In4. Clearly,g is symmetric aroung = 1/2
and the power-type bounds of Theorér@ are equivalent to the inequalities

(6.7) 9(1/2) < g(p) < g(1).
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Our proof (in SectiorB) of these inequalities was somewhat ad hoc. Numerical
or graphical evidence points to a possible natural proof which will even establish
monotonicity ofg in each of the interval$), 1] and([1, 1]. The natural conjecture

to propose which implies these empirical facts is the following:

Conjecture 6.2. The functiory is convex.

Last minute input obtained from losif Pinelis established the desired mono-
tonicity properties ofy. Pinelis’ proof of this fact is elementary, relying once

more on the above L'Hospital type of lemma. Bounds for Entropy and
. . S Divergence for Distributions
Pinsker type mequalltles. over a Two-element Set

While completing the manuscript, new results were obtained in collabora-
tion with Alexei Fedotov and Peter Harremoés, ci]. [These results will be
published in a separate paper. Among other things, a determination in closed
form (via a parametrization) dfajda’s tight lower boundcf. [14], has been Title Page
obtained. This research also points to some obstacles when studying further

Flemming Topsge

terms in refinements of Pinsker’s inequality. It may be that an extension beyond Contents
the result in Corollaryi.4 will need new ideas. <« 9
< >
Go Back
Close
Quit
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The author thanks Alexei Fedotov and Peter Harremoés for useful discussions
and further, he thanks O. Naghshineh Arjomand, M. Bahramgiri, Behzad Dja-
fari Rouhani, Christian Berg, Mikl6s Laczkovich and losif Pinelis for contribu-

tions which settled open questions contained in the first version of the paper,

and for accepting the inclusion of hints or full proofs of these results in the final
version.
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