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ABSTRACT. Let E be a real Banach Space aikda nonempty closed convex (not necessarily
bounded) subset df. Iterative methods for the approximation of fixed points of asymptotically
demicontractive mappings : K — K are constructed using the more general modified Mann
and Ishikawa iteration methods with errors.

Our results show that a recent result of Osilike [3] (which is itself a generalization of a theorem
of Qihou [4]) can be extended from regluniformly smooth Banach spacels,< ¢ < oo, to
arbitrary real Banach spaces, and to the more general Modified Mann and Ishikawa iteration
methods with errors. Furthermore, the boundedness assumption imposed on thesiubset
(I3, 14]]) are removed in our present more general result. Moreover, our iteration parameters are
independent of any geometric properties of the underlying Banach space.
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1. INTRODUCTION

Let F be an arbitrary real Banach space andJetenote the normalized duality mapping
from E into 28" given by J(z) = {f € E* : (z, f) = ||z||*> = || f|*}, where E* denotes the
dual space of’ and( , ) denotes the generalized duality pairing EIf is strictly convex, then
J is single-valued. In the sequel, we shall denote the single-valued duality mappjng by

Let K be a nonempty subset 6f. A mapping? : K — K is calledk-strictly asymptotically
pseudocontractivenapping, with sequendg:,,} C [1,00), lim k,, = 1 (see for example [3,4]),

if for all z,y € K there existg(z — y) € J(x — y) and a constant € [0, 1) such that
(1Y) (I =Tz =T =T"y,j(r—y))

> (=R (T =T — (T =Tyl — S8~ Dl — ol
mnic): 1443-5756
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for all n € N. T is called anasymptotically demicontractiveapping with sequencke, C
[0,00), limk,, = 1 (see for example [3,/4]) iF(T) = {x € K : Tex = x} # () and for all

x € K andz* € F(T), there exist® € [0,1) andj(x — z*) € J(x — z*) such that

(1.2) (@—T"2, j(z —a%)) 2 5 (L= K)o =T x| - 5(1@3 — 1z — 27|

for all n € N. Furthermore]l" is uniformly L-Lipschitzian if there exists a constarit > 0,
such that

(1.3) [Tz = T"y|| < Lllz -yl

forall x ,y € K andn € N.

It is clear that ak-strictly asymptotically pseudocontrative mapping with a nonempty fixed
point setF'(T') is asymptotically demicontrative. The classegeftrictly asymptotically pseu-
docontractive and asymptotically demicontractive maps were first introduced in Hilbert spaces
by Qihou [4]. In a Hilbert spacgj, is the identity and it is shown in[3] thdt (1.1) and (1.2) are
respectively equivalent to the inequalities:

(1.4) [Tz — T y|| < k2l —y||* + KI|(I = Tz — (I = T")yl?
and
(1.5) [Tz — Ty|)> < K2 ||lz — yl|* + [|o — T"z|)?

which are the inequalities considered by Qihdu [4].

In [4], Qihou using themodified Mannteration method introduced by Schu [5], proved con-
vergence theorem for the iterative approximation of fixed points-sfrictly asymptotically
pseudocontractive mappings and asymptotically demicontractive mappings in Hilbert spaces.
Recently, Osilike([3], extended the theorems of Qihdu [4] concerning the iterative approxima-
tion of fixed points ofk- strictly asymptotically demicontractive mappings from Hilbert spaces
to much more general reatuniformly smooth Banach spaces< ¢ < oo, and to the much
more generamodified Ishikawa iteration methotMore precisely, he proved the following:

Theorem 1.1. (Osilike[3, p. 1296): Letq > 1 and letE be a realg-uniformly smooth Banach
space. LetK be a closed convex and bounded subseb'@nd 7T : K — K a completely
continuous uniformhL-Lipschitzian asymptotically demicontractive mapping with a sequence
k, C [1,00) satisfyingd >~ (k2 — 1) < oo. Let{w,} and{3,} be real sequences satisfying
the conditions.

() 0<anfB, <1l,n>1;

(i) 0 <e< et (1+LB3,)7" < 3{q(1 —k)(1+ L)~@2}— ¢, forall n > 1 and for some

e> 0; and
(i) D=2y Bn < 0.

Then the sequende:,,} generated from an arbitrary; € K by
Yo = (1 = Bp)n + BT Tn, n 2 1,
Tpi1 = (1 —ap)x, + o, T"yp, n > 1

converges strongly to a fixed point’Bf

In Theorenj 1.]l¢, is a constant appearing in an inequality which characteriagsiformly
smooth Banach spaces. In Hilbert spacges, 2, ¢, = 1 and with3, = 0 Vn, Theorems 1 and
2 of Qihou [4] follow from Theorem 1]1 (see Remark 2 of [3]).
It is our purpose in this paper to extend Theoifenj 1.1 from geahiformly smooth Ba-
nach spaces to arbitrary real Banach spaces using the more general modified Ishikawa iteration
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method with errors in the sense of Xu [7] given by

(1.6) Yn = QpXp + b, T T, + Cruy, n > 1,
Tpy1 = ax, + 0, T "y, + v, n > 1,
where{a,}, {b.}, {c.}, {a.}, {0,}, {c,} are real sequences it 1]. a, +0b, + ¢, =1 =

al, + b, + ¢, {u,} and{v, } are bounded sequencesin If we setb, = ¢,, = 0 in (1.6) we
obtain themodified Mann iteration method with errors the sense of Xu [7] given by

(1.7) Tpy1 = a,xy, + 0T ", + v, n > 1.

2. MAIN RESULTS
In the sequel, we shall need the following:

Lemma 2.1. Let £ be a normed space, anld a nonempty convex subsetiof LetT : K —

K be uniformly L-Lipschitzian mapping and 1&t,,}, {b.}, {c.}, {a,}, {¥,} and {c,} be
sequences ift, 1] with a,, + b, + ¢, = a], + b, + ¢, = 1. Let{u, }, {v,} be bounded sequences
in K. For arbitrary z; € K, generate the sequen¢e,, } by

Yn = Apxy + b, 1", + cpty, n >1

Tnp1 = ApTy + 0, Ty + g, 1> 0.

Then
|20 — Tan|| < |lzn — T2 + L(1 + L)2||:Bn+1 - T”_lﬂfn—lﬂ
+ L1+ L), )lvn1 — Zpa|| + L2(1 + L)cp1 ||tin-1 — 2|
(2.1) + Le, llen1 — T ']

Proof. Set\,, = ||z, — T"x,]|. Then

|70 — Tan|| < |lzn — T"20|| + LHTn_lwn — Zn|

<A+ LZH‘Tn — ZTpa| + LHTn_lxn—l — T

=N\ + LQ”CLIn—lxn + b;z—lTn_lyn—l + C;z—lyn—l — T
+ Lllay, _y2n -1 + b/n—lTnilynfl + o Un1 — Tnilxnflu

= Ao+ L2,y (T o1 = @) + €y (V1 = 2|
+ Lllag_y(tp—1 = T" @) + 0, (T gy = T )
+ ¢y (Vno1 — Tn_lmn—l)H

<t LT s — |+ L2 0ns — 2]
+ Ll|zp1 — Tn_lmn—lH + LzHyn—l — @yl + Lep, o |vn—1 — zp |
+ Loy g llea—1 — T ||

=M+ LA+ L+ LYo,y flvn1 — zpa || + LQHTnilynfl |
+ L2|lynr =t || + Ly |ln—1 = T )|
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< Ao+ 2L o1 + L1+ L)ej,y[Jvn—1 — @ || + L2 (1 + L) lyn—1 — @]
+ LA T 'y — 2| + L, || pey — T )|

=X+ L(1+ L)An_l + L1+ L), ||vn_1 — Zn1]|
+ L2(1 + L)an—l(Tn_lxn—l = ZTn-1) + Cno1(Uno1 — Tpy)|
+ Loy lleny = T |

<Ay + L(L*+ 204+ D)Apoq + L(L+ L), [Jvn—1 — Tp]]
+ L2<1 + L)cnallun—1 — || + Lej, |00 — Tnilxnflua

completing the proof of Lemma 1. O

Lemma 2.2. Let{a,}, {b,} and{d,} be sequences of nonnegative real numbers satisfying
(2.2) any1 < (14 6p)an + by, n > 1.

If >, 6, <ocoand)  ~ b, < ocothenlim a, exists. If in addition{a, } has a subsequence

n—oo

which converges strongly to zero théim a,, = 0.

Proof. Observe that
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Hence{a, } is bounded. Lef\/ > 0 be such thadzn < M, n>1.Then

ane1 < (14 6)an + b, < a, + Mé, + b, =a, + o,
whereo,, = MJ, + b,. It now follows from Lemmﬁl of (J6, p. 303]) thaitrrln a, exists.
Consequently, ifa,} has a subsequence which converges strongly to zerolﬁmenl =0
completing the proof of Lemnja 2.2. O
Lemma 2.3. Let F be a real Banach space and a nonempty convex subsetiof LetT :

K — K be uniformlyL-Lipschitzian asymptotically demicontractive mapping with a sequence
{k.} C[1,00), suchthatimk, = 1,and> 7 (kZ — 1) < cc. Let{a,}, {bn}, {cn},
{a,} {0} ., {c/,} be real sequences if, 1] satisfying:
() an+b,+c,=1=da,+ b+,
(i) >0, b, = oo,
(i) D07 (0)? <00, >0, <00, > b, < oc,andd e, < oo.

Let{u,} and{v,} be bounded sequencesi/inhand let{z,} be the sequence generated from
an arbitrary z; € K by

Yn = Xy + b, T T, + Crin, n > 1,
Tpy1 = al, + 0, Ty, + g, n > 1,
thenlim inf ||z,, — Tz, || = 0.
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Proof. Itis now well-known (see e.gl [1]) that for all y € E, there existg(z+y) € J(z+y)
such that

(2.3) Iz +yll* < ll=ll* + 2(y, i (= + y)).
Letz* € F(T) and letM > 0 be such thafu,, — z*|| < M, ||v, —z*|| < M, n > 1. Using

(1.6) and|[(Z2.B) we obtain
[@ner = 212 = [|(1 = b, = &)z + b, Ty + cfvn — 2"
= [ = 2*) + b, (T"yn — @n) + ¢ (v — 2) |
< (@n = @)+ 200 (T Yo — x0) + €, (U0 — 0), § (T41 — 27))
= (w0 — 2)I* = 2] (21 — T T2, 5 (Tni1 — 7))+
+ 20/ (xpy1 — T i1, §(Xngr — 7)) + 200 (T "y — T, j (i1 — )

n(
+2¢ (v — T, § (Ty1 — 7))
= [[(zn — 2" = 26, (xps1 = T"Tpy1, j (201 — 7))
+ 20 (Tpa1 — T, (T — 7)) + 20, (T"Yn — T" T, j(Tngn — 27))
(2.4) +2¢ (v — Ty, J(Tpy1 — 2¥)).

Observe that
Tpi1 — T = b (T"yp — 1) + (v, — ).
Using this and[(1]2) ir (2]4) we have
lznsr = 27* < [[(@n = 2)* = b, (1 = k)| 2041 — T @0
+ 0, (k= Dl — 2*)* + 20,)(T"yn — @, (2041 — 7))
+ 20, (T Y — T Ty, (X1 — 7)) + 3¢, (0n — T, J(Tpa1 — 27))
< Nz = 2P = 0,1 = K)l|lwnsr = Tz |* + (k7 = Dlzpsr — 27
+ 206,17y = @alllznss — 2"[| + 20, Ll 2ngr = yallll@nsn — 27|
+ 3¢ lvn — zal w01 — 27|
= [[(@n = 2)* = 0,1 = B)|2ns1 = T gt |* + (k7 = Dl|ngs — 2712
(2.5) + 2001 Ty — @ll + 26, Lllwnsr = yall + 3¢ 1vn — @nll]l2ns — 27,
Observe that

lyn — 2" = |an(zn — %) + bp(T 2y — %) + cplun — 27)||
< e, — ||+ L||z, — 27| + M
(2.6) = (1+ L)z, —x"|| + M,
so that
[T"yn — xnll < Lllyn — 2™ + [|zn — 27|
< LI+ D)|lzn — 27| + M] + |lzn — 27
(2.7) < [1+L(1+ L)||jxy — ™|+ ML,
[2ni1 =27 = lap(@n — 27) + 0, (T"yn — %) + ¢ (vn — 27|
< ||In_x*||+L||yn_m*H+M
< |law — 2|+ L[+ L)||zp, — || + M]+ M
(2.8) = [1+ L(1+ L)|||z, —2™|| + (1 + L)M,
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and

[Zn+1 = Ynll = llag (@n — yn) + 00 (T"Yn — Yn) + ¢ (U — yn) |
< Nlzn = yall + 01Ty — 2711 + llyn — 2]
+ culllve = 27| + lyn — 2|l]
= [|bn(T" %0 — 20) + Cn(un — ) || + by [Ll|yn — Zall + lyn — 7]
+ M + ¢, lyn — 27|
<b,(14 L)||z, — =*|| + ca M + cp||xn — =¥
+p(1+ L) + G lllyn — 27| + M
< [b.(1+ L)+ clllzn — 2*|| + cnM
+ b1+ L)+ )1+ L)||z, — 2| + M] + ¢, M
<A{[bn(1 + L) +c,| + [b,(1 + L) + &, ](1 + L) H|x, — =¥
(2.9) + MV, (14 L) +2c, + ¢,].

Substituting[(2.]7)F(2]9) irf (215) we obtain,

[2n1 — 2 [|* < [[(@n —27)|? = 0,(1 = F)[Jznsn — T a2

+ (k= DAL+ L+ D))fgn — 2™ + M(1+ L)}?

+{,[[1+ L+ D))||zn — || + ML] + 3¢,[M + ||z, — z*]|]

+ 20, L{[by(1 + L) 4+ ¢,) + [b,(1 + L+ ¢, ](1 + L)]||x, — |

+ MV, (14 L)+ 2, + .| H{[1+ L(1 + L)]||xp, — 2*|| + M(1+ L)}
< (@n = 2)? = (1 = B) |21 — T @0

+ (k= D{[L+ LA + L) ||lzp — 2"

+2M(1+ L)1+ L(1 + L)]||x, — z*|| + M*(1 + L)*}

+2(00)*[[1 + L(1 + L)]||z, — 2*|| + ML][[1 + L(1 + L)]||z, — 2|

+ M+ L)+ 3, [M + ||z, — 2*||][[1 + L(1 + L)]||xn, — =¥

+ M1+ L)] + 20, L{[[bn(1 + L) + ¢,

+ [0(1+ L)+, J(1+ L)] ||l — 27|

+ M (14 L)+ 2, +c {1+ L+ L)]||x, —2*|| + M(1+ L)}

Since||z, — z*|| <1+ ||z, — z*||?, we have
(2.10) 1 = 2% [* < L+ 8l l2n — 2™|* + 00 = by (1 = B) |21 — T @i ||,
where
6= (kX —D{1+LA+L)*+2M1+ L)[1 + L(1 + L)]}
+ 20 )1+ LA+ L) +MQA+ L)1 + L(1 4+ L)] + ML[1 + L(1 + L)]}
+3d {1+ L1+ L) +M1+L1+L)]+M1+L)}

+ 20, L{{[bn(1+ L) +c, ]+ [0, (1 + L)+, ]+ L)1+ L1+ L)+ M1+ L)}
+ MV (14 L) +2d, +c,][1+ L(1+ L)}
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and

o, = (k2 —1D){2M(1 + L)1+ L(1+ L)] + M*(1 + L)*}
+ 20 {[1+ L1+ L)M(1+ L)+ ML[1+ L(1+ L)+ M*’L(1+ L)}
+ 3 {M[1+L(1+ L)+ M*(1+ L)+ MQ1+1L)
+ 20, L{[[bn(1 + L) + ¢, + [b,(1 + L) + ¢,](1 + L)][M(1 + L)]
+ Mb,(1+ L)+ 2¢, + ¢, ][[1+ L(1+ L)+ M(1+ L)]}.
Sinced "> | (k2 —1) < oo, condition (iii) implies thafy_>" | 4, < coand} >~ 5, < co. From

(2.10) we obtain

[ner — 21 < [1+ dnlllwn — 27| + 0w
< . H1+5 |x1—x|y2+H1+5 Za]
< JI+6e -2+ H[1 + 5j]zoj < 00,
j=1 j=1 j=1

sinced >, d, <oocandd > o, < co. Hence{||z, — z*||}>2, is bounded. Lefjz, — z*|| <
M, n > 1. Then it follows from [2.1ID) that
(2.11) lwnsr — 2" < o — 27" + M?0, + 0 = V(1 = E)[@nss — T"@sa|?, 0 > 1
Hence,

b1 = k)21 = Tt |* < Nl — 277 = [@nsn — 27 + oo,

wherepu,, = M?6, + o, so that,

n n
— k) Villwin = Taal* < o — 2P+ ) py < oo,

J=1 J=1

Hence,

)
Zbgm‘|$n+1 - Tn$n+1||2 < 00,

n=1

and condition (ii) implies thafim inf ||z, 11 — 7"z,+1]| = 0. Observe that

@i = T |* = (1= 0] = ¢)zn + 0,7y + v = T2 ||
= |lzn — Tz, + b, (T "y, — xp) + T2y — T 244
(2.12) +c (v, — x0)]?
For arbitraryu, v € E, setx = v+ v andy = —v in (2.3) to obtain
(2.13) lo+ull* > [lull® + 2(v, j(w)).
From (2.12) and (2.13), we have
|Zni1 — Tnanrle = ||lzn —T"zn + b;l<Tnyn —2p) + T — T w41 + sz(vn - xn)Hz

> lap — T @, |]? + 20, (T yp — ) + T"x — T 2041
+c, (U — @), j (2 — T y)).
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Hence
|20 — Tnxn“Q < wp — T”$n+1||2 + 2||b:z(Tnyn — )
+T"xy, — T i1 + & (vn — xp) ||| — T, |
< nir = T g |+ 2{0, | Ty — @l + Ll|wns1 — 22|
+pllvn — al[}Hlzn — T,
< Nlwnpr = T@n|® + 20,1 Ty — zal| + L[| Ty — 24
+LC;||Un — Zn|| + C;LH/UTL — || }H2n — T 2,
< Jeppr = Tron|” +2(1 + L) ||z, — 27|
{1+ L) Ty — @all + (1 + L)cpllvn — 20|}
< wp — T”$n+1||2
+2(1 + L)||xp — 2*||{(1 + LB, [[1 + L(1 + L)]||z, — 2*|| + M L]
+(1+ L) M + ||z — 27[[],  (using [2.5))
< N#ngr = T"@nsa || + 201 + L)M{(1 + L)B.[[1 + L(1 + L)]M + ML)
+(1+ L), [M + M)}, (since ||z, —z*|| < M)
(2.14) = ||zns1 — T Ty ||* 4+ 20, (1 4+ L) M? + 4¢,(1 + L)* M.
SinceT}Ln;Ob; = 0, nlggo a =10 andliggf||xn+1 — T"xp41]| = 0, it follows from (2.14)

thatliminf ||z,, — 7"z, || = 0. It then follows from Lemma 1 thdiminf ||z, — Tz, || = 0,
completing the proof of Lemnja 2.3. O

Corollary 2.4. Let E be a real Banach space and a nonempty convex subset ©f Let
T : K — K be ak-strictly asymptotically pseudocontractive map witfil") # () and sequence
{k.} C [1,00) suchthalimk, =1, >°7 (k2 — 1) < oo. Let{a,}, {bn}, {cn},{a,}, {V,},

{¢,}, {u,}, and{v,} be as in Lemma 2.3 and I¢t:,,} be the sequence generated from an

arbitrary x; € K by

Yn = QpTy + bnTnajn + Cpp, N > 1a

Tpy1 = a, + b, T "y, + v, n > 1,

Thenliminf ||x,, — Tz, || = 0.

Proof. From (1.1) we obtain

(1 =T")x = (I =T")yll[lx =yl

>

> %{(1 — B =Tz — (I =T")y|* = (k; — Dz — )"}

_ %[\/_1 R =T — (I =T")y|

+VEE = Lo = ylI[VI=KI(I = T")x - (I = T")y|
—VIZ =1z —y]]

V1=Kl =T")z = (I =T")yl]
V1=K =Tz = (I =Tyl = Vk* = 1z = yl]

N | —
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so that
1
SV1- kIVI=FK|(I =Tz — (I =T")yll] = Vk* = 1llz —y[| < |lz —yl|.

Hence

=T = (1 =1y < AL ZBE Dy,

Furthermore,
[T =Tyl = llz =yl < [[(I=T")x =TTyl
[2 + /{0 —k) (k2 - 1)}

< — lle =yl

from which it follows that
e — 1yl < 1+ ZACZNEZ Dl
Since{k,} is bounded, let,, < D, ¥n > 1. Then
e -1y < e DA N DYy,
< Liz -yl
where
1 — k '

HenceT is uniformly L-Lipschitzian. Since”(T') # (), thenT is uniformly L-Lipschitzian and
asymptotically demicontractive and hence the result follows from Lemma 2.3. O

Remark 2.5. It is shown in [3] that ifE is a Hilbert space and : K — K is k-asymptotically
pseudocontractive with sequenfde, } then

D+ vk
1- vk
Theorem 2.6.Let £’ be a real Banach space ard a nonempty closed convex subsefol et
T : K — K be a completely continuous uniformlyLipschitzian asymptotically demicontrac-
tive mapping with sequendé;,} C [1,00) such thatimk, = 1and_>" (k2 — 1) < cc. Let

{a,}, {bn}, {ca},{a.}, {b.}, {.}, {u,}, and{v,} be as in Lemmp 2.3. Then the sequence
{z,,} generated from an arbitrary; € K by

[Tz = Ty|| <

|t —y||Va, y € K, where k, < D, Vn > 1.

Yn = QnTp + 0,172, + iy, n > 1,
Tpi1 = a,x, + 0Ty, + vy, n>1,
converges strongly to a fixed pointBf
Proof. From Lemma 2.],imninf |z, — T™zy|| = 0, hence there exists a subsequefice } of
{z,} such thaﬁiTILn |Tn; — Ty, || = 0.

Since{r,,} is bounded and’ is completely continuous, thefi'z,,,} has a subsequence
{T'z;,} which converges strongly. Henge:,;, } converges strongly. Suppog'an Tn;, = P

Then hm Tz, =Tp. klim |#n,, — T, || = |lp — Tpll = 0 so thatp € F(T). It follows

from (2;1"],) that

i1 — p|I° < |2 — pII* + fin
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Lemm now impliedim ||z,, — p|| = 0 completing the proof of Theore@.& O

Corollary 2.7. Let F be an arbitrary real Banach space and a nonempty closed convex
subset ofE. letT : K — K be ak-strictly asymptotically pseudocontractive mapping with
F(T) # 0 and sequencék,} C [1,00) such thaflimk, = 1, and)_° (k2 — 1) < co. Let

{an}, {bn}, {ea}, {a,}, {b,}, {c,}, {u.}, and{v,} be as in Lemmpa 23. Then the sequence
{z,,} generated from an arbitrary; € K by

Yn = GnpTy + bnTnxn + Cpln, N > 17
Tpy1 = a,x, +0,T "y, + v, n>1,
converges strongly to a fixed point’Bf

Proof. As shown in Corollary 2J47" is uniformly L-Lipschitzian and sincé’(T') # () thenT is
asymptotically demicontractive and the result follows from Thedrein 2.6. O

Remark 2.8. If we setb,, = ¢, = 0, Vn > 1in Lemmg 2.8, Theorein 2.6 and Corollafies 2.4
and 2.7, we obtain the corresponding results for the modified Mann iteration method with errors
in the sense of XU [7].

Remark 2.9. Theorenj 2.6 extends the results of Osilike [3] (which is itself a generalization of
a theorem of Qihou_[4]) from reaj-uniformly smooth Banach space to arbitrary real Banach
space.

Furthermore, our Theorejm 2.6 is proved without the boundedness condition imposed on the
subsetK in ([3,/4]) and using the more general modified Ishikawa Iteration method with errors
in the sense of Xu[7]. Also our iteration parametgis}, {b,}, {c.}, {a.}, {b.,}, {c.}, {un},
and{v, } are completely independent of any geometric properties of underlying Banach space.

Remark 2.10. Prototypes for our iteration parameters are:

1 / ]‘ / / /
m, o = m,an =1—(b,+c,),
1 1 S
Sy g 2t
The proofs of the following theorems and corollaries for the Ishikawa iteration method with
errors in the sense of Liul[2] are omitted because the proofs follow by a straightforward modifi-
cations of the proofs of the corresponding results for the Ishikawa iteration method with errors

in the sense of XU [7].
Theorem 2.11.Let E be areal Banach space and [Et: £ — E be a uniformlyL-Lipschitzian
asymptotically demicontractive mapping with sequeficg C [1, oc0) such thatlim &, = 1,
and) > (k2 — 1) < oco. Let{u,} and{v,} be sequences ify such that) >, \TunH < o0
and) ">, ||u,|| < oo, and let{a, } and {3, } be sequences i, 1] satisfying the conditions:
() 0<a, B, <L,n>1,
(i) >y an =00
(i) >0 a2 <ocoandd > 3, < .
Let{z,} be the sequence generated from an arbitraryc E by

Yn = (1= Bp)an+ BT 0 +up, n > 1,
Tprr = (1 —an)n + T "y +vp, n > 1,

W, =

bn = Cp =

Thenlim inf ||z, — Tx,| = 0.
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Corollary 2.12. Let E be areal Banach space and [Bt: £ — E be ak-strictly asymptotically
pseudocontractive map withi(T") # () and sequencék, } C [1, co) such thafim &, = 1, and

S (k2 —1) < oo. Let{u,}, {v.}, {an} and{3,} be as in Theorern 2.11 and Igt,, } be

the sequence generated from an arbitrarye E by
Yn = (1 - ﬁn)xn + B, 1"y + Uy, 12> 1,
Tor1 = (1—ap)x, + Ty, + vy, n > 1,
Thenligglf |zn — Txy|| = 0.
Theorem 2.13.Let E, T, {u,}, {v.}, {on} and{3,} be as in Theorerh 2.11. If in addition
T : E — FE is completely continuous then the sequefieg} generated from an arbitrary
T, € F by
Yn = (1 - ﬁn)xn + BTy + Up, n > 1,
Tor1 = (1—ap)xn + Ty, + vy, n > 1,
converges strongly to a fixed point’Bf
Corollary 2.14. LetE, T, {u,}, {v.}, {o,} and{$,} be as in Corollary 2.12. If in addition
T is completely continuous, then the sequeficg generated from an arbitrary, y € E by
Yn = (1 - 5n>xn + BTy 4 Up, n > 1,
Tor1 = (1—ap)xn + Ty, + vy, n > 1,
converges strongly to a fixed point’Bf

Remark 2.15. (a) If K is a nonempty closed convex subsettobndT : K — K, then
Theorems 2.11 arjd 213 and Corollafies P.12[and 2.14 also hold provided that in each
case the sequende,, } lives in K.

(b) If we sets,, =0, Vn > 1in Theorems$ 2.1 arid 213 and Corollafies R.12[and 2.14, we

obtain the corresponding results for modified Mann iteration method with errors in the
sense of Liul[2].
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