

Journal of Inequalities in Pure and Applied Mathematics

http://jipam.vu.edu.au/

Volume 3, Issue 1, Article 3, 2002

APPROXIMATION OF FIXED POINTS OF ASYMPTOTICALLY DEMICONTRACTIVE MAPPINGS IN ARBITRARY BANACH SPACES

D.I. IGBOKWE

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF UYO
UYO, NIGERIA.

epseelon@aol.com

Received 14 May, 2001; accepted 17 July, 2001. Communicated by S.S. Dragomir

ABSTRACT. Let E be a real Banach Space and K a nonempty closed convex (not necessarily bounded) subset of E. Iterative methods for the approximation of fixed points of asymptotically demicontractive mappings $T:K\to K$ are constructed using the more general modified Mann and Ishikawa iteration methods with errors.

Our results show that a recent result of Osilike [3] (which is itself a generalization of a theorem of Qihou [4]) can be extended from real q-uniformly smooth Banach spaces, $1 < q < \infty$, to arbitrary real Banach spaces, and to the more general Modified Mann and Ishikawa iteration methods with errors. Furthermore, the boundedness assumption imposed on the subset K in ([3, 4]) are removed in our present more general result. Moreover, our iteration parameters are independent of any geometric properties of the underlying Banach space.

Key words and phrases: Asymptotically Demicontractive Maps, Fixed Points, Modified Mann and Ishikawa Iteration Methods with Errors.

2000 Mathematics Subject Classification. 47H06, 47H10, 47H15, 47H17.

1. Introduction

Let E be an arbitrary real Banach space and let J denote the normalized duality mapping from E into 2^{E^*} given by $J(x)=\{f\in E^*: \langle x,f\rangle=\|x\|^2=\|f\|^2\}$, where E^* denotes the dual space of E and $\langle \ , \ \rangle$ denotes the generalized duality pairing. If E^* is strictly convex, then J is single-valued. In the sequel, we shall denote the single-valued duality mapping by j.

Let K be a nonempty subset of E. A mapping $T: K \to K$ is called k-strictly asymptotically pseudocontractive mapping, with sequence $\{k_n\} \subseteq [1,\infty)$, $\lim_n k_n = 1$ (see for example [3, 4]), if for all $x,y \in K$ there exists $j(x-y) \in J(x-y)$ and a constant $k \in [0,1)$ such that

$$(1.1) \quad \langle (I-T^n)x - (I-T^n)y, j(x-y) \rangle$$

$$\geq \frac{1}{2}(1-k) \left\| (I-T^n)x - (I-T^n)y \right\|^2 - \frac{1}{2}(k_n^2-1) \|x-y\|^2,$$

ISSN (electronic): 1443-5756

© 2002 Victoria University. All rights reserved.

for all $n \in \mathbb{N}$. T is called an *asymptotically demicontractive* mapping with sequence $k_n \subseteq [0,\infty)$, $\lim_n k_n = 1$ (see for example [3, 4]) if $F(T) = \{x \in K : Tx = x\} \neq \emptyset$ and for all $x \in K$ and $x^* \in F(T)$, there exists $k \in [0,1)$ and $j(x-x^*) \in J(x-x^*)$ such that

$$(1.2) \langle x - T^n x, j(x - x^*) \rangle \ge \frac{1}{2} (1 - k) \|x - T^n x\|^2 - \frac{1}{2} (k_n^2 - 1) \|x - x^*\|^2$$

for all $n \in \mathbb{N}$. Furthermore, T is uniformly L-Lipschitzian, if there exists a constant L > 0, such that

$$||T^n x - T^n y|| \le L||x - y||,$$

for all $x, y \in K$ and $n \in \mathbb{N}$.

It is clear that a k-strictly asymptotically pseudocontrative mapping with a nonempty fixed point set F(T) is asymptotically demicontrative. The classes of k-strictly asymptotically pseudocontractive and asymptotically demicontractive maps were first introduced in Hilbert spaces by Qihou [4]. In a Hilbert space, j is the identity and it is shown in [3] that (1.1) and (1.2) are respectively equivalent to the inequalities:

$$(1.4) ||T^n x - T^n y|| \le k_n^2 ||x - y||^2 + k ||(I - T^n) x - (I - T^n) y||^2$$

and

$$||T^n x - T^n y||^2 \le k_n^2 ||x - y||^2 + ||x - T^n x||^2$$

which are the inequalities considered by Qihou [4].

In [4], Qihou using the *modified Mann* iteration method introduced by Schu [5], proved convergence theorem for the iterative approximation of fixed points of k-strictly asymptotically pseudocontractive mappings and asymptotically demicontractive mappings in Hilbert spaces. Recently, Osilike [3], extended the theorems of Qihou [4] concerning the iterative approximation of fixed points of k- strictly asymptotically demicontractive mappings from Hilbert spaces to much more general real q-uniformly smooth Banach spaces, $1 < q < \infty$, and to the much more general *modified Ishikawa iteration method*. More precisely, he proved the following:

Theorem 1.1. (Osilike [3, p. 1296]): Let q > 1 and let E be a real q-uniformly smooth Banach space. Let K be a closed convex and bounded subset of E and $T: K \to K$ a completely continuous uniformly L-Lipschitzian asymptotically demicontractive mapping with a sequence $k_n \subseteq [1,\infty)$ satisfying $\sum_{n=1}^{\infty} (k_n^2 - 1) < \infty$. Let $\{\alpha_n\}$ and $\{\beta_n\}$ be real sequences satisfying the conditions.

- (i) $0 \le \alpha_n, \beta_n \le 1, n \ge 1$;
- (i) $0 \le c_n, \beta_n \le 1, k \le 1,$ (ii) $0 < \epsilon \le c_q \alpha_n^{q-1} (1 + L\beta_n)^q \le \frac{1}{2} \{q(1-k)(1+L)^{-(q-2)}\} - \epsilon$, for all $n \ge 1$ and for some $\epsilon > 0$; and

Then the sequence $\{x_n\}$ generated from an arbitrary $x_1 \in K$ by

$$y_n = (1 - \beta_n)x_n + \beta_n T^n x_n, \ n \ge 1,$$

 $x_{n+1} = (1 - \alpha_n)x_n + \alpha_n T^n y_n, \ n \ge 1$

converges strongly to a fixed point of T.

In Theorem 1.1, c_q is a constant appearing in an inequality which characterizes q-uniformly smooth Banach spaces. In Hilbert spaces, $q=2,\ c_q=1$ and with $\beta_n=0\ \forall n$, Theorems 1 and 2 of Qihou [4] follow from Theorem 1.1 (see Remark 2 of [3]).

It is our purpose in this paper to extend Theorem 1.1 from real q-uniformly smooth Banach spaces to arbitrary real Banach spaces using the more general modified Ishikawa iteration

method with errors in the sense of Xu [7] given by

(1.6)
$$y_n = a_n x_n + b_n T^n x_n + c_n u_n, \ n \ge 1,$$
$$x_{n+1} = a'_n x_n + b'_n T^n y_n + c'_n v_n, \ n \ge 1,$$

where $\{a_n\}$, $\{b_n\}$, $\{c_n\}$, $\{a'_n\}$, $\{b'_n\}$, $\{c'_n\}$ are real sequences in [0,1]. $a_n+b_n+c_n=1=a'_n+b'_n+c'_n$, $\{u_n\}$ and $\{v_n\}$ are bounded sequences in K. If we set $b_n=c_n=0$ in (1.6) we obtain the modified Mann iteration method with errors in the sense of Xu [7] given by

$$(1.7) x_{n+1} = a'_n x_n + b'_n T^n x_n + c'_n v_n, \ n \ge 1.$$

2. MAIN RESULTS

In the sequel, we shall need the following:

Lemma 2.1. Let E be a normed space, and K a nonempty convex subset of E. Let $T: K \to K$ be uniformly L-Lipschitzian mapping and let $\{a_n\}$, $\{b_n\}$, $\{c_n\}$, $\{a'_n\}$, $\{b'_n\}$ and $\{c'_n\}$ be sequences in [0,1] with $a_n + b_n + c_n = a'_n + b'_n + c'_n = 1$. Let $\{u_n\}$, $\{v_n\}$ be bounded sequences in K. For arbitrary $x_1 \in K$, generate the sequence $\{x_n\}$ by

$$y_n = a_n x_n + b_n T^n x_n + c_n u_n, \ n \ge 1$$
$$x_{n+1} = a'_n x_n + b'_n T^n y_n + c'_n v_n, \ n \ge 0.$$

Then

$$||x_{n} - Tx_{n}|| \le ||x_{n} - T^{n}x_{n}|| + L(1+L)^{2}||x_{n+1} - T^{n-1}x_{n-1}|| + L(1+L)c'_{n-1}||v_{n-1} - x_{n-1}|| + L^{2}(1+L)c_{n-1}||u_{n-1} - x_{n}|| + Lc'_{n-1}||x_{n-1} - T^{n-1}x_{n-1}||.$$
(2.1)

Proof. Set $\lambda_n = ||x_n - T^n x_n||$. Then

$$||x_{n} - Tx_{n}|| \leq ||x_{n} - T^{n}x_{n}|| + L||T^{n-1}x_{n} - x_{n}||$$

$$\leq \lambda_{n} + L^{2}||x_{n} - x_{n-1}|| + L||T^{n-1}x_{n-1} - x_{n}||$$

$$= \lambda_{n} + L^{2}||a'_{n-1}x_{n} + b'_{n-1}T^{n-1}y_{n-1} + c'_{n-1}v_{n-1} - x_{n-1}||$$

$$+ L||a'_{n-1}x_{n-1} + b'_{n-1}T^{n-1}y_{n-1} + c'_{n-1}v_{n-1} - T^{n-1}x_{n-1}||$$

$$= \lambda_{n} + L^{2}||b'_{n-1}(T^{n-1}y_{n-1} - x_{n-1}) + c'_{n-1}(v_{n-1} - x_{n-1})||$$

$$+ L||a'_{n-1}(x_{n-1} - T^{n-1}x_{n-1}) + b'_{n-1}(T^{n-1}y_{n-1} - T^{n-1}x_{n-1})$$

$$+ c'_{n-1}(v_{n-1} - T^{n-1}x_{n-1})||$$

$$\leq \lambda_{n} + L^{2}||T^{n-1}y_{n-1} - x_{n-1}|| + L^{2}c'_{n-1}||v_{n-1} - x_{n-1}||$$

$$+ L||x_{n-1} - T^{n-1}x_{n-1}|| + L^{2}||y_{n-1} - x_{n-1}|| + Lc'_{n-1}||v_{n-1} - x_{n-1}||$$

$$+ Lc'_{n-1}||x_{n-1} - T^{n-1}x_{n-1}||$$

$$= \lambda_{n} + L\lambda_{n-1} + L(1 + L)c'_{n-1}||v_{n-1} - x_{n-1}|| + L^{2}||T^{n-1}y_{n-1} - x_{n-1}||$$

$$+ L^{2}||y_{n-1} - x_{n-1}|| + Lc'_{n-1}||x_{n-1} - T^{n-1}x_{n-1}||$$

$$\leq \lambda_{n} + 2L\lambda_{n-1} + L(1+L)c'_{n-1}\|v_{n-1} - x_{n-1}\| + L^{2}(1+L)\|y_{n-1} - x_{n-1}\| + L^{2}\|T^{n-1}x_{n-1} - x_{n-1}\| + Lc'_{n-1}\|x_{n-1} - T^{n-1}x_{n-1})\| = \lambda_{n} + L(1+L)\lambda_{n-1} + L(1+L)c'_{n-1}\|v_{n-1} - x_{n-1}\| + L^{2}(1+L)\|b_{n-1}(T^{n-1}x_{n-1} - x_{n-1}) + c_{n-1}(u_{n-1} - x_{n-1})\| + Lc'_{n-1}\|x_{n-1} - T^{n-1}x_{n-1}\| \leq \lambda_{n} + L(L^{2} + 2L + 1)\lambda_{n-1} + L(1+L)c'_{n-1}\|v_{n-1} - x_{n-1}\| + L^{2}(1+L)c_{n-1}\|u_{n-1} - x_{n-1}\| + Lc'_{n-1}\|x_{n-1} - T^{n-1}x_{n-1}\|,$$

completing the proof of Lemma 1.

Lemma 2.2. Let $\{a_n\}$, $\{b_n\}$ and $\{\delta_n\}$ be sequences of nonnegative real numbers satisfying $a_{n+1} < (1 + \delta_n)a_n + b_n, \ n > 1.$

If
$$\sum_{n=1}^{\infty} \delta_n < \infty$$
 and $\sum_{n=1}^{\infty} b_n < \infty$ then $\lim_{n \to \infty} a_n$ exists. If in addition $\{a_n\}$ has

If $\sum_{n=1}^{\infty} \delta_n < \infty$ and $\sum_{n=1}^{\infty} b_n < \infty$ then $\lim_{n \to \infty} a_n$ exists. If in addition $\{a_n\}$ has a subsequence which converges strongly to zero then $\lim_{n\to\infty} a_n = 0$.

Proof. Observe that

$$a_{n+1} \leq (1+\delta_n)a_n + b_n$$

$$\leq (1+\delta_n)[(1+\delta_{n-1})a_{n-1} + b_{n-1}] + b_n$$

$$\leq \dots \leq \prod_{j=1}^n (1+\delta_j)a_1 + \prod_{j=1}^n (1+\delta_j) \sum_{j=1}^n b_j$$

$$\leq \dots \leq \prod_{j=1}^\infty (1+\delta_j)a_1 + \prod_{j=1}^\infty (1+\delta_j) \sum_{j=1}^\infty b_j < \infty.$$

Hence $\{a_n\}$ is bounded. Let M>0 be such that $a_n \leq M$, $n \geq 1$. Then

$$a_{n+1} \le (1+\delta_n)a_n + b_n \le a_n + M\delta_n + b_n = a_n + \sigma_n$$

where $\sigma_n = M\delta_n + b_n$. It now follows from Lemma 2.1 of ([6, p. 303]) that $\lim a_n$ exists. Consequently, if $\{a_n\}$ has a subsequence which converges strongly to zero then $\lim_{n \to \infty} a_n = 0$ completing the proof of Lemma 2.2.

Lemma 2.3. Let E be a real Banach space and K a nonempty convex subset of E. Let T: $K \to K$ be uniformly L-Lipschitzian asymptotically demicontractive mapping with a sequence $\{k_n\} \subseteq [1,\infty)$, such that $\lim_{n \to \infty} k_n = 1$, and $\sum_{n=1}^{\infty} (k_n^2 - 1) < \infty$. Let $\{a_n\}$, $\{b_n\}$, $\{c_n\}$, $\{a'_n\}, \{b'_n\}, \{c'_n\}$ be real sequences in [0, 1] satisfying:

- (i) $a_n + b_n + c_n = 1 = a'_n + b'_n + c'_n$
- (ii) $\sum_{n=1}^{\infty} b'_n = \infty$, (iii) $\sum_{n=1}^{\infty} (b'_n)^2 < \infty$, $\sum_{n=1}^{\infty} c'_n < \infty$, $\sum_{n=1}^{\infty} b_n < \infty$, and $\sum_{n=1}^{\infty} c_n < \infty$.

Let $\{u_n\}$ and $\{v_n\}$ be bounded sequences in K and let $\{x_n\}$ be the sequence generated from an arbitrary $x_1 \in K$ by

$$y_n = a_n x_n + b_n T^n x_n + c_n u_n, \ n \ge 1,$$

 $x_{n+1} = a'_n + b'_n T^n y_n + c'_n v_n, \ n \ge 1,$

then $\liminf ||x_n - Tx_n|| = 0$.

Proof. It is now well-known (see e.g. [1]) that for all $x, y \in E$, there exists $j(x+y) \in J(x+y)$ such that

$$(2.3) ||x+y||^2 \le ||x||^2 + 2\langle y, j(x+y) \rangle.$$

Let $x^* \in F(T)$ and let M > 0 be such that $||u_n - x^*|| \le M$, $||v_n - x^*|| \le M$, $n \ge 1$. Using (1.6) and (2.3) we obtain

$$||x_{n+1} - x^*||^2 = ||(1 - b'_n - c'_n)x_n + b'_n T^n y_n + c'_n v_n - x^*||^2$$

$$= ||(x_n - x^*) + b'_n (T^n y_n - x_n) + c'_n (v_n - x_n)||^2$$

$$\leq ||(x_n - x^*)||^2 + 2\langle b'_n (T^n y_n - x_n) + c'_n (v_n - x_n), j(x_{n+1} - x^*)\rangle$$

$$= ||(x_n - x^*)||^2 - 2b'_n \langle x_{n+1} - T^n x_{n+1}, j(x_{n+1} - x^*)\rangle + 2b'_n \langle T^n y_n - x_n, j(x_{n+1} - x^*)\rangle$$

$$+ 2b'_n \langle x_{n+1} - T^n x_{n+1}, j(x_{n+1} - x^*)\rangle + 2b'_n \langle T^n y_n - x_n, j(x_{n+1} - x^*)\rangle$$

$$+ 2c'_n \langle v_n - x_n, j(x_{n+1} - x^*)\rangle$$

$$= ||(x_n - x^*)||^2 - 2b'_n \langle x_{n+1} - T^n x_{n+1}, j(x_{n+1} - x^*)\rangle$$

$$+ 2b'_n \langle x_{n+1} - x_n, j(x_{n+1} - x^*)\rangle + 2b'_n \langle T^n y_n - T^n x_{n+1}, j(x_{n+1} - x^*)\rangle$$

$$+ 2c'_n \langle v_n - x_n, j(x_{n+1} - x^*)\rangle.$$

$$(2.4)$$

Observe that

$$x_{n+1} - x_n = b'_n(T^n y_n - x_n) + c'_n(v_n - x_n).$$

Using this and (1.2) in (2.4) we have

$$||x_{n+1} - x^*||^2 \le ||(x_n - x^*)||^2 - b'_n(1 - k)||x_{n+1} - T^n x_{n+1}||^2 + b'_n(k_n^2 - 1)||x_{n+1} - x^*||^2 + 2(b'_n)^2 \langle T^n y_n - x_n, j(x_{n+1} - x^*) \rangle + 2b'_n \langle T^n y_n - T^n x_{n+1}, j(x_{n+1} - x^*) \rangle + 3c'_n \langle v_n - x_n, j(x_{n+1} - x^*) \rangle \le ||(x_n - x^*)||^2 - b'_n(1 - k)||x_{n+1} - T^n x_{n+1}||^2 + (k_n^2 - 1)||x_{n+1} - x^*||^2 + 2(b'_n)^2 ||T^n y_n - x_n||||x_{n+1} - x^*|| + 2b'_n L||x_{n+1} - y_n||||x_{n+1} - x^*|| + 3c'_n ||v_n - x_n||||x_{n+1} - x^*|| = ||(x_n - x^*)||^2 - b'_n(1 - k)||x_{n+1} - T^n x_{n+1}||^2 + (k_n^2 - 1)||x_{n+1} - x^*||^2 + [2(b'_n)^2 ||T^n y_n - x_n|| + 2b'_n L||x_{n+1} - y_n|| + 3c'_n ||v_n - x_n||]||x_{n+1} - x^*||.$$
(2.5)

Observe that

$$||y_n - x^*|| = ||a_n(x_n - x^*) + b_n(T^n x_n - x^*) + c_n(u_n - x^*)||$$

$$\leq ||x_n - x^*|| + L||x_n - x^*|| + M$$

$$= (1 + L)||x_n - x^*|| + M,$$
(2.6)

so that

$$||T^{n}y_{n} - x_{n}|| \leq L||y_{n} - x^{*}|| + ||x_{n} - x^{*}|| \leq L[(1+L)||x_{n} - x^{*}|| + M] + ||x_{n} - x^{*}|| \leq [1+L(1+L)]||x_{n} - x^{*}|| + ML,$$

$$(2.7)$$

$$||x_{n+1} - x^{*}|| = ||a'_{n}(x_{n} - x^{*}) + b'_{n}(T^{n}y_{n} - x^{*}) + c'_{n}(v_{n} - x^{*})| \leq ||x_{n} - x^{*}|| + L||y_{n} - x^{*}|| + M \leq ||x_{n} - x^{*}|| + L[(1+L)||x_{n} - x^{*}|| + M] + M$$

$$(2.8)$$

$$(2.8)$$

and

$$||x_{n+1} - y_n|| = ||a'_n(x_n - y_n) + b'_n(T^n y_n - y_n) + c'_n(v_n - y_n)||$$

$$\leq ||x_n - y_n|| + b'_n[||T^n y_n - x^*|| + ||y_n - x^*||]$$

$$+ c'_n[||v_n - x^*|| + ||y_n - x^*||]$$

$$= ||b_n(T^n x_n - x_n) + c_n(u_n - x_n)|| + b'_n[L||y_n - x_n|| + ||y_n - x^*||]$$

$$+ c'_n M + c'_n||y_n - x^*||$$

$$\leq b_n(1 + L)||x_n - x^*|| + c_n M + c_n||x_n - x^*||$$

$$+ [b'_n(1 + L) + c'_n]||y_n - x^*|| + c'_n M$$

$$\leq [b_n(1 + L) + c_n]||x_n - x^*|| + c_n M$$

$$+ [b'_n(1 + L) + c'_n][(1 + L)||x_n - x^*|| + M] + c'_n M$$

$$\leq \{[b_n(1 + L) + c_n] + [b'_n(1 + L) + c'_n](1 + L)\}||x_n - x^*||$$

$$+ M[b'_n(1 + L) + 2c'_n + c_n].$$
(2.9)

Substituting (2.7)-(2.9) in (2.5) we obtain,

$$\begin{split} \|x_{n+1} - x^*\|^2 &\leq \|(x_n - x^*)\|^2 - b_n'(1 - k)\|x_{n+1} - T^n x_{n+1}\|^2 \\ &+ (k_n^2 - 1)\{[1 + L(1 + L)]\|x_{n+1} - x^*\| + M(1 + L)\}^2 \\ &+ \{(b_n'[[1 + L(1 + L)]\|x_n - x^*\| + ML] + 3c_n'[M + \|x_n - x^*\|] \\ &+ 2b_n' L[[b_n(1 + L) + c_n] + [b_n'(1 + L + c_n'](1 + L)]\|x_n - x^*\| \\ &+ M[b_n'(1 + L) + 2c_n' + c_n]\}\{[1 + L(1 + L)]\|x_n - x^*\| + M(1 + L)\} \\ &\leq \|(x_n - x^*)\|^2 - b_n'(1 - k)\|x_{n+1} - T^n x_{n+1}\|^2 \\ &+ (k_n^2 - 1)\{[1 + L(1 + L)]^2\|x_{n+1} - x^*\|^2 \\ &+ 2M(1 + L)[1 + L(1 + L)]\|x_n - x^*\| + M^2(1 + L)^2\} \\ &+ 2(b_n')^2[[1 + L(1 + L)]\|x_n - x^*\| + ML][[1 + L(1 + L)]\|x_n - x^*\| \\ &+ M(1 + L)] + 3c_n'[M + \|x_n - x^*\|][[1 + L(1 + L)]\|x_n - x^*\| \\ &+ M(1 + L) + 2b_n'L\{[[b_n(1 + L) + c_n] \\ &+ [b_n'(1 + L) + c_n'](1 + L)]\|x_n - x^*\| \\ &+ M[b_n'(1 + L) + 2c_n' + c_n]\}\{[1 + L(1 + L)]\|x_n - x^*\| + M(1 + L)\}. \end{split}$$

Since $||x_n - x^*|| \le 1 + ||x_n - x^*||^2$, we have

$$(2.10) ||x_{n+1} - x^*||^2 \le [1 + \delta_n] ||x_n - x^*||^2 + \sigma_n - b_n'(1 - k) ||x_{n+1} - T^n x_{n+1}||^2,$$

where

$$\begin{split} \delta_n &= (k_n^2 - 1)\{[1 + L(1+L)]^2 + 2M(1+L)[1 + L(1+L)]\} \\ &+ 2(b_n')^2\{[1 + L(1+L)]^2 + M(1+L)[1 + L(1+L)] + ML[1 + L(1+L)]\} \\ &+ 3c_n'\{[1 + L(1+L)] + M[1 + L(1+L)] + M(1+L)\} \\ &+ 2b_n'L\{\{[b_n(1+L) + c_n] + [b_n'(1+L) + c_n'](1+L)\}\{[1 + L(1+L)] + M(1+L)\} \\ &+ M[b_n'(1+L) + 2c_n' + c_n][1 + L(1+L)]\} \end{split}$$

and

$$\begin{split} \sigma_n &= (k_n^2 - 1)\{2M(1+L)[1+L(1+L)] + M^2(1+L)^2\} \\ &+ 2(b_n')^2\{[1+L(1+L)]M(1+L) + ML[1+L(1+L)] + M^2L(1+L)\} \\ &+ 3c_n'\{M[1+L(1+L)] + M^2(1+L) + M(1+L) \\ &+ 2b_n'L\{[[b_n(1+L) + c_n] + [b_n'(1+L) + c_n'](1+L)][M(1+L)] \\ &+ M[b_n'(1+L) + 2c_n' + c_n][[1+L(1+L)] + M(1+L)]\}. \end{split}$$

Since $\sum_{n=1}^{\infty}(k_n^2-1)<\infty$, condition (iii) implies that $\sum_{n=1}^{\infty}\delta_n<\infty$ and $\sum_{n=1}^{\infty}\sigma_n<\infty$. From (2.10) we obtain

$$||x_{n+1} - x^*||^2 \le [1 + \delta_n] ||x_n - x^*|| + \sigma_n$$

$$\le \dots \le \prod_{j=1}^n [1 + \delta_j] ||x_1 - x^*||^2 + \prod_{j=1}^n [1 + \delta_j] \sum_{j=1}^n \sigma_j$$

$$\le \prod_{j=1}^\infty [1 + \delta_j] ||x_1 - x^*||^2 + \prod_{j=1}^\infty [1 + \delta_j] \sum_{j=1}^\infty \sigma_j < \infty,$$

since $\sum_{n=1}^{\infty} \delta_n < \infty$ and $\sum_{n=1}^{\infty} \sigma_n < \infty$. Hence $\{\|x_n - x^*\|\}_{n=1}^{\infty}$ is bounded. Let $\|x_n - x^*\| \le M$, $n \ge 1$. Then it follows from (2.10) that

$$(2.11) ||x_{n+1} - x^*||^2 \le ||x_n - x^*||^2 + M^2 \delta_n + \sigma_n - b'_n (1 - k) ||x_{n+1} - T^n x_{n+1}||^2, \ n \ge 1$$

Hence,

$$b'_n(1-k)\|x_{n+1}-T^nx_{n+1}\|^2 \le \|x_n-x^*\|^2 - \|x_{n+1}-x^*\|^2 + \mu_n,$$

where $\mu_n = M^2 \delta_n + \sigma_n$ so that,

$$(1-k)\sum_{j=1}^{n}b'_{j}\|x_{j+1}-T^{j}x_{j+1}\|^{2} \leq \|x_{1}-x^{*}\|^{2} + \sum_{j=1}^{n}\mu_{j} < \infty,$$

Hence,

$$\sum_{n=1}^{\infty} b'_n ||x_{n+1} - T^n x_{n+1}||^2 < \infty,$$

and condition (ii) implies that $\liminf_{n\to\infty} ||x_{n+1} - T^n x_{n+1}|| = 0$. Observe that

$$||x_{n+1} - T^n x_{n+1}||^2 = ||(1 - b'_n - c'_n) x_n + b'_n T^n y_n + c'_n v_n - T^n x_{n+1}||^2$$

$$= ||x_n - T^n x_n + b'_n (T^n y_n - x_n) + T^n x_n - T^n x_{n+1}||^2$$

$$+ c'_n (v_n - x_n)||^2.$$
(2.12)

For arbitrary $u, v \in E$, set x = u + v and y = -v in (2.3) to obtain

(2.13)
$$||v + u||^2 \ge ||u||^2 + 2\langle v, j(u) \rangle.$$

From (2.12) and (2.13), we have

$$||x_{n+1} - T^n x_{n+1}||^2 = ||x_n - T^n x_n + b'_n (T^n y_n - x_n) + T^n x_n - T^n x_{n+1} + c'_n (v_n - x_n)||^2$$

$$\geq ||x_n - T^n x_n||^2 + 2\langle b'_n (T^n y_n - x_n) + T^n x_n - T^n x_{n+1} + c'_n (v_n - x_n), j(x_n - T^n x_n) \rangle.$$

Hence

$$||x_{n} - T^{n}x_{n}||^{2} \leq ||x_{n+1} - T^{n}x_{n+1}||^{2} + 2||b'_{n}(T^{n}y_{n} - x_{n})| + T^{n}x_{n} - T^{n}x_{n+1} + c'_{n}(v_{n} - x_{n})|||x_{n} - T^{n}x_{n}||$$

$$\leq ||x_{n+1} - T^{n}x_{n+1}||^{2} + 2\{b'_{n}||T^{n}y_{n} - x_{n}|| + L||x_{n+1} - x_{n}||$$

$$+c'_{n}||v_{n} - x_{n}||\}||x_{n} - T^{n}x_{n}||$$

$$\leq ||x_{n+1} - T^{n}x_{n+1}||^{2} + 2\{b'_{n}||T^{n}y_{n} - x_{n}|| + Lb'_{n}||T^{n}y_{n} - x_{n}||$$

$$+Lc'_{n}||v_{n} - x_{n}|| + c'_{n}||v_{n} - x_{n}||\}||x_{n} - T^{n}x_{n}||$$

$$\leq ||x_{n+1} - T^{n}x_{n+1}||^{2} + 2(1 + L)||x_{n} - x^{*}||$$

$$\times \{(1 + L)b'_{n}||T^{n}y_{n} - x_{n}|| + (1 + L)c'_{n}||v_{n} - x_{n}||\}$$

$$\leq ||x_{n+1} - T^{n}x_{n+1}||^{2}$$

$$+2(1 + L)||x_{n} - x^{*}||\{(1 + L)b'_{n}[[1 + L(1 + L)]||x_{n} - x^{*}|| + ML]$$

$$+(1 + L)c'_{n}[M + ||x_{n} - x^{*}||], \quad \text{(using (2.6))}$$

$$\leq ||x_{n+1} - T^{n}x_{n+1}||^{2} + 2(1 + L)M\{(1 + L)b'_{n}[[1 + L(1 + L)]M + ML]$$

$$+(1 + L)c'_{n}[M + M]\}, \quad \text{(since } ||x_{n} - x^{*}|| \leq M)$$

$$(2.14)$$

Since $\lim_{n\to\infty} b'_n = 0$, $\lim_{n\to\infty} c'_n = 0$ and $\lim_{n\to\infty} \|x_{n+1} - T^n x_{n+1}\| = 0$, it follows from (2.14) that $\lim_{n\to\infty} \inf \|x_n - T^n x_n\| = 0$. It then follows from Lemma 1 that $\lim_{n\to\infty} \inf \|x_n - T x_n\| = 0$, completing the proof of Lemma 2.3.

Corollary 2.4. Let E be a real Banach space and K a nonempty convex subset of E. Let $T: K \to K$ be a k-strictly asymptotically pseudocontractive map with $F(T) \neq \emptyset$ and sequence $\{k_n\} \subset [1, \infty)$ such that $\lim_n k_n = 1$, $\sum_{n=1}^{\infty} (k_n^2 - 1) < \infty$. Let $\{a_n\}$, $\{b_n\}$, $\{c_n\}$, $\{a'_n\}$, $\{b'_n\}$, $\{c'_n\}$, $\{u_n\}$, and $\{v_n\}$ be as in Lemma 2.3 and let $\{x_n\}$ be the sequence generated from an arbitrary $x_1 \in K$ by

$$y_n = a_n x_n + b_n T^n x_n + c_n u_n, \ n \ge 1,$$

$$x_{n+1} = a'_n + b'_n T^n y_n + c'_n v_n, \ n \ge 1,$$

Then $\liminf_{n\to\infty} ||x_n - Tx_n|| = 0$.

Proof. From (1.1) we obtain

$$\begin{split} &\|(I-T^n)x - (I-T^n)y\|\|x - y\| \\ &\geq \frac{1}{2}\{(1-k)\|(I-T^n)x - (I-T^n)y\|^2 - (k_n^2 - 1)\|x - y\|^2\} \\ &= \frac{1}{2}[\sqrt{1-k}\|(I-T^n)x - (I-T^n)y\| \\ &+ \sqrt{k_n^2 - 1}\|x - y\|][\sqrt{1-k}\|(I-T^n)x - (I-T^n)y\| \\ &- \sqrt{k^2 - 1}\|x - y\|] \\ &\geq \frac{1}{2}[\sqrt{1-k}\|(I-T^n)x - (I-T^n)y\|] \\ &= [\sqrt{1-k}\|(I-T^n)x - (I-T^n)y\| - \sqrt{k^2 - 1}\|x - y\|] \end{split}$$

so that

$$\frac{1}{2}\sqrt{1-k}[\sqrt{1-k}\|(I-T^n)x-(I-T^n)y\|]-\sqrt{k^2-1}\|x-y\|\leq \|x-y\|.$$

Hence

$$||(I-T^n)x - (I-T^n)y|| \le \left[\frac{2+\sqrt{\{(1-k)(k_n^2-1)\}}}{1-k}\right]||x-y||.$$

Furthermore,

$$\begin{split} \|T^nx - T^ny\| - \|x - y\| & \leq \|(I - T^n)x - (I - T^n)y\| \\ & \leq \left[\frac{2 + \sqrt{\{(1 - k)(k_n^2 - 1)\}}}{1 - k}\right] \|x - y\|, \end{split}$$

from which it follows that

$$||T^n x - T^n y|| \le \left[1 + \frac{2 + \sqrt{\{(1 - k)(k_n^2 - 1)\}}}{1 - k}\right] ||x - y||.$$

Since $\{k_n\}$ is bounded, let $k_n \leq D, \ \forall \ n \geq 1$. Then

$$||T^n x - T^n y|| \le [1 + \frac{2 + \sqrt{\{(1-k)(D^2 - 1)\}}}{1-k}]||x - y||$$

 $\le L||x - y||,$

where

$$L = 1 + \frac{2 + \sqrt{\{(1 - k)(D^2 - 1)\}}}{1 - k}.$$

Hence T is uniformly L-Lipschitzian. Since $F(T) \neq \emptyset$, then T is uniformly L-Lipschitzian and asymptotically demicontractive and hence the result follows from Lemma 2.3.

Remark 2.5. It is shown in [3] that if E is a Hilbert space and $T: K \to K$ is k-asymptotically pseudocontractive with sequence $\{k_n\}$ then

$$||T^n x - T^n y|| \le \frac{D + \sqrt{k}}{1 - \sqrt{k}} ||x - y|| \ \forall \ x, \ y \in K, \text{ where } k_n \le D, \ \forall \ n \ge 1.$$

Theorem 2.6. Let E be a real Banach space and K a nonempty closed convex subset of E. Let $T: K \to K$ be a completely continuous uniformly L-Lipschitzian asymptotically demicontractive mapping with sequence $\{k_n\} \subset [1,\infty)$ such that $\lim_n k_n = 1$ and $\sum_{n=1}^{\infty} (k_n^2 - 1) < \infty$. Let $\{a_n\}, \{b_n\}, \{c_n\}, \{a'_n\}, \{b'_n\}, \{c'_n\}, \{u_n\}, and \{v_n\}$ be as in Lemma 2.3. Then the sequence $\{x_n\}$ generated from an arbitrary $x_1 \in K$ by

$$y_n = a_n x_n + b_n T^n x_n + c_n u_n, \ n \ge 1$$

$$x_{n+1} = a'_n x_n + b'_n T^n y_n + c'_n v_n, \ n \ge 1,$$

converges strongly to a fixed point of T.

Proof. From Lemma 2.3, $\liminf_n \|x_n - T^n x_n\| = 0$, hence there exists a subsequence $\{x_{n_j}\}$ of $\{x_n\}$ such that $\lim_n \|x_{n_j} - Tx_{n_j}\| = 0$. Since $\{x_{n_j}\}$ is bounded and T is completely continuous, then $\{Tx_{n_j}\}$ has a subsequence

Since $\{x_{n_j}\}$ is bounded and T is completely continuous, then $\{Tx_{n_j}\}$ has a subsequence $\{Tx_{j_k}\}$ which converges strongly. Hence $\{x_{n_{j_k}}\}$ converges strongly. Suppose $\lim_{k\to\infty} x_{n_{j_k}} = p$. Then $\lim_{k\to\infty} Tx_{n_{j_k}} = Tp$. $\lim_{k\to\infty} \|x_{n_{j_k}} - Tx_{n_{j_k}}\| = \|p - Tp\| = 0$ so that $p \in F(T)$. It follows from (2.11) that

$$||x_{n+1} - p||^2 \le ||x_n - p||^2 + \mu_n$$

Lemma 2.2 now implies $\lim_{n\to\infty} ||x_n-p|| = 0$ completing the proof of Theorem 2.6.

Corollary 2.7. Let E be an arbitrary real Banach space and K a nonempty closed convex subset of E. let $T: K \to K$ be a k-strictly asymptotically pseudocontractive mapping with $F(T) \neq \emptyset$ and sequence $\{k_n\} \subset [1, \infty)$ such that $\lim_n k_n = 1$, and $\sum_{n=1}^{\infty} (k_n^2 - 1) < \infty$. Let $\{a_n\}, \{b_n\}, \{c_n\}, \{a'_n\}, \{b'_n\}, \{c'_n\}, \{u_n\}, \text{ and } \{v_n\} \text{ be as in Lemma 2.3. Then the sequence}$ $\{x_n\}$ generated from an arbitrary $x_1 \in K$ by

$$y_n = a_n x_n + b_n T^n x_n + c_n u_n, \ n \ge 1,$$

$$x_{n+1} = a'_n x_n + b'_n T^n y_n + c'_n v_n, \ n \ge 1,$$

converges strongly to a fixed point of T.

Proof. As shown in Corollary 2.4, T is uniformly L-Lipschitzian and since $F(T) \neq \emptyset$ then T is asymptotically demicontractive and the result follows from Theorem 2.6.

Remark 2.8. If we set $b_n=c_n=0, \ \forall \ n\geq 1$ in Lemma 2.3, Theorem 2.6 and Corollaries 2.4 and 2.7, we obtain the corresponding results for the modified Mann iteration method with errors in the sense of Xu [7].

Remark 2.9. Theorem 2.6 extends the results of Osilike [3] (which is itself a generalization of a theorem of Qihou [4]) from real q-uniformly smooth Banach space to arbitrary real Banach space.

Furthermore, our Theorem 2.6 is proved without the boundedness condition imposed on the subset K in ([3, 4]) and using the more general modified Ishikawa Iteration method with errors in the sense of Xu [7]. Also our iteration parameters $\{a_n\}, \{b_n\}, \{c_n\}, \{a'_n\}, \{b'_n\}, \{c'_n\}, \{u_n\}, \{u_n\},$ and $\{v_n\}$ are completely independent of any geometric properties of underlying Banach space.

Remark 2.10. Prototypes for our iteration parameters are:

$$b'_n = \frac{1}{3(n+1)}, c'_n = \frac{1}{3(n+1)^2}, a'_n = 1 - (b'_n + c'_n),$$

 $b_n = c_n = \frac{1}{3(n+1)^2}, a_n = 1 - \frac{1}{3(n+1)^2}, n \ge 1.$

The proofs of the following theorems and corollaries for the Ishikawa iteration method with errors in the sense of Liu [2] are omitted because the proofs follow by a straightforward modifications of the proofs of the corresponding results for the Ishikawa iteration method with errors in the sense of Xu [7].

Theorem 2.11. Let E be a real Banach space and let $T: E \to E$ be a uniformly L-Lipschitzian asymptotically demicontractive mapping with sequence $\{k_n\} \subset [1,\infty)$ such that $\lim k_n = 1$, and $\sum_{n=1}^{\infty}(k_n^2-1)<\infty$. Let $\{u_n\}$ and $\{v_n\}$ be sequences in E such that $\sum_{n=1}^{\infty}\|u_n\|<\infty$ and $\sum_{n=1}^{\infty}\|v_n\|<\infty$, and let $\{\alpha_n\}$ and $\{\beta_n\}$ be sequences in [0,1] satisfying the conditions:

- $\begin{array}{l} \text{(i) } 0 \leq \alpha_n, \beta_n \leq 1, \, n \geq 1; \\ \text{(ii) } \sum_{n=1}^{\infty} \alpha_n = \infty \\ \text{(iii) } \sum_{n=1}^{\infty} \alpha_n^2 < \infty \text{ and } \sum_{n=1}^{\infty} \beta_n < \infty. \end{array}$

Let $\{x_n\}$ be the sequence generated from an arbitrary $x_1 \in E$ by

$$y_n = (1 - \beta_n)x_n + \beta_n T^n x_n + u_n, \ n \ge 1,$$

$$x_{n+1} = (1 - \alpha_n)x_n + \alpha_n T^n y_n + v_n, \ n \ge 1,$$

Then $\liminf_{n\to\infty} ||x_n - Tx_n|| = 0$.

Corollary 2.12. Let E be a real Banach space and let $T: E \to E$ be a k-strictly asymptotically pseudocontractive map with $F(T) \neq \emptyset$ and sequence $\{k_n\} \subset [1, \infty)$ such that $\lim_n k_n = 1$, and $\sum_{n=1}^{\infty} (k_n^2 - 1) < \infty$. Let $\{u_n\}, \{v_n\}, \{\alpha_n\}$ and $\{\beta_n\}$ be as in Theorem 2.11 and let $\{x_n\}$ be the sequence generated from an arbitrary $x_1 \in E$ by

$$y_n = (1 - \beta_n)x_n + \beta_n T^n x_n + u_n, \ n \ge 1,$$

$$x_{n+1} = (1 - \alpha_n)x_n + \alpha_n T^n y_n + v_n, \ n \ge 1,$$

Then $\liminf_{n\to\infty} ||x_n - Tx_n|| = 0.$

Theorem 2.13. Let E, T, $\{u_n\}$, $\{v_n\}$, $\{\alpha_n\}$ and $\{\beta_n\}$ be as in Theorem 2.11. If in addition $T: E \to E$ is completely continuous then the sequence $\{x_n\}$ generated from an arbitrary $x_1 \in E$ by

$$y_n = (1 - \beta_n)x_n + \beta_n T^n x_n + u_n, \ n \ge 1,$$

$$x_{n+1} = (1 - \alpha_n)x_n + \alpha_n T^n y_n + v_n, \ n \ge 1,$$

converges strongly to a fixed point of T.

Corollary 2.14. Let E, T, $\{u_n\}$, $\{v_n\}$, $\{\alpha_n\}$ and $\{\beta_n\}$ be as in Corollary 2.12. If in addition T is completely continuous, then the sequence $\{x_n\}$ generated from an arbitrary $x, y \in E$ by

$$y_n = (1 - \beta_n)x_n + \beta_n T^n x_n + u_n, \ n \ge 1,$$

$$x_{n+1} = (1 - \alpha_n)x_n + \alpha_n T^n y_n + v_n, \ n \ge 1,$$

converges strongly to a fixed point of T.

- **Remark 2.15.** (a) If K is a nonempty closed convex subset of E and $T: K \to K$, then Theorems 2.11 and 2.13 and Corollaries 2.12 and 2.14 also hold provided that in each case the sequence $\{x_n\}$ lives in K.
 - (b) If we set $\beta_n = 0$, $\forall n \ge 1$ in Theorems 2.11 and 2.13 and Corollaries 2.12 and 2.14, we obtain the corresponding results for modified Mann iteration method with errors in the sense of Liu [2].

REFERENCES

- [1] S.S. CHANG, Some problems and results in the study of nonlinear analysis, *Nonlinear Analysis*, **30** (1997), 4197–4208.
- [2] L. LIU, Ishikawa and Mann iteration processes with errors for nonlinear strongly accretive mappings in Banach spaces, *J. Math. Anal. Appl.*, **194** (1995), 114–125.
- [3] M.O. OSILIKE, Iterative approximations of fixed points of asymptoically demicontractive mappings, *Indian J. Pure Appl. Math.*, **29**(12) (1998), 1291–1300.
- [4] L. QIHOU, Convergence theorems of the sequence of iterates for asymptotically demicontractive and hemicontractive mappings, *Nonlinear Analysis*, **26**(11) (1996), 1835–1842.
- [5] J. SCHU, Iterative construction of fixed points of asymptotically nonexpansive mappings, *J. Math. Anal. Appl.*, **158** (1991), 407–413.
- [6] K.K. TAN AND H.K. XU, Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process, *J. Math. Anal. Appl.*, **178** (1993), 301–308.
- [7] Y. XU, Ishikawa and Mann iterative processes with errors for nonlinear strongly accretive operator equations, *J. Math. Anal. Appl.*, **224** (1998), 91–101.