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ABSTRACT. In this paper, using the Hausdorff topology in the space of open sets under some
capacity constraints on geometrical domains we prove the strong continuity with respect to the
moving domain of the solutions of ap-Laplacian Dirichlet problem. We are also interested in
the minimization of the first eigenvalue of thep-Laplacian with Dirichlet boundary conditions
among open sets and quasi open sets of given measure.
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1. I NTRODUCTION

Let Ω be an open subset of a fixed ballD in RN , N ≥ 2 and1 < p < +∞. Consider the
Sobolev spaceW 1,p

0 (Ω) which is the closure ofC∞ functions compactly supported inΩ for the
norm

||u||p1,p =

∫
Ω

|u(x)|pdx+

∫
Ω

|∇u(x)|pdx.

Thep-Laplacian is the operator defined by

∆p : W 1,p
0 (Ω) −→ W−1,q(Ω)

u 7−→ ∆pu = div(|∇u|p−2∇u),

whereW−1,q(Ω) is the dual space ofW 1,p
0 (Ω) and we have1 < p, q <∞, 1

p
+ 1

q
= 1.

We are interested in the nonlinear eigenvalue problem

(1.1)

{
−∆pu− λ|u|p−2u = 0 in Ω,

u = 0 on∂Ω.
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2 IDRISSA LY

Let u be a function ofW 1,p
0 (Ω), not identically0. The functionu is called an eigenfunction if∫
Ω

|∇u(x)|p−2∇u∇φdx = λ

∫
Ω

|u(x)|p−2uφdx

for all φ ∈ C∞0 (Ω). The corresponding real numberλ is called an eigenvalue.
Contrary to the Laplace operator, thep-Laplacian spectrum has not been proved to be discrete.

In [15], the first eigenvalue and the second eigenvalue are described.
LetD be a bounded domain inRN andc > 0. Let us denoteλp

1(Ω) as the first eigenvalue for
thep-Laplacian operator. The aim of this paper is to study the isoperimetric inequality

min{λp
1(Ω),Ω ⊆ D and |Ω| = c}

and its continuous dependance with respect to the domain. We extend the Rayleigh-Faber-
Khran inequality to thep-Laplacian operator and study the minimization of the first eigenvalue
in two dimensions whenD is a box. By considering a class of simply connected domains, we
study the stability of the minimizerΩp of the first eigenvalue with respect top that is if Ωp

is a minimizer of the first eigenvalue for thep-Laplacian Dirichlet, whenp goes to2, Ω2 is
also a minimizer of the first eigenvalue of the Laplacian Dirichlet. Thus we will give a formal
justification of the following conjecture: "Ω is a minimizer of given volumec, contained in a
fixed boxD and ifD is too small to contain a ball of the same volume asΩ. Are the free parts
of the boundary ofΩ pieces of circle?"

Henrot and Oudet solved this question and proved by using the Hölmgren uniqueness theo-
rem, that the free part of the boundary ofΩ cannot be pieces of circle, see [10].

The structure of this paper is as follows: The first section is devoted to the definition of two
eigenvalues. In the second section, we study the properties of geometric variations for the first
eigenvalue. The third section is devoted to the minimization of the first eigenvalue among open
(or, if specified, quasi open) sets of given volume. In the fourth part we discuss the minimization
of the first eigenvalue in a box in two dimensions.

LetD be a bounded open set inRN which contains all the open (or, if specified, quasi open)
subsets used.

2. DEFINITION OF THE FIRST AND SECOND EIGENVALUES

The first eigenvalue is defined by the nonlinear Rayleigh quotient

λ1(Ω) = min
φ∈W 1,p

0 (Ω),φ6=0

∫
Ω
|∇φ(x)|pdx∫
Ω
|φ(x)|p

=

∫
Ω
|∇u1(x)|pdx∫

Ω
|u1(x)|pdx

,

where the minimum is achieved byu1 which is a weak solution of the Euler-Lagrange equation

(2.1)

{
−∆pu− λ|u|p−2u = 0 in Ω
u = 0 on ∂Ω.

The first eigenvalue has many special properties, it is strictly positive, simple in any bounded
connected domain see [15]. Andu1 is the only positive eigenfunction for thep-Laplacian
Dirichlet see also [15].

In [15], the second eigenvalue is defined by

λ2(Ω) = inf
C∈C2

max
C

∫
Ω
|∇φ(x)|pdx∫
Ω
|φ(x)|p

,

where
C2 := {C ∈ W 1,p

0 (Ω) : C = −C such thatgenus(C) ≥ 2}.
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THE FIRST EIGENVALUE FOR THEp-LAPLACIAN OPERATOR 3

In [1], Anane and Tsouli proved that there does not exist any eigenvalue between the first and
the second ones.

3. PROPERTIES OF THE GEOMETRIC VARIATIONS

In this section we are interested in the continuity of the map

Ω 7−→ λ1(Ω).

Then, we have to fix topology on the space of the open subsets ofD. On the family of the open
subsets ofD,we define the Hausdorff complementary topology, denotedHc given by the metric

dHc(Ωc
1,Ω

c
2) = sup

x∈RN

|d(x,Ωc
1)− d(x,Ωc

2)|.

TheHc-topology has some good properties for example the space of the open subsets ofD is

compact. Moreover ifΩn
Hc

→ Ω, then for any compactK ⊂⊂ Ω we haveK ⊂⊂ Ωn for n large
enough.

However, perturbations in this topology may be very irregular and in general situations the
continuity of the mappingΩ 7−→ λ1(Ω) fails, see [4].

In order to obtain a compactness result we impose some additional constraints on the space
of the open subsets ofD which are expressed in terms of the Sobolev capacity. There are many
ways to define the Sobolev capacity, we use the local capacity defined in the following way.

Definition 3.1. For a compact setK contained in a ballB,

cap(K,B) := inf

{∫
B

|∇φ|p, φ ∈ C∞0 (B), φ ≥ 1 on K

}
.

Definition 3.2.

(1) It is said that a property holdsp-quasi everywhere (abbreviated asp − q.e) if it holds
outside a set ofp-capacity zero.

(2) A setΩ ⊂ RN is said to be quasi open if for everyε > 0 there exists an open setΩε

such thatΩ ⊆ Ωε, andcap(Ωε\Ω) < ε.
(3) A functionu : RN −→ R is saidp-quasi continuous if for everyε > 0 there exists an

open setΩε such thatcap(Ωε) < ε andu|R\Ωε is continuous inR\Ωε.

It is well known that every Sobolev functionu ∈ W 1,p(RN) has ap-quasi continuous repre-
sentative which we still denoteu. Therefore, level sets of Sobolev functions arep-quasi open
sets; in particularΩv = {x ∈ D; |v(x)| > 0} is quasi open subsets ofD.

Definition 3.3. We say that an open setΩ has thep− (r, c) capacity density condition if

∀x ∈ ∂Ω, ∀0 < δ < r,
cap(Ωc ∩ B̄(x, δ), B(x, 2δ))

cap(B̄(x, δ), B(x, 2δ))
≥ c

whereB(x, δ) denotes the ball of raduisδ, centred atx.

Definition 3.4. We say that the sequence of the spacesW 1,p
0 (Ωn) converges in the sense of

Mosco to the spaceW 1,p
0 (Ω) if the following conditions hold

(1) The first Mosco condition: For allφ ∈ W 1,p
0 (Ω),there exists a sequenceφn ∈ W 1,p

0 (Ωn)
such thatφn converges strongly inW 1,p

0 (D) to φ.
(2) The second Mosco condition: For every sequenceφnk

∈ W 1,p
0 (Ωnk

) weakly convergent
in W 1,p

0 (D) to a functionφ, we haveφ ∈ W 1,p
0 (Ω).
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4 IDRISSA LY

Definition 3.5. We say a sequence(Ωn) of open subsets of a fixed ballD γp-converges toΩ if
for anyf ∈ W−1,q(Ω) the solutions of the Dirichlet problem

−∆pun = f in Ωn, un ∈ W 1,p
0 (Ωn)

converge strongly inW 1,p
0 (D),asn −→ +∞, to the solution of the corresponding problem in

Ω, see [7], [8].

By Op−(r,c)(D), we denote the family of all open subsets ofD which satisfy thep − (r, c)
capacity density condition. This family is compact in theHc topology see [4]. In [2], D. Bucur
and P. Trebeschi, using capacity constraints analogous to those introduce in [3] and [4] for the
linear case, prove theγp-compactness result for thep-Laplacian. In the same way, they extend
the continuity result of Šveràk [19] to thep-Laplacian forp ∈ (N − 1, N ], N ≥ 2. The reason
of the choice ofp is that inRN the curves havep positive capacity ifp > N − 1. The case
p > N is trivial since all functions inW 1,p(RN) are continuous.

Let us denote by
Ol(D) = {Ω ⊆ D, ]Ωc ≤ l}

where] denotes the number of the connected components. We have the following theorem.

Theorem 3.1(Bucur-Trebeschi). LetN ≥ p > N − 1. Consider the sequence(Ωn) ⊆ Ol(D)
and assume thatΩn converges in Hausdorff complementary topology toΩ. ThenΩ ⊆ Ol(D)
andΩn γp−converges toΩ.

Proof of Theorem 3.1.See [2]. �

ForN = 2 andp = 2, Theorem 3.1 becomes the continuity result of Šveràk [19].
Back to the continuity result, we use the above results to prove the following theorem.

Theorem 3.2. Consider the sequence(Ωn) ⊆ Ol(D). Assume thatΩn converges in Hausdorff
complementary topology toΩ. Thenλ1(Ωn) converges toλ1(Ω).

Proof of Theorem 3.2.Let us take

λ1(Ωn) = min
φn∈W 1,p

0 (Ωn),φn 6=0

∫
Ωn
|∇φn(x)|pdx∫
Ωn
|φn(x)|p

=

∫
Ωn
|∇un(x)|pdx∫
Ωn
|un(x)|p

,

where the minimum is attained byun, and

λ1(Ω) = min
φ∈W 1,p

0 (Ω),φ6=0

∫
Ω
|∇φ(x)|pdx∫
Ω
|φ(x)|p

=

∫
Ω
|∇u1(x)|pdx∫

Ω
|u1(x)|pdx

,

where the minimum is achieved byu1.
By the Bucur and Trebeschi theorem,Ωn γp converges toΩ. This impliesW 1,p

0 (Ωn) con-
verges in the sense of Mosco toW 1,p

0 (Ω).
If the sequence(un) is bounded inW 1,p

0 (D), then there exists a subsequence still denoted
un such thatun converges weakly inW 1,p

0 (D) to a functionu. The second condition of Mosco
implies thatu ∈ W 1,p

0 (Ω).
Using the weak lower semicontinuity of theLp−norm, we have the inequality

lim inf
n−→+∞

∫
D
|∇un(x)|pdx∫
D
|un(x)|p

≥
∫

Ω
|∇u(x)|pdx∫
Ω
|u(x)|p

≥
∫

Ω
|∇u1(x)|pdx∫
Ω
|u1(x)|p

,

then

(3.1) lim inf
n→+∞

λ1(Ωn) ≥ λ1(Ω).
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Using the first condition of Mosco, there exists a sequence(vn) ∈ W 1,p
0 (Ωn) such thatvn

converges strongly inW 1,p
0 (D) to u1.

We have

λ1(Ωn) ≤
∫

D
|∇vn(x)|pdx∫
D
|vn(x)|p

this implies that

lim sup
n−→+∞

λ1(Ωn) ≤ lim sup
n−→+∞

∫
D
|∇vn(x)|pdx∫
D
|vn(x)|p

= lim
n−→+∞

∫
D
|∇vn(x)|pdx∫
D
|vn(x)|p

=

∫
Ω
|∇u1(x)|pdx∫
Ω
|u1(x)|p

then

(3.2) lim sup
n→+∞

λ1(Ωn) ≤ λ1(Ω).

By the relations (3.1) and (3.2) we conclude thatλ1(Ωn) converges toλ1(Ω). �

4. SHAPE OPTIMIZATION RESULT

We extend the classical inequality of Faber-Krahn for the first eigenvalue of the Dirichlet
Laplacian to the Dirichletp-Laplacian. We study this inequality whenΩ is a quasi open subset
of D.

Definition 4.1. Let Ω be an open subset and bounded inRN . We denote byB the ball centred
at the origin with the same volume asΩ. Let u be a non negative function inΩ, which vanishes
on∂Ω. For all c > 0, the set{x ∈ Ω, u(x) > c} is called the level set ofu.

The functionu∗ which has the following level set

∀c > 0, {x ∈ B, u∗(x) > c} = {x ∈ Ω, u(x) > c}∗

is called the Schwarz rearrangement ofu. The level sets ofu∗ are the balls that we obtain by
rearranging the sets of the same volume ofu.

We have the following lemma.

Lemma 4.1. LetΩ be an open subset inRN .
Letψ be any continuous function onR∗

+, we have

(1)
∫

Ω
ψ(u(x))dx =

∫
Ω∗
ψ(u∗(x))dx u∗ is equi-mesurable withu.

(2)
∫

Ω
u(x)v(x)dx ≤

∫
Ω∗
u∗(x)v∗(x)dx.

(3) If u ∈ W 1,p
0 (Ω), p > 1 thenu∗ ∈ W 1,p

0 (Ω∗) and∫
Ω

|∇u(x)|pdx ≥
∫

Ω∗
|∇u∗(x)|pdx Pòlya inequality.

Proof of Lemma 4.1.See [12]. �

The basic result for the minimization of eigenvalues is the conjecture of Lord Rayleigh: “The
disk should minimize the first eigenvalue of the Laplacian Dirichlet among every open set of
given measure”. We extend the Rayleigh-Faber-Krahn inequality to thep-Laplacian operator.

Let Ω be any open set inRN with finite measure. We denote byλ1(Ω) the first eigenvalue for
thep-Laplacian operator with Dirichlet boundary conditions. We have the following theorem.
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6 IDRISSA LY

Theorem 4.2.LetB be the ball of the same volume asΩ, then

λ1(B) = min{λ1(Ω),Ω open set of RN , |Ω| = |B|}.

Proof of Theorem 4.2.Let u1 be the first eigenfunction ofλ1(Ω), it is strictly positive see [15].
By Lemma 4.1, equi-mesurability of the functionu1 and its Schwarz rearrangementu∗1 gives∫

Ω

|u1(x)|pdx =

∫
B

|u∗1(x)|pdx.

The Pòlya inequality implies that∫
Ω

|∇u1(x)|pdx ≥
∫

B

|∇u∗1(x)|pdx.

By the two conditions, it becomes∫
B
|∇u∗1(x)|pdx∫

B
|u∗1(x)|pdx

≤
∫

Ω
|∇u1(x)|pdx∫

Ω
|u1(x)|pdx

= λ1(Ω).

This implies that

λ1(B) = min
v∈W 1,p

0 (B),v 6=0

∫
B
|∇v(x)|pdx∫

B
|v(x)|pdx

≤
∫

B
|∇u∗1(x)|pdx∫

B
|u∗1(x)|pdx

≤ λ1(Ω).

�

Remark 4.3. The solutionΩ must satisfy an optimality condition. We suppose thatΩC2− regular
to compute the shape derivative. We deform the domainΩ with respect to an admissible vector
field V to compute the shape derivative

dJ(Ω;V ) = lim
t−→0

J(Id+ tΩ)− J(Ω)

t
.

We have the variation calculation

−div(|∇u|p−2∇u) = λ|u|p−2u

−
∫

Ω

div(|∇u|p−2∇u)φdx =

∫
Ω

λ|u|p−2uφdx, for all φ ∈ D(Ω)∫
Ω

|∇u|p−2∇u∇φdx =

∫
Ω

λ|u|p−2uφdx, for all φ ∈ D(Ω)

Let us takeJ(Ω) =
∫

Ω
|∇u|p−2∇u∇φdx andJ1(Ω) =

∫
Ω
λ|u|p−2uφdx.We havedJ(Ω;V ) =

dJ1(Ω;V ).
We use the classical Hadamard formula to compute the Eulerian derivative of the functional

J at the pointΩ in the directionV.

dJ(Ω;V ) =

∫
Ω

(|∇u|p−2∇u∇φ)′dx+

∫
Ω

div(|∇u|p−2∇u∇φ.V (0))dx.

We have∫
Ω

(|∇u|p−2∇u∇φ)′dx

=

∫
Ω

(|∇u|p−2)′∇u∇φdx+

∫
Ω

|∇u|p−2∇u(∇φ)′dx+

∫
Ω

|∇u|p−2(∇u)′∇φdx.
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We have the expression

(|∇u|p−2)′ =
(
(|∇u|2)

p−2
2

)′
=
p− 2

2
(|∇u|2)′(|∇u|2)

p−4
2

(|∇u|p−2)′ = (p− 2)∇u∇u′|∇u|p−4.

Then

dJ(Ω;V ) = (p− 2)

∫
Ω

|∇u|p−4|∇u|2∇u′∇φdx

−
∫

Ω

div(|∇u|p−2∇u)φ′dx−
∫

Ω

div(|∇u|p−2(∇u)′)φdx

dJ(Ω, V ) = (p− 2)

∫
Ω

|∇u|p−2∇u′∇φdx

−
∫

Ω

div(|∇u|p−2∇u)φ′dx−
∫

Ω

div(|∇u|p−2(∇u)′)φdx

because ∫
Ω

div(|∇u|p−2∇u∇φ · V (0))dx =

∫
∂Ω

|∇u|p−2∇u∇φ · V (0) · νds = 0.

We obtain

dJ(Ω;V ) = −(p− 1)

∫
Ω

div(|∇u|p−2∇u′)φdx−
∫

Ω

div(|∇u|p−2∇u)φ′dx

We have also

dJ1(Ω;V ) =

∫
Ω

λ′|u|p−2uφdx+

∫
Ω

λ|u|p−2u′φdx

+

∫
Ω

λ|u|p−2uφ′dx+ (p− 2)

∫
Ω

λ|u|p−2u′φdx,

dJ1(Ω;V ) =

∫
Ω

λ′|u|p−2uφdx+

∫
Ω

λ|u|p−2uφ′dx+ (p− 1)

∫
Ω

λ|u|p−2u′φdx

dJ(Ω;V ) = dJ1(Ω, V ) implies

− (p− 1)

∫
Ω

div(|∇u|p−2∇u′)φdx−
∫

Ω

div(|∇u|p−2∇u)φ′dx

=

∫
Ω

λ′|u|p−2uφdx+

∫
Ω

λ|u|p−2uφ′dx+ (p− 1)

∫
Ω

λ|u|p−2u′φdx.

By simplification we get

− (p− 1)

∫
Ω

div(|∇u|p−2∇u′)φdx−
∫

Ω

div(|∇u|p−2∇u)φ′dx

=

∫
Ω

λ′|u|p−2uφdx+ (p− 1)

∫
Ω

λ|u|p−2u′φdx, for all φ ∈ D(Ω).

This implies that

(4.1)
{
−(p− 1)div(|∇u|p−2∇u′) = λ′|u|p−2u+ (p− 1)λ|u|p−2u′ in D′(Ω)

J. Inequal. Pure and Appl. Math., 6(3) Art. 91, 2005 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/
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We multiply the equation (4.1) byu and by Green ’s formula we get

−(p−1)

[∫
Ω

div(|∇u|p−2∇u)u′dx+

∫
∂Ω

|∇u|p−2∇u · νu′ds
]

= λ′+(p−1)

∫
Ω

λ|u|p−2uu′dx.

Finally we obtain the expression of

λ′(Ω;V ) = −(p− 1)

∫
∂Ω

|∇u|p∇u · νu′ds

whereu′ satisfiesu′ = −∂u
∂ν
V (0) · ν on∂Ω. Then

λ′(Ω, V ) = −(p− 1)

∫
∂Ω

|∇u|pV · νds.

We have a similar formula for the variation of the volumedJ2(Ω, V ) =
∫

∂Ω
V · νds, where

J2(Ω) =
∫

Ω
dx− c.

If Ω is an optimal domain then there exists a Lagrange multipliera < 0 such that

−(p− 1)

∫
∂Ω

|∇u|pV · νds = a

∫
∂Ω

V · νds.

Then we obtain

|∇u| =
(
−a
p− 1

) 1
p

on ∂Ω.

SinceΩ is C2−regular andu = 0 on∂Ω, then we get

−∂u
∂ν

=

(
−a
p− 1

) 1
p

on ∂Ω.

We are also interested the existence of a minimizer for the following problem

min{λ1(Ω),Ω ∈ A, |Ω| ≤ c},
whereA is a family of admissible domain defined by

A = {Ω ⊆ D,Ω is quasi open}
andλ1(Ω) is defined by

λ1(Ω) = min
φ∈W 1,p

0 (Ω),φ6=0

∫
Ω
|∇φ(x)|pdx∫
Ω
|φ(x)|p

=

∫
Ω
|∇u1(x)|pdx∫

Ω
|u1(x)|pdx

.

The Sobolev spaceW 1,p
0 (Ω) is seen as a closed subspace ofW 1,p

0 (D) defined by

W 1,p
0 (Ω) = {u ∈ W 1,p

0 (D) : u = 0p− q.e on D\Ω}.
The problem is to look for weak topology constraints which would make the classA sequen-
tially compact. This convergence is called weakγp-convergence for quasi open sets.

Definition 4.2. We say that a sequence(Ωn) ofAweaklyγp-converges toΩ ∈ A if the sequence
un converges weakly inW 1,p

0 (D) to a functionu ∈ W 1,p
0 (D) (that we may take as quasi-

continuous) such thatΩ = {u > 0}.

We have the following theorem.

Theorem 4.4.The problem

(4.2) min{λ1(Ω),Ω ∈ A, |Ω| ≤ c}
admits at least one solution.
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Proof of Theorem 4.4.Let us take

λ1(Ωn) = min
φn∈W 1,p

0 (Ωn),φn 6=0

∫
Ωn
|∇φn(x)|pdx∫

Ωn
|φn(x)|pdx

=

∫
Ωn
|∇un(x)|pdx∫

Ωn
|un(x)|pdx

.

Suppose that(Ωn)(n∈N) is a minimizing sequence of domain for the problem (4.2). We denote
by un a first eigenfunction onΩn, such that

∫
Ωn
|un(x)|pdx = 1.

Sinceun is the first eigenfunction ofλ1(Ωn), un is strictly positive, cf [15], then the sequence
(Ωn) is defined byΩn = {un > 0}.

If the sequence(un) is bounded inW 1,p
0 (D), then there exists a subsequence still denoted by

un such thatun converges weakly inW 1,p
0 (D) to a functionu. By compact injection, we have

that
∫

Ω
|u(x)|pdx = 1.

Let Ω be quasi open and defined byΩ = {u > 0}, this implies thatu ∈ W 1,p
0 (Ω). As the

sequence(un) is bounded inW 1,p
0 (D), then

lim inf
n→+∞

∫
Ωn
|∇un(x)|pdx∫

Ωn
|un(x)|pdx

≥
∫

Ω
|∇u(x)|pdx∫

Ω
|u(x)|pdx

≥
∫

Ω
|∇u1(x)|pdx∫

Ω
|u1(x)|pdx

= λ1(Ω).

Now we show that|Ω| ≤ c.
We know that if the sequenceΩn weakly γp- converges toΩ and the Lebesgue measure

is weakly γp-lower semicontinuous on the classA (see [5]), then we obtain|{u > 0}| ≤
lim inf
n→+∞

|{un > 0}| ≤ c this implies that|Ω| ≤ c. �

5. DOMAIN IN BOX

Now let us takeN = 2. We consider the class of admissible domains defined by

C = {Ω,Ω open subsets ofD and simply connected,|Ω| = c}.

• For p > 2, the p-capacity of a point is stricly positive and everyW 1,p
0 function has a

continuous representative. For this reason, a property which holdsp − q.e with p > 2
holds in fact everywhere. Forp > 2, the domainΩp is a minimizer of the problem
min{λp

1(Ωp),Ωp ∈ C}.
Consider the sequence(Ωpn) ⊆ C and assume thatΩpn converges in Hausdorff com-

plementary topology toΩ2, whenpn goes to 2 andpn > 2. ThenΩ2 ⊆ C andΩpn

γ2-converges toΩ2.
By the Sobolev embedding theorem, we haveW 1,pn

0 (Ωpn) ↪→ H1
0 (Ωpn). The γ2 -

convergence implies thatH1
0 (Ωpn) converges in the sense of Mosco toH1

0 (Ω2). For
pn > 2, by the Hölder inequality we have(∫

|∇upn|2dx
) 1

2

≤ |Ωpn|
1
2
− 1

pn

(∫
|∇upn|pndx

) 1
pn

(∫
|∇upn|2

) 1
2

dx ≤ c
1
2
− 1

pn λpn

1 (Ωpn).

Then the sequence(upn) is uniformly bounded inH1
0 (Ωpn). There exists a subsequence

still denotedupn such thatupn converges weakly inH1
0 (D) to a functionu. The second

condition of Mosco implies thatu ∈ H1
0 (Ω2).

Forp > 2, we have the Sobolev embedding theoremW 1,p
0 (D) ↪→ C0,α(D̄).

Ascoli’s theorem implies thatupn −→ u and∇upn −→ ∇u locally uniformly inΩ2,
whenpn goes to 2 andpn > 2.
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Now show that

lim
pn−→2

∫
|upn|2dx = 1 i.e.

∫
|u|2dx = 1.

For ε > 0 small, we havepn > 2− ε. Noting that(∫
|∇upn|2−εdx

) 1
2−ε

≤ |Ωpn|
1

2−ε
− 1

pn

(∫
|∇upn|pndx

) 1
pn

= c
1

2−ε
− 1

pn λpn

1 (Ωpn),

this implies that the sequenceupn is uniformly bounded inW 1,2−ε
0 (Ωpn). Then there

exists a subsequence still denotedupn such thatupn is weakly convergent inH1
0 (D) to

u. By the second condition of Mosco we getu ∈ W 1,2−ε
0 (Ω2). It follows that∫

|u|2−εdx = lim
pn−→2

∫
|upn|2−εdx ≤ lim

pn−→2
|Ωpn|

1− 2−ε
pn

(∫
|upn|pndx

) 2−ε
pn

= c
ε
2 .

Letting ε −→ 0, we obtain
∫
|u|2dx ≤ 1.

On the other hand, Lemma 4.2 of [14] implies that∫
|u|pndx ≥

∫
|upn|pndx+ pn

∫
|u|pn−2dxupn(u− upn).

The second integral on the right-hand side approaches0 as pn −→ 2. Thus we get∫
|u|2dx ≥ 1, and we conclude that

∫
|u|2dx = 1.

In [11, Theorem 2.1 p. 3350],λp
k is continuous inp for k = 1, 2, whereλp

k is the
k − th eigenvalue for thep-Laplacian operator.

We have

(5.1)
∫
|∇upn|pn−2∇upn∇φdx =

∫
λpn

1 |upn|pn−2upnφdx, for all φ ∈ D(Ω2).

Lettingpn go to2, pn > 2 in (5.1), and noting thatupn converges uniformly tou on the
support ofφ, we obtain∫

∇u∇φdx =

∫
λ2

1uφdx, for all φ ∈ D(Ω2),

whence we have {
−∆u = λ2

1u in D′(Ω2)
u = 0 on ∂Ω2.

We conclude that whenp −→ 2 andp > 2 the free parts of the boundary ofΩp cannot
be pieces of circle.

• For p ≤ 2, we consider the sequence(Ωpn) ⊆ C and assume thatΩpn converges in
Hausdorff complementary topology toΩ2, whenpn goes to 2 andpn ≤ 2. Then by
Theorem 3.1, we getΩ2 ⊆ C andΩpn γ2−ε-converges toΩ2.

In [16], the sequence(upn) is bounded inW 1,2−ε(D), 0 < ε < 1 that is∇upn con-
verges weakly inL2−ε(D) to ∇u andupn converges strongly inL2−ε(D) to u. In [16],
we get also

∫
|∇u|2dx ≤ β and

∫
|u|2dx <∞.

By Lemma 4.2 of [14], we have∫
|u|pndx ≥

∫
|upn|pndx+ pn

∫
|u|pn−2dxupn(u− upn).
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The second integral on the right-hand side approaches0 as pn −→ 2. Thus we get∫
|u|2dx ≥ 1. This implies that

lim
pn−→2

∫
|upn|2−εdx =

∫
|u|2−εdx = 1.

Letting ε −→ 0, we obtain
∫
|u|2dx = 1.

The γ2−ε-convergence implies thatupn converges strongly inW 1,2−ε
0 (Ω2) tou. Ac-

cording to P. Lindqvist see [16], we haveu ∈ H1(D), and we can deduce thatu ∈
H1

0 (Ω2). As the first eigenvalue for thep-Laplacian operator is continuous inp cf [11],
we have

(5.2)
∫
|∇upn|pn−2∇upn∇φdx =

∫
λpn

1 |upn|pn−2upnφdx, for all φ ∈ D(Ω2).

Lettingpn go to2, pn ≤ 2 in (5.2), and noting thatupn converges uniformly tou on the
support ofφ, we obtain∫

∇u∇φdx =

∫
λ2

1uφdx, for all φ ∈ D(Ω2),

whence we have {
−∆u = λ2

1u in D′(Ω2)
u = 0 on ∂Ω2.

We conclude that whenp −→ 2 andp ≤ 2 the free parts of the boundary ofΩp cannot
be pieces of circle.
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