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Abstract

The author aims at finding certain conditions on a, b and c such that the normal-
ized Gaussian hypergeometric function zF (a, b; c; z) given by

F (a, b; c; z) =
∞∑

n=0

(a, n)(b, n)
(c, n)(1, n)

zn, |z| < 1,

is in certain subclasses of analytic functions. A particular operator acting on
F (a, b; c; z) is also discussed.
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1. Introduction
As usual, letA denote the class of functions of the form

(1.1) f(z) = z +
∞∑

k=2

akz
k,

analytic in the open unit disk∆ = {z : |z| < 1}, andS denote the subclass of
A that are univalent in∆. We begin with the following.

Definition 1.1 ([2]). Let f ∈ A, 0 ≤ k < ∞, and 0 ≤ α < 1. Thenf ∈
k − UCV (α) if and only if

(1.2) Re

{
1 +

zf ′′(z)

f ′(z)

}
≥ k

∣∣∣∣zf ′′(z)

f ′(z)

∣∣∣∣+ α.

This class generalizes various other classes which are worthy of mention.
The classk − UCV (0), called thek-Uniformly convex is due to [11], and has
its geometric characterization given in the following way: Let0 ≤ k < ∞. The
functionf ∈ A is said to bek-uniformly convex in∆, f is convex in∆, and
the image of every circular arcγ contained in∆, with centerζ, where|ζ| ≤ k,
is convex.

The class0−UCV (α) = K(α) is the well-known class of convex functions
of orderα that satisfy the analytic conditions

Re

{
1 +

zf ′′(z)

f ′(z)

}
> α.
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In particular, forα = 0, f maps the unit disk onto the convex domain (for
details, see [8]).

The class1 − UCV (0) = UCV [9] describes geometrically the domain of
values of the expression

p(z) = 1 +
zf ′′(z)

f ′(z)
, z ∈ ∆,

asf ∈ UCV if and only if p is in the conic region

Ω = {ω ∈ C : (Im ω)2 < 2 Reω − 1}.

The classesUCV andSp are unified and studied using certain fractional cal-
culus operator methods found in [18]. We refer to [10, 11, 12] and references
therein for basic results related to this paper.

The Gaussian hypergeometric functionf(z) = zF (a, b; c; z), z ∈ ∆, given
by the series

F (a, b; c; z) =
∞∑

n=0

(a, n)(b, n)

(c, n)(1, n)
zn

is the solution of the homogenous hypergeometric differential equation

z(1− z)w′′(z) + [c− (a + b + 1)z]w′(z)− abw(z) = 0

and has rich applications in various fields such as conformal mappings, quasi-
conformal theory, continued fractions and so on.

Herea, b, c are complex numbers such thatc 6= 0,−1,−2,−3, . . ., (a, 0) = 1
for a 6= 0, and for each positive integern, (a, n) := a(a+1)(a+2) · · · (a+n−1)
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is the Pochhammer symbol. In the case ofc = −k, k = 0, 1, 2, . . . , F (a, b; c; z)
is defined ifa = −j or b = −j wherej ≤ k. In this situation,F (a, b; c; z)
becomes a polynomial of degreej in z. Results regardingF (a, b; c; z) when
Re(c − a − b) is positive, zero or negative are abundant in the literature. In
particular whenRe(c−a−b) > 0, the functionF (a, b; c; z) is bounded. This and
the zero balanced caseRe(c−a−b) = 0 are discussed in detail by many authors
(for example, see [19, 25, 1]). For interesting results regardingRe(c−a−b) < 0,
see [26] and references therein.

The hypergeometric functionF (a, b; c; z) has been studied extensively by
various authors and play an important role in Geometric Function Theory. It is
useful in unifying various functions by giving appropriate values to the param-
etersa, b, andc. We refer to [3, 17, 29, 27, 20, 21, 25] and references therein
for some important results. In particular, the close-to-convexity (in turn the uni-
valency), convexity, starlikeness, (for details on these technical terms we refer
to [8, 5]) and various other properties of these hypergeometric functions were
examined based on the conditions ona, b, andc in [21].

The observation that1 + z = F (−1,−1; 1; z) is convex in∆ and its nor-
malized formz(1 + z) = zF (−1,−1; 1; z) is not even univalent in∆ clearly
exhibits that the normalized functions need not inherit the properties that non-
normalized functions have. Even though, the starlikeness and close-to-convexity
of the normalized hypergeometric functionszF (a, b; c; z) are discussed in detail
by many authors (see [21, 25, 16]), many results on the convexity ofzF (a, b; c; z)
do not seem to be available in the literature except the non-convexity condition
discussed in [25], the convexity condition fora = 1 solved completely in [24],
and a weaker condition for convexity given by [32]. There is also a sufficient
condition forF (a, b; c; z) to be ink − UCV (0) given in [12], which gives the
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convexity condition whenk = 0.

Theorem 1.1 ([12]). Let c ∈ R, anda, b ∈ C. Leta, b andc satisfy the condi-
tionsc > |a|+ |b|+ 2 and

(1.3)
|ab|Γ(c)Γ(c− |a| − |b| − 2)

Γ(c− |a|)Γ(c− |b|)
(|ab| − |a| − |b|+ 2c− 3) ≤ 1

2
.

ThenzF (a, b; c; z) is convex in∆.

Remark 1. We note that for the casea = 1, the convexity condition forzF (1, b; c; z)
obtained in [24] does not require (1.3) and hence is stronger than Theorem1.1.

Also, for τ ∈ C\{0} we introduce the classP τ
γ (β), with 0 ≤ γ < 1 and

β < 1 as

P τ
γ (β) :=

{
f ∈ A :

∣∣∣∣∣ (1− γ)f(z)
z

+ γf ′(z)− 1

2τ(1− β) + (1− γ)f(z)
z

+ γf ′(z)− 1

∣∣∣∣∣ < 1, z ∈ ∆

}
.

We list a few particular cases of this class discussed in the literature.

1. The classP τ
1 (β) is given in [4] and discussed for the operatorIa,b;c(f)(z) =

zF (a, b; c; z) ∗ f(z) in [7].

2. The classP τ
γ (β) for τ = eiη cos η whereπ/2 < η < π/2 is given in

[14] and discussed by many authors with reference to the Carlson–Schaffer
operatorGb,c(f)(z) = zF (1, b; c; z) ∗ f(z) using duality techniques for
various values ofγ (for example, see [1, 6, 14, 15, 19, 22]).
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To be more specific, the properties of certain integral transforms of the type

Vλ(f) =

∫ 1

0

λ(t)
f(tz)

t
dt, f ∈ P (eiη cos η)

γ (β)

with β < 1, γ < 1 and |η| < π/2, under suitable restrictions onλ(t) was
discussed by many authors [6, 14, 19, 22]. In particular, if

λ(t) =
Γ(c)

Γ(b)Γ(b− c)
tb−1(1− t)c−b−1,

thenVλ(f) is the well known Carlson–Schaffer operatorGb,c(f)(z).
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2. Main Results
If f ∈ A such thatf has the power series expansion

(2.1) f(z) = z −
∞∑

n=2

anz
n, an ≥ 0

thenf is one main subclass ofS and is denoted byT . This class is due to H.
Silverman [30] and has many interesting results (see [30] and [31]).

In the line ofk − UCV (α), the following class was defined in [2].

Definition 2.1 ([2]). Letk−UCT (α) be the class of functionsf(z) of the form
(2.1) that satisfy the condition (1.2).

Using the analytic condition (1.2) and a Alexander type theorem, the follow-
ing classes are defined in [2].

Definition 2.2 ([2]). Let0 ≤ k < ∞, and0 ≤ α < 1. Then

1. f ∈ k−Sp(α) if and only iff has the form (1.1) and satisfies the condition

(2.2) Re

{
zf ′(z)

f(z)

}
≥ k

∣∣∣∣zf ′(z)

f ′(z)
− 1

∣∣∣∣+ α.

2. f ∈ k − SpT (α) if and only if f has the form (2.1) and satisfies the in-
equality given by the expression (2.2).
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For k = 0, we obtain the well-known class of starlike functions of orderα,
which has the analytic characterizationRe zf ′(z)

f(z)
> α with z ∈ ∆. In particular,

for α = 0, f maps the unit disk onto the starlike domain (for details, see [8]).
We further note that,1 − Sp(α) is the well-known class discussed in [28]. We
also need the following sufficient condition on the coefficients for the functions
in the classk − UCV (α).

Lemma 2.1 ([2]). A functionf(z) of the form (1.1) is in k − UCV (α) if it
satisfies the condition

(2.3)
∞∑

n=2

n [n(1 + k)− (k + α)] an ≤ 1− α.

It was also found that the condition (2.3) is necessary and sufficient forf to
be ink − UCT (α). Further that the condition

(2.4)
∞∑

n=2

[n(1 + k)− (k + α)] an ≤ 1− α

is sufficient forf to be ink − Sp(α) and it is both necessary and sufficient for
f to be ink − SpT (α).

Another sufficient condition is also given for the classk − UCV in [11]
which is given by the following

Lemma 2.2 ([11]). Let f ∈ S and be of the form (1.1). If for somek, 0 ≤ k <
∞, the inequality

(2.5)
∞∑

n=2

n(n− 1)|an| ≤
1

k + 2
,
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holds true, thenf ∈ k − UCV . The number1/(k + 2) cannot be increased.

It is interesting to observe that sufficient conditions forf ∈ k−Sp, analogous
to (2.5), cannot be obtained by replacingan byan/n as in many other situations.

Sufficiency conditions forzF (a, b; c; z) to be in the classk−UCV (α) using
the condition (2.1), and to be in the classk − Sp(α) using the condition (2.4)
were obtained in [33] (see also [13]). In [11], it is proved thatzF (a, b; c; z) is
in k − UCV by applying the condition (2.5).

Theorem 2.3.Letf(z) ∈ S and be of the form (1.1). If f is in P τ
γ (β), then

(2.6) |an| ≤
2|τ |(1− β)

1 + γ(n− 1)
.

The estimate is sharp.

It is easy to find the sufficient condition forf(z) to be inP τ
γ (β) under stan-

dard techniques. Hence we state the result without proof.

Theorem 2.4.Letf(z) be of the form (1.1). Then a sufficient condition forf(z)
to be inP τ

γ (β) is

(2.7)
∞∑

n=2

[1 + γ(n− 1)]|an| ≤ |τ |(1− β).

This condition is also necessary iff(z) is of the form (2.1) andτ = 1.

Theorem 2.5.Leta, b, c andγ satisfy any one of the following conditions such
thatTi(a, b, c, γ) ≤ |τ |(1− β) for i = 1, 2, 3.

http://jipam.vu.edu.au/
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(i) a, b > 0, c > a + b and

T1(a, b, c, γ) =

(
1 +

γab

c

)
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
.

(ii) −1 < a < 0, b > 0, c > 0 and

T2(a, b, c, γ) =
Γ(c− a− b)Γ(c)

Γ(c− a)Γ(c− b)

(
1 +

γ|ab|
(c− a− b)

)
+

γ|ab|
c

−γ(a, 2)(b, 2)

(c, 2)
.

(iii) a, b ∈ C\{0}, c > |a|+ |b| and

T3(a, b, c, γ) = γ +
Γ(c− |a| − |b| − 1)Γ(c)

Γ(c− |a|)Γ(c− |b|)
(c− |a| − |b| − 1 + γ|ab|) .

ThenzF (a, b; c; z) is in P τ
γ (β).

Sincea = b is useful in characterizing polynomials with positive coeffi-
cients whenb is some negative integer, we give the corresponding result inde-
pendently.

Corollary 2.6. Leta, b ∈ C\{0}, a = b, c > 2Reb andT4(a, b, c, γ) ≤ |τ |(1−
β) where

T4(a, b, c, γ) = γ +
Γ(c− 2Reb− 1)Γ(c)

Γ(c− b)Γ(c− b)

(
c− 2Reb− 1 + γ|b|2

)
.

ThenzF (b, b; c; z) is in P τ
γ (β).
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In the above theorem, if we takea = 1, we get the result for operator
Gb,c(f)(z) which we give independently as

Theorem 2.7.Let b > 0 and

(c + γb)(c− 1)

c(c− b− 1)
≤ |τ |(1− β).

Then the incomplete beta functionφ(b; c; z) := zF (1, b; c; z) is in P τ
γ (β).

Whenf(z) = − log(1− z), consider the operator of the form

(2.8) G(a, b; c; z) =

∫ z

0

F (a, b; c; t)dt.

The sufficient condition for the operatorG(a, b; c; z) to be inK(α) andS∗(α)
is given in [32] and extended to the classk − UCV (α) andk − Sp(α) in [33].

Theorem 2.8. Let 0 < a 6= 1, 0 < b 6= 1 and c > a + b + 1 such that
T (a, b, c, γ) ≤ 1 + |τ |(1− β) where

(2.9) T (a, b, c, γ)

=
Γ(c− a− b)Γ(c)

Γ(c− a)Γ(c− b)

(
γ +

(1− γ)(c− a− b)

(a− 1)(b− 1)

)
− (1− γ)(c− 1)

(a− 1)(b− 1)
.

ThenG(a, b; c; z) is in P τ
γ (β).

Corollary 2.9. Leta = b, 0 < b 6= 1, andc > 2Reb+1 such thatT (b, b, c, γ) ≤
1 + |τ |(1− β) where

T (b, b, c, γ) =
Γ(c− 2Reb)Γ(c)

Γ(c− b)Γ(c− b)

(
γ +

(1− γ)(c− 2Reb)

|b− 1|2

)
− (1− γ)(c− 1)

|b− 1|2
.
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ThenG(b, b; c; z) is in P τ
γ (β).

We note that an equivalent of Theorem2.8cannot be given for the Carlson–
Schaffer operatorGb,c(f)(z) = zF (1, b; c; z) ∗ f(z) [3].

We give here another sufficiency condition forG(a, b; c; z) to be in k −
UCV (0) using the sufficiency condition (2.5) of k − UCV (0) given in [11]. A
simple computation of applying (2.5) in the series representation ofG(a, b; c; z)
gives the following result immediately. We omit the proof.

Theorem 2.10. Let a > −1, b > −1 and c > a + b + 2 such that for all
0 ≤ k < ∞,

(2.10)
(a + 1)(b + 1)

(c + 1)
· Γ(c− a− b− 1)Γ(c + 1)

Γ(c− a)Γ(c− b)
≤ 1

k + 2
.

ThenzF (a, b; c; z) is in k − UCV (0) =: k − UCV .

The following results are immediate.

Corollary 2.11. Let b > −1, a = b andc > 2+Reb such that for all0 ≤ k <
∞,

|b + 1|2

(c + 1)
· Γ(c− Reb− 1)Γ(c + 1)

Γ(c− b)Γ(c− b)
≤ 1

k + 2
.

ThenzF (b, b; c; z) is in k − UCV (0) = k − UCV .

Corollary 2.12. Let b > −1 andc > b + 3 such that for all0 ≤ k < ∞,

2(b + 1)

(c + 1)
· c(c− 1)

(c− b− 1)(c− b− 2)
≤ 1

k + 2
.
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Then the incomplete functionφ(b; c; z) is in k − UCV (0) = k − UCV . In
particular, whenk = 0, φ(b; c; z) is convex in∆.
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3. Proofs of Theorems2.3, 2.5and 2.8
We need the following result and we state this as

Lemma 3.1. Leta, b ∈ C\{0}, c > 0. Then we have the following:
(i) For a, b > 0, c > a + b + 1,

(3.1)
∞∑

n=0

(n + 1)(a, n)(b, n)

(c, n)(1, n)
=

Γ(c− a− b)Γ(c)

Γ(c− a)Γ(c− b)

[
ab

c− 1− a− b
+ 1

]
.

(ii) For a 6= 1, b 6= 1 andc 6= 1 with c > max{0, a + b− 1},

(3.2)
∞∑

n=0

(a, n)(b, n)

(c, n)(1, n + 1)

=
1

(a− 1)(b− 1)

[
Γ(c + 1− a− b)Γ(c)

Γ(c− a)Γ(c− b)
− (c− 1)

]
.

(iii) For a 6= 1 andc 6= 1 with c > max{0, 2 Re a− 1},

(3.3)
∞∑

n=0

|(a, n)|2

(c, n)(1, n + 1)
=

1

|a− 1|2

[
Γ(c + 1− 2 Re a)Γ(c)

Γ(c− a)Γ(c− a)
− (c− 1)

]
.

The results in this lemma are part of Lemma 3.1 given in [23] and we omit
details.

Proof of Theorem2.3. Sincef ∈ P τ
γ (β), we have

1 +
1

τ

{
(1− γ)

f(z)

z
+ γf ′(z)− 1

}
=

1 + (1− 2β)w(z)

1− w(z)
,
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wherew(z) is analytic in∆ and satisfies the conditionw(0) = 0, |w(z)| < 1
for z ∈ ∆. Hence we have

1

τ

(
(1− γ)

f(z)

z
+ γf ′(z)− 1

)
= w(z)

{
2(1− β) +

1

τ

(
(1− γ)

f(z)

z
+ γf ′(z)− 1

)}
.

Using (1.1) andw(z) =
∑∞

n=1 bnz
n we have[

2(1− β) +
1

τ

(
∞∑

n=2

[1 + γ(n− 1)]anz
n−1

)][
∞∑

n=1

bnz
n

]

=
1

τ

∞∑
n=2

[1 + γ(n− 1)]anz
n−1.

Equating the coefficients of the above expression, we observe that the co-
efficient an in the right hand side of the above expression depends only on
a2, . . . , an−1 and the left hand side of the above expression. This gives[

2(1− β) +
1

τ

(
k−1∑
n=2

[1 + γ(n− 1)]anz
n−1

)]
w(z)

=
1

τ

k∑
n=2

[1 + γ(n− 1)]anz
n−1 +

∞∑
n=k+1

dnz
n−1.

http://jipam.vu.edu.au/
mailto:swami@maths.iitkgp.ernet.in
http://jipam.vu.edu.au/


Certain Sufficiency Conditions
on Gaussian Hypergeometric

Functions

A. Swaminathan

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 17 of 25

J. Ineq. Pure and Appl. Math. 5(4) Art. 83, 2004

http://jipam.vu.edu.au

Using|w(z)| < 1, this reduces to the inequality∣∣∣∣∣2(1− β) +
1

τ

(
k−1∑
n=2

[1 + γ(n− 1)]anz
n−1

)∣∣∣∣∣
>

∣∣∣∣∣1τ
k∑

n=2

[1 + γ(n− 1)]anz
n−1 +

∞∑
n=k+1

dnz
n−1

∣∣∣∣∣ .
Squaring the above inequality and integrating around|z| = r, 0 < r < 1, and
letting r → 1 we obtain

4(1− β)2 ≥ 1

|τ |2
[1 + γ(n− 1)]2|an|2

which gives the desired result. Equality holds for the function

f(z) =
1

γz1− 1
γ

∫ z

0

w1− 1
γ

[
1 +

2(1− β)τwn−1

1− 2n−1

]
dw.

Proof of Theorem2.5. ClearlyzF (a, b; c; z) has the series representation of the
form (1.1) where

an =
(a, n− 1)(b, n− 1)

(c, n− 1)(1, n− 1)
.

Hence it suffices to prove that
∞∑

n=2

[1 + γ(n− 1)]|an| ≤ |τ |(1− β).
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It is easy to see that

S :=
∞∑

n=2

[1 + γ(n− 1)]an(3.4)

=
∞∑

n=1

(a, n)(b, n)

(c, n)(1, n)
+ γ

ab

c

∞∑
n=2

(a + 1, n− 2)(b + 1, n− 2)

(c + 1, n− 2)(1, n− 2)
.

Case 1 (i).Let a, b > 0 andc > a + b. An easy computation using hypothesis
(i) of the theorem and

F (a, b; c; 1) =
∞∑

n=0

(a, n)(b, n)

(c, n)(1, n)
=

Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
,

wherea, b > 0 andc > a + b, gives the required result.

Case 2 (ii). Let−1 < a < 0, b > 0 andc > 0. Then (3.4) gives

S =
|ab|
c

∞∑
n=0

(a + 1, n)(b + 1, n)

(c + 1, n)(1, n + 1)
+ γ

|ab|
c

∞∑
n=0

(a + 1, n)(b + 1, n)

(c + 1, n)(1, n)

=
|ab|
c

∞∑
n=0

(a + 1, n)(b + 1, n)

(c + 1, n)(1, n + 1)

+ γ
|ab|
c
· (a + 1)(b + 1)

c + 1

∞∑
n=1

(a + 2, n)(b + 2, n)

(c + 2, n)(1, n + 1)
.
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Using (3.2), we easily get that the above expression is equivalent to

|ab|
c

{
1

|ab|
· Γ(c− a− b)Γ(c + 1)

Γ(c− a)Γ(c− b)
− c

|ab|

}
+ γ

|ab|
c
· (a + 1)(b + 1)

(c + 1)

{
1

(a + 1)(b + 1)
· Γ(c− a− b− 1)Γ(c + 2)

Γ(c− a)Γ(c− b)

− (c + 1)

(a + 1)(b + 1)
− 1

}
which by hypothesis (ii) of the theorem gives the result.

Case 3 (iii). Leta, b ∈ C\{0}, c > |a| + |b|. Since|(a, n)| ≤ (|a|, n), we have
from (3.4),

S :=
∞∑

n=2

[1 + γ(n− 1)]|an|

=
∞∑

n=0

[1 + γ(n + 1)]|an+2|

≤ |ab|
c

∞∑
n=0

(|a|+ 1, n)(|b|+ 1, n)

(c + 1, n)(1, n + 1)

+ γ
∞∑

n=0

(n + 1)
(|a|, n + 1)(|b|, n + 1)

(c, n + 1)(1, n + 1)
.
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The right hand side of the above expression can be written as

(3.5)
|ab|
c

∞∑
n=0

(|a|+ 1, n)(|b|+ 1, n)

(c + 1, n)(1, n + 1)

+ γ
∞∑

n=1

(n + 1)
(|a|, n)(|b|, n)

(c, n)(1, n)
− γ

∞∑
n=1

(a, n)(b, n)

(c, n)(1, n)
.

Now using (3.2) we get the first part of the expression (3.5) as

|ab|
c

∞∑
n=0

(|a|+ 1, n)(|b|+ 1, n)

(c + 1, n)(1, n + 1)
=

Γ(c− |a| − |b|)Γ(c)

Γ(c− |a|)
Γ(c− |b|)− 1.

Similarly using (3.1) we get the second part of the expression (3.5) as

γ
∞∑

n=1

(n + 1)
(|a|, n)(|b|, n)

(c, n)(1, n)

= γ
Γ(c− |a| − |b|)Γ(c)

Γ(c− |a|)Γ(c− |b|)

(
|ab|

c− 1− |a| − |b|
+ 1

)
.

Since the third part of the expression (3.5) is zF (a, b; c; 1)− 1, combining these
three parts and using hypothesis (iii) of the theorem we obtain the required
result.
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Proof of Theorem2.8. Clearly we have

G(a, b; c; z) = z +
∞∑

n=2

(a, n− 1)(b, n− 1)

(c, n− 1)(1, n)
zn =: z +

∞∑
n=2

Anz
n,

and it suffices to prove that

(3.6)
∞∑

n=2

[1 + γ(n− 1)]|An| ≤ 1 + |τ |(1− β).

The left hand side of the above inequality can be expressed as

(1− γ)
∞∑

n=1

(a, n)(b, n)

(c, n)(1, n + 1)
+ γ

∞∑
n=1

(a, n)(b, n)

(c, n)(1, n)

which by using (3.2) andF (a, b; c; 1) gives (2.9).
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[12] S. KANAS AND A. WIŚNIOWSKA, Conic regions andk-starlike func-
tions,Rev. Roumaine Math. Pures Appl.,45 (2000), 647–657.

[13] Y.C. KIM AND S. PONNUSAMY, Sufficiency of Gaussian hypergeomet-
ric functions to be uniformly convex,Internat. J. Math. Math. Sci.,22(4)
(1999), 765–773.

[14] Y.C. KIM AND F. RØNNING, Integral transforms of certain subclasses of
analytic functions,J. Math. Anal. Appl.,258(2001), 466–486.

[15] Y.C. KIM AND H.M. SRIVASTAVA, Fractional integral and other linear
operators associated with the Gaussian hypergeometric function,Complex
Variables Theory Appl.,34 (1997), 293–312.

[16] R. KÜSTNER, Mapping properties of hypergeometric functions and con-
volutions of starlike or convex functions of Orderα, Comput. Methods and
Funct. Theory,2(2) (2002), 597–610.

[17] E. MERKESAND B.T. SCOTT, Starlike hypergeometric functions,Proc.
Amer. Math. Soc.,12 (1961), 885–888.

http://jipam.vu.edu.au/
mailto:swami@maths.iitkgp.ernet.in
http://jipam.vu.edu.au/


Certain Sufficiency Conditions
on Gaussian Hypergeometric

Functions

A. Swaminathan

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 24 of 25

J. Ineq. Pure and Appl. Math. 5(4) Art. 83, 2004

http://jipam.vu.edu.au

[18] A.K. MISHRA AND H.M. SRIVASTAVA, Applications of fractional cal-
culus to parabolic starlike and uniformly convex functions,Comput. Math.
Appl.,39(3/4) (2000), 57–69.

[19] S. PONNUSAMY, Hypergeometric transforms of functions with deriva-
tive in a half plane,J. Comput. Appl. Math.,96 (1998), 35–49.

[20] S. PONNUSAMY, Starlikeness properties for convolutions involving hy-
pergeometric series,Ann. Univ. Mariae Curie–Sklodowska Sect. A,52
(1998), 1–16.

[21] S. PONNUSAMY, Close-to-convexity properties of Gaussian hypergeo-
metric functions,J. Comput. Appl. Math., 88 (1997) 327–337.

[22] S. PONNUSAMY AND F. RØNNING, Duality for Hadamard products
applied to certain integral transforms,Complex Variables Theory Appl.,
32 (1997), 263–287.

[23] S. PONNUSAMY AND F. RØNNING, Starlikeness properties for con-
volutions involving hypergeometric series,Ann. Univ. Mariae Curie-
Skłodowska,L.II.1 (16) (1998), 141–155.

[24] S. PONNUSAMY AND A. SWAMINATHAN, Convexity of the incom-
plete beta function, Preprint.

[25] S. PONNUSAMYAND M. VUORINEN, Univalence and convexity prop-
erties for Gaussian hypergeometric functions,Rocky Mountain J. Math.,
31 (2001), 327–353.

http://jipam.vu.edu.au/
mailto:swami@maths.iitkgp.ernet.in
http://jipam.vu.edu.au/


Certain Sufficiency Conditions
on Gaussian Hypergeometric

Functions

A. Swaminathan

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 25 of 25

J. Ineq. Pure and Appl. Math. 5(4) Art. 83, 2004

http://jipam.vu.edu.au

[26] S. PONNUSAMYAND M. VUORINEN, Asymptotic expansions and in-
equalities for hypergeometric functions,Mathematika,44 (1997), 278–
301.

[27] S. OWA AND H.M. SRIVASTAVA (Editors), Current Topics in Analytic
Function Theory, World Scientific Publishing Company, Singapore, New
Jersey, London, and Hongkong, 1992.

[28] F. RØNNING, Uniformly convex functions and a corresponding class of
starlike functions,Proc. Amer. Math. Soc.,18 (1993), 189–196.

[29] ST. RUSCHEWEYHAND V. SINGH, On the starlikeness of hypergeo-
metric functions,J. Math. Anal. Appl.,113(1986), 1–11.

[30] H. SILVERMAN, Univalent functions with negative coefficients,Proc.
Amer. Math. Soc.,51 (1975), 109–116.

[31] H. SILVERMAN, Convolutions of univalent functions with negative coef-
ficients,Ann. Univ. Mariae Curie-Skłodowska Sect. A,29(1975), 99–107.

[32] H. SILVERMAN, Starlike and convexity propeties for hypergeometric
functions,J. Math. Anal. Appl.,172(1993), 574–581.

[33] A. SWAMINATHAN, Hypergeometric functions in the parabolic domain,
Tamsui Oxford J. Math. Sci., 20(1) (2004), 1–16.

http://jipam.vu.edu.au/
mailto:swami@maths.iitkgp.ernet.in
http://jipam.vu.edu.au/

	Introduction
	Main Results
	Proofs of Theorems 2.3, 2.5 and 2.8

