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Abstract

The author aims at finding certain conditions on a, b and ¢ such that the normal-
ized Gaussian hypergeometric function zF(a, b; c; z) given by

F(u‘b.(.,,)—”Z()((""})(l‘,]>,; .2l < 1,

is in certain subclasses of analytic functions. A particular operator acting on
F(a,b;c;2) is also discussed.
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As usual, let4 denote the class of functions of the form

(1.1) f2) =2+ at,
k=2

analytic in the open unit disk = {z : |z|] < 1}, andS denote the subclass of
A that are univalent id\. We begin with the following.

Certain Sufficiency Conditions

Definition 1.1 ([7]). Letf € 4,0 < k < oo, and0 < o < 1. Thenf € on Gaussiy HypS geometric
k —UCV(«) if and only if _
A. Swaminathan
2f"(2) 2f"(2)
(1.2) Re {1 + 702) } >k 702 ‘ +a. Tide Page
This class generalizes various other classes which are worthy of mention. GOl
The classt — UCV(0), called thek-Uniformly convex is due to1], and has PP >
its geometric characterization given in the following way: Qef k£ < co. The
function f € A is said to bet-uniformly convex inA, f is convex inA, and . ;
the image of every circular arccontained inA, with center¢, where|(| < k, Go Back
IS convex. p—
The clas®) — UCV (a) = K(«) is the well-known class of convex functions
of ordera that satisfy the analytic conditions Quit
” Page 3 of 25
Re {1 + zf_(z)} > .
f/(z) J. Ineq. Pure and Appl. Math. 5(4) Art. 83, 2004
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In particular, forae = 0, f maps the unit disk onto the convex domain (for
details, seed)).
The classl — UCV(0) = UCV [9] describes geometrically the domain of
values of the expression
2f"(2)
2)=1+——= z€A,

asf € UCV ifand only if p is in the conic region

Certain Sufficiency Conditions

0= {w cC: (Imw)2 < 2 Rew — 1}. on Gaussi'alr&ri)t/i?;rsgeometric
The classed/CV and .S, are unified and studied using certain fractional cal- ARSI
culus operator methods found ing). We refer to [L0, 11, 17] and references
therein for basic results related to this paper. Title Page
The Gaussian hypergeometric functipx) = 2F(a,b;c; 2), z € A, given P
by the series
> b <« >
F(a7b; c; z) = szn
“— (c,n)(1,n) < >
is the solution of the homogenous hypergeometric differential equation Go Back
2(1—2)w"(z) + [c = (a+ b+ 1)z]w'(2) — abw(z) = 0 Close
and has rich applications in various fields such as conformal mappings, quasi- Qui
conformal theory, continued fractions and so on. Page 4 of 25
Herea, b, c are complex numbers suchthag 0, —1,—-2,-3,...,(a,0) =1
for a # 0, and for each positive integer (a,n) := a(a+1)(a+2) - - - (a+n—1) 3 Ineq. Pure and Appl. Math. 5(4) Art. 83, 2004
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is the Pochhammer symbol. Inthe case ef —k, k =0,1,2,..., F(a,b;c; z)
is defined ifa = —j orb = —j wherej < k. In this situation,F'(a, b; ¢; 2)
becomes a polynomial of degrgein ». Results regardind’(a, b; c; z) when
Re(c — a — b) is positive, zero or negative are abundant in the literature. In
particular wherRe(c—a—0b) > 0, the functionF'(a, b; ¢; z) is bounded. This and
the zero balanced caBe(c—a—b) = 0 are discussed in detail by many authors
(for example, se€l[), 25, 1]). For interesting results regardig:(c—a—b) < 0,
see P 6] and references therein.

The hypergeometric functioﬁ(a, b; c; Z) has been studied extensively by Certain Sufficiency Conditions
various authors and play an important role in Geometric Function Theory. Itis °" Gauss‘izri{{;‘ﬁ{ge°met”°
useful in unifying various functions by giving appropriate values to the param-

etersa, b, andc. We refer to B, 17, 29, , 21, 25] and references therein A Swaminathan
for some important results. In partlcular the close-to-convexity (in turn the uni-
valency), convexity, starlikeness, (for details on these technical terms we refer Title Page

to [3, 5]) and various other properties of these hypergeometric functions were

. .\ . Contents
examined based on the conditionsaih, andc in [21].

The observation that + z = F(—1,—1;1; 2) is convex inA and its nor- < 44
malized formz(1 + z) = zF(—1,—1;1; 2) is not even univalent in\ clearly < >
exhibits that the normalized functions need not inherit the properties that non-
normalized functions have. Even though, the starlikeness and close-to-convexity Go Back
of the normalized hypergeometric functions(a, b; c; z) are discussed in detail Close
by many authors (seé [, 25, 16]), many results on the convexity of'(a, b; ¢; z) Quit
do not seem to be available in the literature except the non-convexity condition
discussed in{5], the convexity condition forn = 1 solved completely in{4], Page 5 of 25
and a weaker condition for convexity given by]. There is also a sufficient
condition for F'(a, b; c; z) to be ink — UCV(0) given in [LZ], which gives the 3. Ineq, Pure and Appl. Math. 5(4) Art. 83, 2004
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convexity condition wherk = 0.

Theorem 1.1 ([L7]). Letc € R, anda,b € C. Leta, b andc satisfy the condi-

tionsc > |a| + |b| + 2 and

|ab|T(c)L'(c — |a| — [b] — 2)
I(c — )T (c — [b])

N | —

(1.3) (|ab] — |a| — [b] + 2¢ —3) <

ThenzF(a,b; c; z) is convex inA.

Remark 1. We note that for the cage= 1, the convexity condition forF'(1, b; ¢; 2)
obtained in P4] does not require 1.3) and hence is stronger than Theorém.

Also, for 7 € C\{0} we introduce the clasg’(3), with 0 < v < 1 and

8 <1as
<1, zEA}.

We list a few particular cases of this class discussed in the literature.

(1= 4 yf(z) -1
2r(1= )+ (1= +91(z) -1

P;(ﬁ)::{fEA:

1. The class’] () is given in [/] and discussed for the operatir,..(f)(z) =
2F(a,b;c;2) % f(z)in[7].

2. The classP](B) for 7 = e cosn wherer/2 < n < /2 is given in

[14] and discussed by many authors with reference to the Carlson—Schaffer

operatorG, .(f)(z) = zF(1,b;¢; z) = f(z) using duality techniques for
various values ofy (for example, see€l| 6, 14, 15, 19, 27]).
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To be more specific, the properties of certain integral transforms of the type

i = [ aoH P a e peren)

with 8 < 1, v < 1 and|n| < 7/2, under suitable restrictions ox(t) was
discussed by many author§ [L4, 19, 27]. In particular, if

()

MO = Fore =0

thenV, ) is the well known Carlson—Schaffer operafey.(f)(z).
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If f € A such thatf has the power series expansion

(2.1) f(z)=2z— ianz”, a, >0
n=2

then f is one main subclass & and is denoted by". This class is due to H.
Silverman 0] and has many interesting results (sé€] fand [31]).
In the line ofk — UC'V («), the following class was defined ii][

Definition 2.1 ([?]). Letk — UCT(«) be the class of functiong z) of the form
(2.1) that satisfy the conditionl(2).

Using the analytic conditioril(2) and a Alexander type theorem, the follow-
ing classes are defined ||

Definition 2.2 ([7]). Let0 < k < oo, and0 < a < 1. Then
1. f € k—S,(a)ifand only if f has the form1.1) and satisfies the condition
Zf’(Z)} ‘Zf’(Z)
Re >k
{ f(2) f'(2)

2. f € k-8, («) if and only if f has the form Z.1) and satisfies the in-
equality given by the expressioh ).

(2.2) — 1' + a.
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For k = 0, we obtain the well-known class of starlike functions of order
which has the analytic characterizatign 2GS g with z € A. In particular,
for « = 0, f maps the unit disk onto the starllke domain (for details, s¢e [
We further note thatl — S,(«) is the well-known class discussed in]. We

also need the following sufficient condition on the coefficients for the functions

in the class: — UCV («).

Lemma 2.1 ([]). A function f(z) of the form (.1) isin k — UCV («a) if it
satisfies the condition
> nn(l+k) -
n=2

It was also found that the conditioB.Q) is necessary and sufficient f@grto
be ink — UCT («). Further that the condition

(e e}

> 1+ k) -

n=2

(2.3) (k+a)a, <1—a.

(2.4) (k+a)]a, <1—a
is sufficient for f to be ink — S,(«) and it is both necessary and sufficient for
ftobeink —S,T(a).

Another sufficient condition is also given for the cldss- UCV in [11]
which is given by the following

Lemma 2.2 ([L1]). Let f € S and be of the form1(.1). If for somek, 0 < k <
oo, the inequality

. 1
2.5 n
(2.5) Zn Dlan| < =5
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holds true, therf € k — UCV. The numbet /(k + 2) cannot be increased.

It is interesting to observe that sufficient conditions fof £—.5,, analogous
to (2.5), cannot be obtained by replacinagby a,,/n as in many other situations.
Sufficiency conditions fot F'(a, b; ¢; z) to be in the class — UC'V («) using
the condition 2.1), and to be in the class — S,(«) using the condition4.4)
were obtained in{3] (see also [J]). In [11], it is proved thatzF'(a, b; ¢; z) is

in k£ — UC'V by applying the condition4.5).

Theorem 2.3.Let f(z) € S and be of the form1(1). If fisin P7(3), then

la,| < M

(2.6) “14+~(n—1)

The estimate is sharp.

Itis easy to find the sufficient condition fgi(z) to be in 7 () under stan-
dard techniques. Hence we state the result without proof.

Theorem 2.4.Let f(z) be of the formZ.1). Then a sufficient condition fgf(z)
to beinP7(3)is

o0

> L= Dljag| < |7](1 - B).

n=2

2.7)

This condition is also necessaryfifz) is of the form 2.1) andr = 1.

Theorem 2.5. Leta, b, c and~y satisfy any one of the following conditions such
that7;(a, b, c,v) < |7|(1 — ) fori =1,2,3.
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@) a,b>0,c>a+band

7ab> I'(e)l'(c—a—Db)

Ti(a,be,7) = (1 + ¢ ) T(c—a)l'(c—b)

(i) -1<a<0,b>0,¢c>0and

(c—a—b)l(c) 7]abl vlab]  y(a,2)(b,2)
(e~ a)T(c — b) <”(c—a—b)>+ c 2)

TQ(aa b7 ¢, 7) =

Certain Sufficiency Conditions

on Gaussian Hypergeometric
Functions

(iii) a,b € C\{0}, ¢ > |a| + |b| and

P —la[ = [b] = D)I(e)
(e —la)I'(c —1[b])

A. Swaminathan

Ts(a,bc,y) =7+ (¢ = la] = 6] = 1+ ~[ab]).

Title Page
ThenZF(a,, b, C, Z) |S |n P;(/B) Contents
Sincea = b is useful in characterizing polynomials with positive coeffi- <44 44
cients wherb is some negative integer, we give the corresponding result inde- < >
pendently.
_ Go Back
Corollary 2.6. Leta,b € C\{0}, a = b, ¢ > 2RebandT}(a,b,c,vy) < |7|(1 —
) where Close
Quit

['(c — 2Reb — 1)I'(¢) 9
Ty(a,b,c,y) =~ + = c—2Reb — 1+ ~|b|*) .
i 7)) =7 Mo b D) ( 7181%) Page 11 of 25
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In the above theorem, if we take = 1, we get the result for operator

Gh.o(f)(2) which we give independently as
Theorem 2.7.Letb > 0 and

(c+7b)(c—1)
C(C—b—l) S’T‘(1_6>

Then the incomplete beta functig; c; z) := 2F(1,b; ¢; z) is in PJ(3).

Whenf(z) = —log(1 — z), consider the operator of the form

(2.8) G(a,b;c; 2) :/ F(a,b;c;t)dt.
0

The sufficient condition for the operat6i(a, b; ¢; z) to be in(a) andS*(«)
is given in [37] and extended to the clags—- UCV («) andk — S, () in [37].
Theorem 2.8.Let0 < a # 1,0 < b # 1 andc > a + b+ 1 such that
T(a,b,c,v) <1+|7|(1 — ) where
(2.9) T(a,b,c,7)

CTle—a-0() [ (1—7)c—a—b)
" T(e—al <c—b>( T am -1 )

ThenG(a, b; c; z) isin P7(f3).
Corollary 2.9. Leta = b,0 < b # 1, andc > 2Reb+1 such thatl'(b, b, ¢, v) <
1+ |7|(1 — 3) where
- I'(c — 2Reb)I"
R e
T(c—b)(c—b)

A =(e=1
(a—1)(b—1)

(1=(c—-1)
|b— 12

(I —=5)(c— 2Reb)) B
b—1J?
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ThenG(b, b; ¢; z) is in P7(f3).

We note that an equivalent of Theorén® cannot be given for the Carlson—
Schaffer operatof, .(f)(z) = zF(1,b; ¢; z) * f(2) [2].

We give here another sufficiency condition fG¥a,b;c; z) to be ink —
UCV(0) using the sufficiency conditior2(5) of k — UCV(0) given in [L1]. A
simple computation of applyin@(5) in the series representation@fa, b; c; z)
gives the following result immediately. We omit the proof.

Theorem 2.10.Leta > —1,b > —1 andc > a + b + 2 such that for all
0<k< oo,

(a+1)(b+1)
(2.10) eyt

ThenzF(a,b;c;z)isink —UCV(0) =k —UCYV.

I'lc—a—b—1I'(c+1) < 1
I'(c—a)l'(c—Db) T k+2

The following results are immediate.

Corollary 2.11. Letb > —1,a = b andc > 2+Reb such that for all0 < k <
00,

b+ 1> T(c—Reb—1I'(c+1) < 1
(c+1) T(c—b(c—b) ~ k+2
ThenzF (b, b;c; z)isink — UCV(0) = k — UCV.

Corollary 2.12. Letb > —1 andc > b + 3 such that for all0 < k& < oo,
2(b+1)

(c+1)

cle—1) < 1
(c=b—1)(c=b—-2) ~ k+2
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Then the incomplete functiop(b; ¢; z) isink — UCV(0) = k — UCV. In

particular, whenk = 0, ¢(b; c; z) is convex inA.
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2.3 2.5 2.8

We need the following result and we state this as

Lemma 3.1. Leta, b € C\{0}, ¢ > 0. Then we have the following:
(i) Fora,b>0,¢>a+b+1,

(3.1) Z (n+1)(a,n)(b,n) _

— (e,n)(1,n)

(17) Fora # 1, b # 1 andc # 1 with ¢ > max{0,a + b — 1},

(32) Z

['(c—a—b)(c) ab
I'(c—a)l'(c—Db) L—l—a—b+1]'

1n+1)
B 1 Ilc+1l—a—-bl(c) .
_(a—l)(b—l){ Mo a5 1)}‘
(1i1) Fora # 1 andc # 1 with ¢ > max{0,2Rea — 1},
1 I'(c+1—-2Rea)l'(c) .
(3.3) Z 1n+1) ]a—lP[ Te—alc—a | 1)}'

The results in this lemma are part of Lemma 3.1 givervii] pnd we omit
details.

Proof of Theoren?2.3. Sincef € P7(3), we have

e R
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wherew(z) is analytic inA and satisfies the condition(0) = 0, |w(z)| < 1
for = € A. Hence we have

a2 are-1)
—u) {200+ 1 (-2 vare-1) |

H oo
USIﬂg (1-1) andw('z) = anl bnzn we have Certain Sufficiency Conditions
on Gaussian Hypergeometric
Functions

[2(1 - ,6) + % <§:[1 + ’y(n - 1 an >] [Zb z ] A. Swaminathan

n=2
_ = Z[l + 7(n . 1)]anz”_1. Title Page
= Contents
Equating the coefficients of the above expression, we observe that the co- <4« 44
efficient a,, in the right hand side of the above expression depends only on
) : o < >
as, . ..,a,_1 and the left hand side of the above expression. This gives
Go Back
1 k—1 cl
[2(1 —B8)+-= (Zu +y(n— 1)]anz”_1>] w(z) 0s¢
T \i= Quit
k 00
1 Page 16 of 25
— _ 1 -1 n n—1 dn nfl'
T;[ +v(n — Dlayz —i-n;rl 2
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Using|w(z)| < 1, this reduces to the inequality

k—1

2(1 - 6) + % (Zu +y(n — 1)]anz”1> ‘

n=2

k
1 n—1 —1
;Z +y(n —1)]a,z —|—Zdz .
n= n=k+1
Squaring the above inequality and integrating around= r, 0 < r < 1, and Certain Sufficiency Conditions
Ietting r — 1 we obtain on Gaussian Hypergeometric
Functions
o 2 1 . 2 2 )
4(1 ﬁ) 2 W[l + 7(” 1)] |an| A. Swaminathan
which gives the desired result. Equality holds for the function .
Title Page
z _ n—1
f(z) = ! i / w [1 + 201 = B)rw dw. Contents
11 1 —2n-1
e «“« S
O
< >
Proof of Theoren2.5. Clearly zF'(a, b; ¢; z) has the series representation of the
form (1.1) where Cofac
a — (a,n —1)(b,n —1) Close
(Cvn_ 1)(1,71- 1) Quit

Hence it suffices to prove that
Page 17 of 25

o0

Y +y(n = Dllas| < |7](1 = 6).

n=2
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It is easy to see that

(3.4) S:=

Cem(ln) e & e+ Ln—2)(L,n—2)

(a,n)(b,n) abz(a+l,n—2)(b+1,n—2)

Case 1 (i).Leta,b > 0 andc > a + b. An easy computation using hypothesis

Certain Sufficiency Conditions

(I) of the theorem and on Gaussian Hypergeometric
Functions
- _ T()T(c—a—b) |
b 1 A. Swaminathan
Flabic ; Ln)  T(c—al(c_b)
wherea,b > 0 andc > a + b, gives the required result. Title Page
Case 2 (ii).Let—1 < a < 0,b > 0 andc > 0. Then 8.4) gives GOl
- <4< >
S:|ab|z(a+1 ,n)(b+1, n) |ab|Z (a+1,n)(b+1,n) % N
c = (c+1n)(1n—|—1) (c+1,n)(1,n)
o Go Back
_ |abd] Z (a+1,n)(b+1,n)
o — (c+1,n)(1,n+1) Close
|ab| (a+1)(b+1) i (a+2,n)(b+2,n) Quit
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Using 3.2), we easily get that the above expression is equivalent to

|ab[{|;b| F(c—a—b)F(c—l—l) ¢ }

F(c—a c—0b) |ab\
|ab] (a+1)( T(e—a-b-1I(c+2)
c c+1 { b+1 I(c—a)l'(c—0)
 (e+1) _1}
(a+1)(b+1)

which by hypothesis (ii) of the theorem gives the result.

Case 3 (iii). Leta, b € C\{0}, ¢ > |a| + |b]. Since|(a,n)| < (|al,n), we have
from (3.4),

= 14+ ~v(n—1)]]a,|

- Zu 901+ Dl el

\a! n+1)(|b],n+ 1)
(e,n+1)(L,n+1)

+72
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The right hand side of the above expression can be written as

lab| <= (|a| + 1,7n)(|b] +1,n)
(3.5) Z (c+1,n)(1,n+1)

sl 55 )

(¢;n)(1,n) ~ (e;n)(1,n)

Now using 8.2) we get the first part of the expressidhg) as

lab| = (la| + 1,7n)(|b] 4+ 1,n) ~ TI'(c—la| = |b)T(c)
Z (c+Ln)(L,n+1)  T(c—lal) (e = o) =1

Similarly using 8.1) we get the second part of the expressidm)yas
S (laf, n)([b], n)
11— 7
72 DT

T(e— |a - BT ab
=T — Jal)T(c — b)) (c— T—Ja 5] 1) |

Since the third part of the expressidhf) is zF'(a, b; ¢; 1) — 1, combining these
three parts and using hypothesis (iii) of the theorem we obtain the required

result.
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Proof of Theoren2.8. Clearly we have

and it suffices to prove that

e}

(3.6) Y Ly = DA < 1+ 7](1 = §).

n=2
The left hand side of the above inequality can be expressed as

(e 9]

(1= Z 1n+1+7Z

n=1

which by using 8.2) and F'(a, b; c; 1) gives @.9).
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