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ABSTRACT. The author aims at finding certain conditionsagh andc such that the normalized
Gaussian hypergeometric functief’'(a, b; ¢; z) given by
= (a,n)(b,n)
Fla,bie;2) = ) —~—+
(0bici2) =2 @ m
is in certain subclasses of analytic functions. A particular operator actidf @rb; c; z) is also
discussed.

2"zl < 1,
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1. INTRODUCTION

As usual, let4 denote the class of functions of the form
(1.1) f2) =2+ at,
k=2
analytic in the open unit disk = {z : |z| < 1}, andS denote the subclass of that are

univalent inA. We begin with the following.

Definition 1.1 ([2]). Let f € A,0 < k < 0o, and0 < o < 1. Thenf € k — UCV(«) ifand
only if

(1.2) Re {1 n Zf((;))} > k

zf”(z)
f'(2)

+ «
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2 A. SWAMINATHAN

This class generalizes various other classes which are worthy of mention. The: elass
UCV(0), called thek-Uniformly convex is due to [11], and has its geometric characterization
given in the following way: Let) < k& < oo. The functionf € A is said to bek-uniformly
convex inj, f is convex inA, and the image of every circular aycontained inA, with center
¢, where|¢| < k, is convex.

The clas®) — UCV (a) = K(«) is the well-known class of convex functions of ordethat

satisfy the analytic conditions
Re{l—i— 2 <Z>} > Q.

f'(z)
In particular, forae = 0, f maps the unit disk onto the convex domain (for details, [see [8]).
The classl — UCV(0) = UCV [9] describes geometrically the domain of values of the
expression
zf”(z)

f1(z)
asf € UCV ifand only if p is in the conic region
Q={weC:(Imw)®<2Rew — 1}.

The classed/C'V and S, are unified and studied using certain fractional calculus operator
methods found in[18]. We refer to [10,11,/12] and references therein for basic results related
to this paper.

The Gaussian hypergeometric functipfx) = 2F'(a, b; ¢; 2), z € A, given by the series
= (a,n)(b,n)

F(a,b;c;2) = ;0 L) n)(l,n)z

is the solution of the homogenous hypergeometric differential equation
2(1—=2)w"(z) + [c— (a+ b+ 1)2Jw'(z) — abw(z) =0

and has rich applications in various fields such as conformal mappings, quasiconformal theory,
continued fractions and so on.

Herea, b, c are complex numbers such tha 0, -1, -2, -3,..., (a,0) = 1 for a # 0, and
for each positive integet, (a,n) := a(a+1)(a+2) - - - (a+n—1) is the Pochhammer symbol.

In the case o = —k, k = 0,1,2,..., F(a,b;c; 2) is defined ifa = —j orb = —j where

J < k. In this situation F'(a, b; c; z) becomes a polynomial of degrgén . Results regarding
F(a,b;c;z) whenRe(c — a — b) is positive, zero or negative are abundant in the literature. In
particular whenRe(c — a — b) > 0, the functionF(a, b; c; z) is bounded. This and the zero
balanced cas&e(c — a — b) = 0 are discussed in detail by many authors (for example, see
[19,125/1]). For interesting results regardiRg(c —a — b) < 0, seel[26] and references therein.

The hypergeometric functiof(a, b; ¢; z) has been studied extensively by various authors and
play an important role in Geometric Function Theory. It is useful in unifying various functions
by giving appropriate values to the parametery andc. We refer tol[3| 117, 29, 27, 20, 21,125]
and references therein for some important results. In particular, the close-to-convexity (in turn
the univalency), convexity, starlikeness, (for details on these technical terms we referito [8, 5])
and various other properties of these hypergeometric functions were examined based on the
conditions oru, b, andc in [21].

The observation that + = = F(—1,—1;1;2) is convex inA and its normalized form
2(1+ z) = zF(—1,—1;1; z) is not even univalent in\ clearly exhibits that the normalized
functions need not inherit the properties that non-normalized functions have. Even though, the
starlikeness and close-to-convexity of the normalized hypergeometric funetiofaso; c; =)
are discussed in detail by many authors (seél[211] 25, 16]), many results on the convexity of

p(z) =1+

z €A,

n
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zF(a,b; c; z) do not seem to be available in the literature except the non-convexity condition
discussed in[25], the convexity condition fer= 1 solved completely in'[24], and a weaker
condition for convexity given by [32]. There is also a sufficient conditionfo#, b; c; z) to be

in k — UCV(0) given in [12], which gives the convexity condition whén= 0.

Theorem 1.1([12]). Letc € R, anda, b € C. Leta, b andc satisfy the conditions > |a|+|b|+2
and

ab{T ()T (e — |a] — b — 2)
(1.3) F(c— Ja)T(c— o]

ThenzF(a, b; c; z) is convex inA.

(lab] = |a| = |b] +2¢ = 3) <

N | —

Remark 1.2. We note that for the case= 1, the convexity condition fot F'(1, b; c; z) obtained
in [24] does not requirg (1.3) and hence is stronger than Theorém 1.1.

Also, for7 € C\{0} we introduce the clasB’ (3), with 0 <~y < 1andj3 < 1as

11— 4 yp(2) -1
B {fEA: R f<z>( | ,
21(1=3) + (L =)= +7f'(z) - 1
We list a few particular cases of this class discussed in the literature.

(1) The class/ () is given in [4] and discussed for the operakos..(f)(z) = zF(a, b; ¢; z)*
f(z)in[1].

(2) The classP7(3) for 7 = e cosn wheren/2 < n < /2 is given in [14] and dis-
cussed by many authors with reference to the Carlson—Schaffer op&fatgh)(z) =
2F(1,b; ¢; 2) % f(z) using duality techniques for various values offor example, see
[1,16,[12 /15[ 19, 22]).

To be more specific, the properties of certain integral transforms of the type
! tz
i = [l

0

with 5 < 1,y < 1 and|n| < /2, under suitable restrictions ox(t) was discussed by many
authors|[6, 14, 19, 22]. In particular, if

I'(c)
INOINUEES!
thenV,y is the well known Carlson—Schaffer opera€ey.(f)(z).

<1, ZGA}.

dt, fe P (g)

At) = 1 =)t

2. MAIN RESULTS

If f e A such thatf has the power series expansion
(2.1) f(z)=2z— Zanz”, ap, >0
n=2

then f is one main subclass & and is denoted by. This class is due to H. Silverman |30]
and has many interesting results (see [30] and [31]).
In the line ofk — UC'V (), the following class was defined in [2].

Definition 2.1 ([2]). Letk—UCT («) be the class of functiong(z) of the form [2.1) that satisfy
the condition[(1.R).

Using the analytic conditiof (1.2) and a Alexander type theorem, the following classes are
defined in[[2].
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4 A. SWAMINATHAN

Definition 2.2 ([2]). Let0 < k < 0o, and0 < o < 1. Then
(1) f € k—S,() if and only if f has the form[(1]1) and satisfies the condition

2f'(2)

2f'(2) } ‘
2.2 Re >k -1+
@2 SERttve
(2) f € k—S,T(«)ifand only if f has the form[(2]1) and satisfies the inequality given by
the expressiorn (2.2).

For k = 0, we obtain the well-known class of starlike functions of ordemwhich has the
analytic characterizatioRe Z}C(S) > o with z € A. In particular, for« = 0, f maps the
unit disk onto the starlike domain (for details, seke [8]). We further note thatS,(«) is the
well-known class discussed in [28]. We also need the following sufficient condition on the
coefficients for the functions in the clags- UC'V («).

Lemma 2.1([2]). A functionf(z) of the form[(1.1) is itk — UC'V () if it satisfies the condition

(2.3) Zn (1+k) —(k+a)]a, <1-—a.

It was also found that the conditidn (2.3) is necessary and sufficieffitttobe ink—UCT («).
Further that the condition

[e.o]

(2.4) > 4k = (k+a)a, <1—a
n=2
is sufficient for f to be ink — S,(«) and it is both necessary and sufficient forto be in

k—S8,T(a).
Another sufficient condition is also given for the cldss- UC'V in [11] which is given by
the following

Lemma 2.2([11]). Let f € S and be of the fornj (1}1). If for sonke0 < k < oo, the inequality

[e.o]

(2.5) S o= Dlanl < .

n=2
holds true, thery € £k — UCV. The numbet /(k + 2) cannot be increased.
Itis interesting to observe that sufficient conditions foe k£ — S, analogous td (2}5), cannot
be obtained by replacing, by a,,/n as in many other situations.
Sufficiency conditions foe F'(a, b; ¢; z) to be in the clasg — UCV («) using the condition

(2.1), and to be in the clags— S, («) using the conditior (2]4) were obtained in[33] (see also
[13]). In [11], it is proved that F(a, b; ¢; z) is in k — UC'V by applying the conditior] (2|5).

Theorem 2.3. Let f(z) € S and be of the forn] (1}1). If is in P7(3), then

2|7|(1 = )

(2.6) |an| < T+rm=1)

The estimate is sharp.

It is easy to find the sufficient condition fgi(z) to be in P7(3) under standard techniques.
Hence we state the result without proof.
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Theorem 2.4.Let f(z) be of the forml). Then a sufficient condition for) to be in P (3)
is

(2.7) D L+ =D < |71 - 5).

n=2
This condition is also necessaryjifz) is of the form[(2.]1) and = 1.
Theorem 2.5.Leta, b, c and-y satisfy any one of the following conditions such that., b, ¢, y) <
|7|(1 — ) fori =1,2,3.
@ a,b >0,c>a+band

Tl(a7 b7 G, 7) - (1 +

(i) —1<a<0,b>0,¢c>0and

I'(c—a—=bI(c) 7|abl vlabl  v(a,2)(b,2)

T(c— a)T(c—b) (H (c—a—b)) L A S

(ii) b€ C\{0}, ¢ > |a| + |b| and

I'(c —la] = |b] = 1)I'(c)
I'(c — |a])I'(c — [0])

ThenzF(a,b;c; z) isin PJ ().

vab) I'(e)l(c—a—Db)
c ) T(c—a)l(c—b)

T2<a7 bv c, 7) =

Ts(a,b,c,y) = v+ (c—|a| —1b] = 1+ 7|ab|) .

Sincea = b is useful in characterizing polynomials with positive coefficients whiansome
negative integer, we give the corresponding result independently.

Corollary 2.6. Leta,b € C\{0}, a = b, ¢ > 2Reb andTy(a, b, c,v) < |7|(1 — 3) where
['(c — 2Reb — 1)I'(c)

Tu(a,b,c,y) =~ + _ — 2Reb — 1 +7|b?) .
i(a,b,e,y) =7 Mo re-1) (c—2Re 716l

ThenzF (b, b; ¢; z) is in P7(3).

In the above theorem, if we take= 1, we get the result for operat6#, .(f)(z) which we
give independently as

Theorem 2.7.Letb > 0 and
(c+b)(c—1)

< - 0).
-7 Sila-p)
Then the incomplete beta functig; c; 2) := 2F'(1,b;¢c; z) isin P7(5).
Whenf(z) = —log(1 — z), consider the operator of the form
(2.8) G(a,b;c; 2) :/ F(a,b;c;t)dt.
0

The sufficient condition for the operat6i(a, b; ¢; z) to be inK(«) andS*(«) is given in [32]
and extended to the clags- UCV («) andk — S,(«) in [33].

Theorem 2.8.Let0 < a # 1,0 < b # 1landc > a+b+1suchthatl'(a, b, c,v) < 1+|7|(1-0)
where

_Tle—a-d(Q) ( (1-m)c—a-b\ (-1
(2.9) T(a,b,c,v)—r(c_a) (e —b) <7+ (a—1)(b—1) )_(a—l)(b—l).

ThenG(a, b; c; z) is in P7(3).
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Corollary 2.9. Leta = b,0 < b # 1, andc > 2Reb + 1 such thatT'(b, b, c,v) < 1+ |7|(1 — )
where

- ~ T'(c—2Reb)I'(c) (1 —7)(c—2Reb)\ (1—79)(c—1)
T(b,b,C/Y)_ F(C-B)F(C—b) ( |b_1|2 ) |b_1|2

ThenG(b, b; ¢; z) is in P(f3).

We note that an equivalent of Theorgm|2.8 cannot be given for the Carlson—Schaffer operator
Gue(f)(2) = 2F(1,b;¢;2) * f(2) [B].

We give here another sufficiency condition 1Gfa, b; ¢; z) to be ink — UCV (0) using the
sufficiency condition[(2]5) of: — UCV(0) given in [11]. A simple computation of applying
(2.9) in the series representation(®fa, b; c; z) gives the following resultimmediately. We omit
the proof.

Theorem 2.10.Leta > —1,b > —1andc > a + b+ 2 such that for all0 < k < oo,
1 1) I'(c—a—-b—1)T 1 1
(2.10) (a+1)(b+1) I(c—a—-b—1I(c+ )S ‘
(c+1) I'(c—a)l'(c—1b) k+2
ThenzF(a,b;c;2)isink —UCV(0) = k—UCV.

The following results are immediate.

Corollary 2.11. Letb > —1, a = b andc > 24+Reb such that for allo < k < oo,
b+ 1> T(c—Reb—1)I'(c+1) o1
(c+1) I'(c—b)'(c—0) “ k42
ThenzF (b, b;c; z)isink — UCV(0) = k — UCV.
Corollary 2.12. Letb > —1 andc > b + 3 such that for all0 < k& < oo,
2(b+1) clc—1) < 1
(c+1) (c=b—1)(c—=b—2) " k+2

Then the incomplete functiaf(b; c; z) is in k — UCV(0) = k — UCYV. In particular, when
k=0, ¢(b; c; z) is convex inA.

3. PROOFS OF THEOREMS [2.3,[2.5AND 2.8

We need the following result and we state this as

Lemma 3.1. Leta, b € C\{0}, ¢ > 0. Then we have the following:
(1) Fora,b>0,¢>a+b+1,

[e.9]

(n+1)(a,n)(b,n) T'(c—a—0bI(c) ab
3.1) ; (c,n)(1,n)  T(c—a)l(c—Db) L—l—a—ble} '
(17) Fora # 1,b # 1 andc # 1 with ¢ > max{0,a + b — 1},
=~ (a,n)(b,n) 1 Ilc+1l—a—=0bI(c) .
(3.2 ; en)lntl)  (@-DH-1) [ Me—al(e—p 1)] ‘

(i73) For a # 1 andc # 1 with ¢ > max{0,2Rea — 1},

@ 1 [T(c+1-2Rea)l(c)
(3:3) nZ:o (e,n)(L,n+1)  |a—1]2 l ['(c—a)l'(c—7a) —(e— 1)} '

The results in this lemma are part of Lemma 3.1 givein in [23] and we omit details.
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Proof of Theorerfi 2|3Sincef € P7(53), we have

1+ % {(1 — v)@ +7f'(2) — 1} - (11—_15?2))1”(2)’

wherew(z) is analytic inA and satisfies the conditian(0) = 0, |w(z)| < 1 for z € A. Hence
we have

a2 war@-1) —u@ {2a-p+ 2 (-0 vare -1) |

T

Using (1.1) andu(z) = >"°, b,2" we have

[2(1 v) —i—% (Z[l—i—’y(n— D]a,z" )] [Zb z ] = ;Z[ +7(n —1)]a,z""*.

n=2 n=2

Equating the coefficients of the above expression, we observe that the coeffjciarthe
right hand side of the above expression depends onhson. , a,_; and the left hand side of
the above expression. This gives

[2(1 -B)+ % (i[l +y(n — 1)]anzn_1)

n=2
1 k o)
= — 1 — Dla, n—1 dn n—1
P2t Dje" 4 3 due

n=k+1

w(z)

Using|w(z)| < 1, this reduces to the inequality
1 k-1

- (Zl+7n—1 anZ 1)
T

k 00
1
- 1 -1 " n—1 dn n—1
S ERICIEY L ST

n=2 n=k+1

Squaring the above inequality and integrating aroume- r, 0 < r < 1, and lettingr — 1 we
obtain

4ﬂ—ﬁfzﬁ%ﬂ+%n—wﬂ%ﬁ

which gives the desired result. Equality holds for the function

1@ = —r [t e 2

O

Proof of Theorerp 2]5Clearly=zF(a, b; ¢; z) has the series representation of the fgrm|(1.1) where
w - (a,m—1)(by,n—1)
" (n—=1)(1,n—1)
Hence it suffices to prove that

o0

Y L4y —=Dllan| < |7](1 - 6).

n=2
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It is easy to see that

(3.4) i1+7n—1

i bn ab “(a+1,n—2)(b+1,n—2)

— cn:2 (c+1,n—2)(1,n—2)

Case 1(i). Leta,b > 0 andc > a-+b. An easy computation using hypothesis (i) of the theorem
and

o (an)(b,n)  T(e)T(c—a—1b)
F(a,b;c;1) = nz:% (&) (L) = T(c—al(c—b)

wherea, b > 0 andc > a + b, gives the required result.
Case 2(ji). Let—1 < a < 0,b > 0andc > 0. Then [3.4) gives

g |ab\z(a+1n(b+1n ]ab|z (a+1,n)(b+1,n)
“(c+1,n)(1,n+1) (c+1,n)(1,n)

|ab| (a+1,n)(b+1,n) |ab| (a+1)(b+1) (a+2,n)(b+2,n)
Z c+1,n)(1,n+1) T c+1 ;(c+2,n)(1,n+1)'

Using (3.2), we eaS|Iy get that the above expression is equivalent to

|ab] { I Tle—a-bl(c+1) ¢ }
lab|  T'(c—a)l'(c —b) |ab|

\ab\.(a—i-l)(b—i—l){ 1 Tle—a-b-1(c+2)
c (c+1) (a+1)(b+1) I'(c —a)'(c— D)
_&_1}
(a+1)(b+1)

which by hypothesis (ii) of the theorem gives the result.
Case 3(iii). Leta,b € C\{0}, ¢ > |a| + |b]. Since|(a,n)| < (|a|, n), we have from[(3]4),

[e.9]

Si= [1+v(n—1)]ay|

= Z [1+~y(n 4 1)]|anyo]

|ab| (la] +1,n) (|6l +1,7) (laf,n +1)(|bl,n + 1)
1) .
Z (c+1,n)(1,n+1) * Zn+ (e,n+1)(1,n+1)

The right hand S|de of the above expression can be written as

lab| <= (|a| + 1,n)(|b| + 1,n) (|al,n |b| -
1)~ A
(3-5) ; (c+1,n)(1,n+1) + Zn—i— (cn V; c,n)(l,n
Now using [(3.2) we get the first part of the express- (3.5) as
ab (la| +1,n)(|b| + 1,n)  T(c—|a| — [b])T(c)
| 'Z" )(bl+L.m) _ Tle—1a e )

(c+1,n)(l,n+1) ['(c— |al)
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Similarly using [(3.11) we get the second part of the expres§ion (3.5) as

= (lalm)(Pln) | T(e— la - BT )
72D~ e aTe—Th) (c— T 1) '

Since the third part of the expression (3.5}i8(a, b; ¢; 1) — 1, combining these three parts and
using hypothesis (iii) of the theorem we obtain the required result.

0
Proof of Theorerm 2]8Clearly we have
(a,n—1) b n-—]_ n
G(abcz—z—kz = 1) —z—i—ZAz
and it suffices to prove that
(3.6) Y [+ (= DA < 1+ ||(1 - B).
n=2
The left hand side of the above inequality can be expressed as
= (a,n)(b,n) = (a,n)(b,n)
(1-7) D D
; (c,n)(1,n+1) ; (¢,n)(1,n)
which by using[(3.R) and(a, b; ¢; 1) gives [2.9). 0O
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