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ABSTRACT. In this note we present a new concept of well-posedness for Optimization Prob-
lems with constraints described by parametric Variational Inequalities or parametric Minimum
Problems. We investigate some classes of operators and functions that ensure this type of well-
posedness.
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1. INTRODUCTION

Let £ be a reflexive Banach space with duzl, A be an operator front to £* and K C FE
be a nonempty, closed, convex set. The Variational Inequalify, defined by the paifA, K),
consists of finding a point, such that:

up € K and(Aug,ug —v) <0Vv € K.

This problem, introduced by G. Stampacchialin [22], has been recently investigated by many
authors including [2],[14],[18],[[9] and_[15].

If (X, 7)is atopological space, one can consider the parametric Variational Ineqiralityz),
defined by the paifA(x,-), H(z)), where, for allz € X, A(z,-) is an operator fronkE to E*
andH is a set-valued function fromX to £ with nonempty and convex values.
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2 IMMA DEL PRETE, M. BEATRICE LIGNOLA, AND JACQUELINE MORGAN

The interest in this study is twofold: one is to study the behavior of perturbatiofig Of
another is to consider the parametegis a decision variable in a multilevel optimization prob-
lem. More precisely, the solution set t&'/)(z) can be seen as the constraint 5ét) of the
following Optimization Problem with Variational Inequality Constraints:

(OPVIC) inf ueu%fm) f(z,u),
wheref : X x E — RU {+oco}.

The problemgOPVIQ (often termed Mathematical Programming with Equilibrium Con-
straintsMPEC) have been investigated by many authors (see for examgle [13], [14],[17], [19]
and [21]) since they describe many economic or engineering problems (see for example [18])
such as:

e The price setting problem

e Price setting of telecommunication networks
¢ Yield management in airline industry

¢ Traffic management through link tolls.

Assuming thatVI)(z) has a unique solution, a well-posedness conce@RVIG inspired
from numerical methods, has been considered in [13]. However, in many applications, the
problems(V I)(z) do not always have a unique solution.

So, in this paper, motivated from a numerical method for Variational Inequalities (M.
Fukushimal]¥]), we introduce and study, fer> 0, the concepts ofv—well-posedness and
a—well-posedness in the generalized sense for a family of Variational InequaMiBs =
{(VI)(z), x € X} and fofOPVIQ The particular case of variational inequalities arising from
minimum problems is also considered.

The paper is organized as follows. In Secfipn 2 we review some basic notions for variational
inequalities and present some new resultswerwell-posedness for unparametric variational
inequalities. Section|3 is devoted to introducing and investigating the conceptwell-
posedness for parametric variational inequalities and Selction 4 to parametric minimum prob-
lems. Finally, some new concepts of well-posednesfO¥1G is presented and investigated
in Sectiorb.

2. DEFINITIONS AND BACKGROUND

In this section, some notions wafell-posednes®r variational inequalitie$V' /) introduced
in [13] and in [15] and their connections with optimization problems are presented, together
with equivalent characterizations.

Let £ be a reflexive Banach space with dugl, o be a convergence oA, and K be a
nonempty, closed and convex subsetof

Definition 2.1. [5,[23]. Leth : K — R U {+o0} . The minimization problen{ (2] 1):
(2.1) min h(v)

veK

is Tikhonov well-posed (resp. well-posed in the generalized sense) with respedt ttoere
exists a unique solution, to (2.1) and every minimizing sequenee-converges ta, (resp. if
(2.7) has at least a solution and every minimizing sequence has a subsegueorwerging
to a minimum point).

For an operatord from E to E*, we consider the following Variational Inequality’I)
defined by the pair4, K):

find up € K such that Aug, ug —v) <0 Vv € K.
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WELL-POSEDNESS FOROPTIMIZATION PROBLEMS 3

Definition 2.2. [13,/15] Leta: > 0. A sequencéu,, ), is a—approximatingfor (V1) if:

) u, € K VneN;
ii) there exists a sequence,),., €, > 0, decreasing to 0 such that

(Aup, up, —v) — % |ty —v||* <&, Yo €K VYneN.

A variational inequality(V'I) is termeda—well-posedwith respect too, if it has a
unique solutiornu, and everya— approximating sequende.,),, c— converges tai,.
If o is the strong convergence(resp. the weak convergene§ on E, (V1) will be
termedstronglya—well-posedresp.weaklya—well-posed.

The above concept originated from the notion of Tikhonov well-posedness for the following
minimization problem[(2]2):

(2.2) min g, (1),

ueK

where
_ R e [FORP:
go() = sup ((Au,u = v) = 5 u—]*).
Indeed, the following result holds:

Proposition 2.1. Let« > 0. The variational inequality problemiVI) is a—well-posed if and
only if the minimization problenj (3.2) is Tikhonov well-posed.

Proof. If (V1) is a—well-posed there exists a unique solutignfor (VI), that is:

uy € K andgy(ug) = sup(Aug, ug —v) <0
veK

and, consequently,, (ug) < go(uo) < 0. Sinceg,(u) > 0 for everyu € K, g,(up) = 0 anduy
is a minimum point forg,. In order to prove thaf (2/2) has a unique solution, consitder K
such thatg, (v') = g.(up) = 0. For everyv € K consider the pointy = \u' + (1 — A)v,
A € [0, 1], which belongs ta¥. Sinceg, (u’') = 0 one has:

(%

(Ao —w) = ' = wl* = (1= N)(Au', o = v) = 5

(1= Al = v[* <0

which implies:

_ «
2

So, when\ converges to 1, one gets:

(Au' v —v) <0VwveK.

(Ad' 0/ —v) — =(1 = A) o/ = o|]> <OVA €0,1].

Then alsa/’ solves(V ) and it must coincide with.

As the family of minimizing sequences fgr (P.2) coincides with the family @f approxi-
mating sequence fdi/ ), the first part is proved.

Now, assume thaf (3.2) is well-posed angdis the unique solution fof (2.2), thatis, € K
andg, (uy) = 0.

With the same arguments used in the first part of this proof it can be proved tlsaives
also the variational inequalityy” I) (this has been already proved in [7] with other arguments).
In order to prove that,, is the unique solution tgV' I), letw’ be another solution tg/ 7). Since
ga(u') < go(u') = 0, the pointw’ should be a solution t¢ (3.2), thus it has to coincide with

Then the result follows as in the first part. OJ
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The gap functiory,, which provides an optimization problem formulation féf7), is, for
a = 0, the gap function introduced by Auslender iin [1], and, dor> 0, the merit function
introduced by Fukushima in][7] for numerical purposes.

As it is well known, when the sek’ is not bounded, the sé&t of the solutions tqV' 1) may
be empty, even in finite dimensional spaces. This does not happen when the opesaisfies
some of the following well known properties.

Definition 2.3. The operatoi is said to be:

e monotoneon K if (Au — Av,u — v) > 0 for everyu andv € K,

e pseudomonotonen K if for everyu andv € K (Au,u —v) < 0= (Av,u —v) <0;

e strongly monotonen K (with modulusg) if (Au — Av, u—v) > 3 |ju — v||* for every
vandv € K

e hemicontinuousn K if it is continuous from every segment &f to £* endowed with
the weak topology.

It is well known (see for examplé|[2]) that the variational inequality/) has a unique so-
lution if the operatorA is strongly monotone and hemicontinuous, while there exists at least a
solution for(V 1) if the operatorA is pseudomonotone and hemicontinuous and some coercive-
ness condition is satisfied (see for example [8]).

We recall some continuity properties for set-valued functions that will be used later on:

Definition 2.4. A set-valued functiorF’ from a topological spaceX, 7) to a convergence space
(Y, o) (seel11]) is:
e sequentially o—lower semicontinuousat x € X if, for every sequencgz,),
T—converging tar and everyy € F'(z), there exists a sequengg,),, o —converging to
y such thaty,, € F(z,) Vn € N;
e sequentiallyy—subcontinuousitz € X if, for every sequencér,,), T—converging to
x, every sequencey, )., v, € F(z,) Vn € N, has as—convergent subsequence;
e sequentiallyg—closedat z € X if for every sequencéxz, ), T—converging toz, for
every sequencey, ), c—converging toy, y, € F(z,) Vn € N, one hag € F(z).

We have chosen to deal with sequential continuity notions for set-valued functions since our
well-posedness concepts are defined in a sequential way. However, for brevity, from now on the
termsequentiallywill be omitted.

Lete > 0. The following approximate solutions set, introduced.in [15],

Toe = {ue K : (Au,u —v) §5—|—%||u—v||2 Vv € K} fore >0
can be used to provide a characterizatiomvefwell-posedness in line with [13, Prop. 2.3 bis]
and [5].

Proposition 2.2. Leta > 0 and assume that the operatdris hemicontinuous and monotone
on K and that(V 1) has a unigue solution. The variational inequality/) is stronglya—well-
posed if and only if

Toe #0 Ve>0 andlim diam(7,.) = 0.

e—0
Proof. Assume thatV’I) is stronglya—well-posed and
hH(l) diamT,(g) > 0.
Then there exists a positive numbersuch that, for every sequence, ), decreasing to O,
e, > 0, there exist two sequencés,),, and(v,,),, in K such that
Un € T,y Un € To., and |y, — v,|| > 3 for n sufficiently large.
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Since (V1) is strongly a—well-posed, the sequencég,),, and (v,), must converge to the
unique solution, so

lim ||y, — v,/ =0
which gives a contradiction.

Conversely, lety,), be ana—approximating sequence fo¥' /), that isy,, € 7., for a
sequencee,,),, €, > 0, decreasing to 0. Beinlgm diam 7, ., = 0, for every positive number

( there exists a positive integer such that|y,, — v,|| < 8 ¥n > m andp > m.
Therefore(y,,), is a Cauchy sequence and has to converge to a pgiat K. SinceA is
monotone one has:

(Av,ug — vy = lim(Av, y, — v)

(6] [0
<lim = |lyn — v||> = = |lup — v||* Vv € K.
n 2 2
Since A is monotone and hemicontinuous, the following equivalence holds:
o 2 «Q 2
(Av,ug —v) — 5 lug —v||” <0 Yo € K & (Aug, ug — v) — 5 lup —v]|” <0 Vv € K.

In fact, assume that
(Av, ug — v) —%HUO—UHQ <0 VveK.

If v is a point of K, for every numbet € [0, 1] the pointy;, = tv + (1 — t)u, belongs tok’, so:
(6 «
(Avg, ug — vg) — ) g — v || = t(Avy, ug — v) — t2§ g — v]|* < 0Vt € [0,1].

So one has:
lim ((Avt,uo —v) — %t g — 71“2) <0

t—0

and, in light of the hemicontinuity ofi:
(Aug, ug — v) — % lug — v* < (Aug,ug —v) <0 Yo € K.

The converse is an easy consequence of the monotoniciy of
Soga(up) = 0 and, arguing as in Propositipn 2.1, it can be proved thaincides with the
unique solution tgV 7). This completes the proof. O

3. PARAMETRICALLY a—WELL -POSED VARIATIONAL |INEQUALITIES

In what follows we shall consider a topological spdcé 7), a convergence on £ and,
for everyx € X, a parametric variational inequality ofi, (VI)(z), defined by the pair
(A(z,-), H(x)), whereA is an operator fronX x E to E* andH is a set-valued function from
X to E which is assumed to be nonempty, convex and closed-valued. In many situd{iohs
is described by a finite number of inequalitiés(z) = {u € £ : g;(x,u) <0, Vi=1,...,n},
whereg; is a real-valued function, far= 1, . . ., n, satisfying suitable assumptions.

Throughout this section we will consider the following family of variational inequalities:

(VI) ={(VI)(x), z € X}.
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Leta > 0 ande > 0. In the sequel, we shall denote @y (resp. 7, . ) the map which
associates to every € X the solution set (resp. the approximate solution set)tb)(x) :

T(x)={ue H(z): (Alz,u),u —v) <0Vve H(z)}
(resp.Toc(x) = {u € H(x) : (A(z,u),u —v) <e+ % lu— | Yo e H(x)})
Now, we introduce the notion of parametrie- well-posedness for the famiyvI).

Definition 3.1. Letx € X and(zx,),, be a sequence convergingioA sequencéu,,), is said
to bea—approximating foV' I)(x) (with respect tqz,,),,) if:

) u, € H(x,) Vn €N,

ii) there exists a sequence,),., €, > 0, decreasing to 0 such that

(A, up), up — v) — % tn —v||* < e, Vo€ H(z,) VneN.

Definition 3.2. The family of variational inequalitie§VI) is termedparametricallya—well-
posedwith respect ta if:
e foreveryz € X, (VI)(z) has a unigue solution,;
e for every sequencer,, ), converging tor, everya— approximating sequende,, ),, for
(VI)(x) (with respect tdz,,),) c—converges ta,.
If o is the strong convergence(resp. the weak convergened on £, (VI) will be termed
parametrically stronglyx—well-posedresp.parametrically weaklyyr—well-posed)

Observe that forv = 0 the above definition amounts to Definition 2.3(in/[13].

Definition 3.3. The family of variational inequalitie§V1) is termedparametricallya—well-

posed in thegeneralizedsense with respect to if, for everyz € X, (VI)(z) has at least
a solution and for every sequenge,), converging tox, every «—approximating sequence
(un)n for (VI)(z) (with respect to(z,,),) has a subsequenee-convergent to a solution to

(VI)(z).

For a parametric variational inequality it is natural to consider the following parametric gap
functiong,, (z, u):

«
go(x,u) = sup <<A(SE,U),U —v) — ) l|lu — U||2>
vEH (x)

and with the same arguments as in Proposjtion 2.1 one can prove the following two propositions:

Proposition 3.1. Leta > 0 andx € X. A pointu, solves the variational inequalityy”/)(x) if
and only if :

u, € H(x) andg,(z,u,) = 12% )ga(az,u) =0,
ucH(x

that is: N
(A(z,u),u —v) — ) lu—v|]* <0Vv e H(z).

Proposition 3.2. The family of variational inequality VI) is parametricallya—well-posed
(resp. parametricallyx—well-posed in the generalized sense) with respeet ifoand only if,
for everyz € X, the minimization problem

3.1 in go(r,
(3.1) ug}{lg&)g(m u)

is parametrically Tikhonov well-posed (resp. parametrically Tikhonov well-posed in the gener-
alized sense) with respect ¢ that is: g, is bounded from belowj (3.1) has a unique solution
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(resp. has at least a solutiom). and for every sequence,, ),, converging tar, every sequence
(u,), such that

inf go(x,u) > liminf g,(z,, u,)
u€H (z) n

og—converges (resp. has a subsequesie€onvergent) ta., (see Definitiof 2]3 iff13]).

The connection between paramettie well-posedness and the convergence to 0 of the di-
ameters off,, . () is given by the following result.

Proposition 3.3. Leta > 0. If the family of variational inequalitie§V/ I') is strongly paramet-
rically a«—well-posed, then, for every € X , every sequence:,, ), converging tor and every
sequenceéz,,),, of positive real numbers decreasing to O, one has:

Toe(x) #0 Ve >0 and limdiam(T,, (z,)) = 0.

Proof. In light of the assumption, the s&t, .(x) is nonempty sincgu,} = T'(x) C T, .(z).
Assume thatim diam(7, ., (z,) > 0. Then there exist) > 0 and two sequences.,),, and

(Yn)n such thatu,, € T, (xn), Yn € Tae,(x,) and||y, — u,|| > n, for n sufficiently large.
But, being(u,,), and(y,), sequencea— approximating forV'I)(z) (with respect tqx,,),),
they must converge to,, and this gives a contradiction. O

In order to achieve a similar result for generalized well-posedness, one can consider the
non compactness measurdantroduced by Kuratowski in [11]: ifS, d) is a metric space and
is a bounded subset 6f 1.( B) is defined as the infimum ef > 0 such thatB can be covered by
a finite number of open sets having diameter less thahe following proposition, whose proof
is in line with previous results concerning generalized well-posedness for minimum problems
(see[5]), gives the link between the noncompactness measuig. ofr) and the generalized
a—well-posedness, when the set-valued functibis constant:

Proposition 3.4. Leta > 0. Assume that for every € FE the operatorA(-, ) is continuous
from X to (E*,w) and the set-valued functioH is constant, that ig{(x) = K, where K
is a nonempty, closed convex subsettof If the family of variational inequalitie$VI) is
parametrically stronglyx—well-posed in the generalized sense, then, for eveey X, every
sequencéxz,,),, converging tar and every sequende,,),, of positive real numbers decreasing
to 0, one has:

Toe(x)#0 Ve >0 and liT{n W(Toe, (zn)) = 0.

Proof. Let (¢,,), be a sequence of positive real numberszlet X and(z,), be a sequence
converging tor.
We start by proving thatim h(T,., (z,), T(x)) = 0, whereh(T,., (x,), T(x)) = h, is the

Hausdorff distance [11] betwedén ., (z,,) and the set of solutions {0/ 7)(z), that is:
h, = max sup  d(u,T(z)), sup d(Tue,(zn),v) p .
u€Tw ep, (Tn) veT (x)

By the assumptions, evetyc T'(z) belongs tdl, ., (x,,), for n sufficiently large.
Indeedu € T'(z) ifand only if (A(z,u),u —v) < 0V v € K and, consequently:

(A(w,u),u — v) — % lu—v|> <0V e K.

(67

v #u, (A(z,u),u —v)

Ju—v|> <0 = li7£n5n
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and in light of continuity ofA(-, ) one gets
(A(p,u),u — v) — % lu—|? < &,

for n sufficiently large.
If v = u, the result is obvious since

(A(xp,u),u —v) — % |u—v|* =0 < e, for everyn € N.

So, iflimsup (T, e, (z,), T(x)) > ¢ > 0, there exists a sequenge, ), :

s€n

Up € Ty, (x,) andd( u,, T'(z)) > c for n sufficiently large.

Since(u,,), is a—approximating, there is a subsequeiteg, ), converging tou, € 7'(x) and
one gets:

0 = d(uy, T'(z)) > limsup d(u,,, T'(x)) > c,
k

which gives a contradiction.

In order to complete the proof, it takes only to observe that (x,) C B(T(x),h,) (the
ball of radiush,, aroundT'(z)) and(7'(z)) = 0, so the following inequality holds (see, for
example([5]):

(Toe, (2n)) < 20y + p(T(2)) = 20y
0

The next lemma is in the spirit of the Minty’'s Lemma and will be used to characterize
a—well-posedness for parametric variational inequalities. The proof is omitted since it is simi-
lar to the proof given in Propositign 2.2 for unparametric variational inequalities.

Lemma 3.5. Leta > 0. If, for everyz € X, the operatorA(z,-) is hemicontinuous and
monotone orf (z), then the following conditions are equivalent:

) up € H(z) and(A(z,ug),up — v) — § [Juo — v||> < 0 foreveryv € H(z),

i) up € H(x)and (A(x,v),uy —v) — 5 [|uo — v||> <0 foreveryv € H(z).

The next proposition proves that in finite dimensional spaces the parametnell-posedness
is equivalent to the uniqueness of solutionsWd ) (z), for everya > 0.

Proposition 3.6. Leta > 0 and £ = R*. If the following conditions hold:

I) the set-valued functioH is lower semicontinuous, closed and subcontinuous;
ii) foreveryxr € X, A(x,-) is monotone and hemicontinuous;
iii) for everyu € RF, A(-,u) is continuous onX;
iv) A is uniformly bounded onX x R, that is there existé > 0 such that for every
converging sequende,, u,), one has|A(x,, u,)|| < k for everyn € N;
then (VI) is parametricallya—well-posed if and only if, for every € X, (VI)(z) has a
unique solutiony,.

Proof. Forz € X, let(z,), be asequence convergingt@and(u,,), be ano— approximating
sequence (with respect to,,),,), that is:

Un € H(zy) and (A(zn, up), un — v) < en + % lun — v Yo € H(a),

where(e,,)n, €, > 0, is a sequence decreasing to 0.

SinceH is closed and subcontinuous there exists a subsequyence of (u,), converging
to a pointu, € H(x). Moreover, in light of the lower semicontinuity @f, for everyv € H(x)
there exists a sequence, ),, converging to such that,, € H(x,,) for everyn € N.
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The monotonicity ofA(z,, , -) implies:
<A(x”k7 U)v Uny, — U) < <A<xnk7 U’”k)’ Uny, — Unk> + <A('rnk7 unk)7 Uny — U)
«Q 2
< Enyg + 5 ”unk - vnkH + ||A(xnk7unk)|| ”Unk - UH

for everyk € N.
SinceA(-,v) is continuous at and A is uniformly bounded one has:

(Al,v), T = v) < 5 |l = v
and applying the previous lemma:
(Al @), Ty —v) < 5 [ — ol
But, from Propositiof 3]1, this inequality is equivalent to:
(A(z,Uy), 1, —v) <0Vv € H(x)

that isu, solves(VI)(x).
Since (VI)(x) has a unique solution, the poiat must coincide withu, and the whole
sequencéu,, ), has to converge to,. O

A similar result could be obtained in infinite dimensional spaces if one modifies the assump-
tions: iniii) A(-,«) should be continuous fromY to (E*, s), butin i) H should be assumed to
be s—lower semicontinuousy—closed and—subcontinuous, which unfortunately lead to the
strong compactness &f (z) for everyz € X.

Remark 3.7. If the set-valued functior{ is constant, that i$7(x) = K Vx € X, the same
result holds assuming that the gétis compact and convex(z, -) is monotone and hemicon-
tinuous onk for everyr € X, andA(-, u) is continuous orX for everyu € K. Indeed, arguing
as in Propositiofi 3]6, for everye K one has:

<A(:L‘nk’ U)’a - U> = <A(xNk’U)7a - unk> + <A<xnk7 U)’ Uny, — U>
< <A(xnk7 U>7ﬂ - unk> + <A('rnk7 u”k)’ Uny, — U>
I”

I

~ 0%
< <A(Ink7 U)?“ - unk> + Eny, + 5 “unk -V
and fork converging tot+oo the result follows.

Example 3.1.If F is an infinite dimensional space, the previous result may fail to be true when
K is only weakly compact, that is: there are variational inequalities with a unique solution
which are notv—well-posed. Indeed, the following example (already considered in [5]) holds:
let E' be a separable Hilbert space with an ortonormal basis,, B be the unitary closed ball

of E. Consider the operatoyh(u), whereh(u) = > <”n—§”> and the variational inequality
(V1) defined byw € B and(h(u),u —v) <0Vv € B.
It has as unique solution, = 0, but (e,),, is an approximating (and consequently- ap-

proximating for everyy > 0) sequence that does not strongly converge to

The next result and the following remark, concerningwell-posedness in the generalized
sense, can be easily proved with the same arguments as in Progosition 3.6 and[Regmark 3.7.

Proposition 3.8. Let E = R* anda > 0. If the assumptions of Propositi.6 hold, then the
family (VI) is parametricallyo—well-posed in the generalized sense.

Proof. Since under assumption i) the 9é{z) is compact, {'I)(x) has at least a solution for
everyz € X (see for example [10] of [2]), so the result can be easily proved as in Proposition
3.6. O
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The previous proposition says nothing else that, under conditions i) to iv), in finite dimen-
sional spaces, the parametrie-well-posedness in the generalized sense is equivalent to the
existence of solutions.

Remark 3.9. If the set-valued functioik’ is constant, that i¢/ (z) = K Vz € X, the same re-
sult holds assuming that the gétis compact and convex, for everyc X A(z, -) is monotone
and hemicontinuous oA, and, for every, € K A(-, ) is continuous orX.

The following propositions furnish classes of operators for which the corresponding vari-
ational inequalities are parametricalhy-well-posed or parametricallg—well-posed in the
generalized sense.

Proposition 3.10. Assume that the following conditions are satisfied:
i) the operatorA is strongly monotone o#' in the variableu, uniformly with respect to
x, that is:
33 >0 such that(A(z,u) — A(z,v),u —v) > Bllu—v|> Ve € X, Yu e E, Yv € E;

i) foreveryu € E, A(-,u) is continuous fromi X, 7) to (E*, s);

i) for everyx € X, A(x,-) is hemicontinuous o#/ (z);

iv) Ais uniformly bounded oX x F;

V) the set-valued functio® is w—closed,w—subcontinuous and—lower semicontinu-
ous.

Then(VI) is parametrically stronglyv—well-posed for every such that) < o < 2.

Proof. First of all, for everyr € X, the variational inequalityV'7)(z) has a unique solution,
(see, for examplel, [10] or [2]).

To prove that, fof < o < 23, everya—approximating sequence is strongly convergent, let
z € X, (z,), be a sequence convergingiand (u, ), be ana—approximating sequence for
(VI) with respect tqz,,) ..

Since H is w—closed andv—subcontinuous, the sequenge,),, has a subsequence, still
denoted by(u,,),, which weakly converges ta, € H(x). To prove thati, = u,, consider a
pointv € H(z) and a sequende,, ),, strongly converging te such that,, € H(x,,) for every
n € N (such sequence exists in virtue of the lower semicontinuity/f One has, for every
n € N:

(A(zn,v), Uy —v) < (AT, Uyp), Uy — V) — B ||ty — vl?
= <A(J7n7 Un), Up — Un) + <A(xn7un)>vn - ?)> - ﬁ ||un - 'U||2

S<ént % [t = vall* = B [[n = 0[I* + | A, wn) || [Jon = o] -
Sinces < 3, one gets:
(A@n, 0),un = 0) < &t B ([on = 0l* + 2 [lun = 0] lon = 0]l) + | A(@n, wn) | 00 = ]|
and in light of assumptions ii) and iv):
(A(z,v),u, —v) <0.

The last inequality, for the arbitrarity ef, implies, by Minty’s Lemma (see, for example| [2]),
thatw, solves(VI)(x), SO, = u,.
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To prove that the sequence, ), strongly converges ta,, let (w,),, be a sequence strongly
converging tou,, w, € H(z,) V n € N (such a sequence exists sindeas s—lower semicon-
tinuous). Observe that:

= <A(x7’b7 un)a Up — wn> + <A($na Un), Wy, — uac> - <A((L’n, U'a:)aun - ux>
[0
< ent 5 Ml — Wl * 4 A (@, wn) | s — ]

sincel|w, — un||* < (Jwy — ug| + ||Jun — u||)?, One gets, for every € N:

«
0< (8- 35) o — uel?
Q 2
<eéent 9 e — wn||” 4+ o ||tn — g | [|ue — wy|

and this implies thatim ||u,, — u,|| = 0. So, we have proved that every weakly converging

subsequence @i, ),, is also strongly converging to the unique solution f@i7)(z). Then the
whole sequencéu,,),, strongly converges ta,. O

Remark 3.11. If the set-valued functior{ is constant, that i$/ (z) = K Vz € X, the same
result can be established assuming that:

i) the operatorA is strongly monotone in the variableon £ (with moduluss), uniformly
with respect tar;
i) foreveryu € K, A(-,u) is continuous from{ X, 7) to (E*, s);
i) for every z € X, A(z,-) is hemicontinuous ot/ (x);
iv) the setK is convex, closed and bounded.

For what concerning parametric—well-posedness in the generalized sense, we have the
following result fora = 0 :

Proposition 3.12. Assume that the following conditions are satisfied:

i) foreveryr € X, A(z,-) is monotone ot (z);
ii) foreveryu € H, A(-,u) is continuous from{ X, 7) to (E*, s);
i) foreveryxr € X, A(x,-) is hemicontinuous o#/ (z);
iv) A is uniformly bounded oX x F;
v) the set-valued functiof/ is w—closed,w—subcontinuous and—lower semicontinu-
ous.

Then(VI) is parametrically weakly well-posed in the generalized sense.

Proof. First of all, for everyz € X, the variational inequalityV'/)(x) has at least a solution
(see, for example, [10] or[2]), since under our assumptions the getis compact with respect
to the weak convergence.

Letx € X, (z,), be a sequence convergingtoand (u,), be an approximating sequence
for (VI) with respect tqx,,),,.

Since H is w—closed andw—subcontinuous, the sequenge,),, has a subsequence, still
denoted by(u,),, which weakly converges to, € H(x). To prove that., € 7'(z), consider
a pointv € H(z), a sequencév,), strongly converging t@ such that,, € H(z,) for every
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n € N (such sequence exists in virtue of the lower semicontinuitif bfSince:
(A(zp,v), up —v) < (AT, up), Uy — v)
= (A(xp, ), Uy — V) + (A2, ), vy — V)
<en+ (A(zn, upn), v, — v)
<en+ ||A(zp, un)|| ||vn — v|| VR €N
and assumptions ii) and iv) hold, one gets:
(A(z,v),u, —v) <0Vv € H(z),
that, for the Minty’s Lemma, is equivalent to say thatsolves(V'I)(x). O

Remark 3.13. If the set-valued functiott/ is constant, that i$/(x) = K,V x € X, the same
result can be established assuming that:

i) the operatorA(z, -) is hemicontinuous of/;
i) the operatorA(z, -) is monotone;
i) for everyu € K, A(-,u) is continuous onX;
iv) the setK is convex, closed and bounded.

4. PARAMETRICALLY a—WELL-POSED MINIMUM PROBLEMS

In this section we consider variational inequalities arising from parametric minimum prob-
lems and we investigate, far > 0, the links between parametric—well-posedness of such
problems and parametric— well-posedness of the corresponding variational inequalities. The
casex = 0 can be found in[13].

Let ~ be a function fromX x E to R U {+occ} and H be a set-valued function fronY
to E, which is assumed to be nonempty, convex and closed-valued. If, for every.X,
the functioni(z, -) is Gateaux differentiable, bounded from below and convexidn), the
minimum problem:

((P) (2)) uelg{x) h(x,u)

is equivalent to the following variational inequality problem:

(VI)(2)) findu € H(z) such that <?(m,u), u— v> <0 Yve H(z),
u

whereg—ﬁ is the derivative of the functioh with respect to the variable (see [2]). Then, itis
natural to introduce the notion of parametnie-well-posedness for a family of minimization
problemsP = {|(P) (x)|, x € X} and compare it with the parametic-well-posedness for

the family VI = {|(VI)(z)} = € X}.
Definition 4.1. Letx € X, (z,), be a sequence convergingitpthe sequencéu,,),, is termed
a—minimizing for|(P) (x)| (with respect tqx,,),,) if:
) u, € H(x,) Vn €N,
ii) there exists a sequen¢e,),,, €, > 0, decreasing to 0 such that:
h(@n, tn) < B, v) + % tn —v||* + 2, Yo € H(z,) andvn € N.

Definition 4.2. The family of minimum problem® is calledparametricallya—well-posed,
with respect ta, if:

i) foreveryz € X, h(x,-) is bounded from below,
i) foreveryz € X |(P) (z) has a unique solution,,
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i) for every sequencér,,),, converging to a point, everya—minimizing sequencéu,,),,
for|(P) (z)|(with respect tqx,,),) o—converges ta,.

Definition 4.3. The family of minimum problem#® is calledparametricallya—well-posed in
the generalized sense, with respectidf:

i) foreveryz € X, h(x,-) is bounded from below,
i) foreveryz € X |(P) (z) has at least a solution,,
i) for every sequencéz,,),, converging to a point, everya—minimizing sequencéu,, ),
for (with respect ta(z,,),,) has a subsequenee-convergent to a solution for

(€216

The following two propositions give, under suitable assumptions, the equivalence between
parametricoa—well-posedness for a minimization problem and the corresponding variational
inequality.

Proposition 4.1. Assume that, for alt € X, the functiom.(z, -) is bounded from below, convex
and Gateaux differentiable off (z) and the family of problemP is parametricallya—well-
posed (resp. in the generalized sense) with respect Then the family of variational inequal-
ities defined by

(VI)(x)) findu € H(z) such that <%(:p,u),u - v> <0 Vv € H(x),

is parametricallya.—well-posed (resp. in the generalized sense) with respect to

Proof. Under the above assumptions, for alke X, the problemgV'1)(z) and|(P) ()| have
the same solutions. Consider a pointe X, a sequencézx,), converging toz and an

a—approximating sequende,,),, for[(V1) ()] with respect tdz,,),,, that is:

oh

u, € H(z,)and <a—(xn,un),un - U> - % |t — v||* < &, Yo € H(z,) ¥Yn €N,
u

where(e,,)n, €, > 0, decreases to 0. Sinég¢z,,, -) is convex one has:

hp, upn) — h(2y,v) < <%(mn,un),un - U> < % || wn, — vH2 +e, Yo € H(x,) Vn € N,

that is (uy, ), is a—minimizing for|(P) (z)| (with respect tqx,,),,) and the result then follows.
UJ

Proposition 4.2. Let E be a real Hilbert space. Assume that, for alle X, the function
h(z,-) is lower semicontinuous, bounded from below and Gateaux differentiabt& @hand
the family of variational inequalitie$VI) is parametrically strongly)—well-posed . If the
range H(X) is a bounded subset df, then the family of minimum problen# is strongly
parametricallya—well-posed for everyg > 0.

Proof. Under the assumptions above, every solutidfp ()| has to coincide with the unique
solution tq(V1)(z)] Vz € X.

Considerr € X, a sequencér,,),, converging tor and ann-minimizing sequenceéu,, ),, for
(P) ()}, with respect tqz,,).,, that is:

un € H(z,) and h(zn,u,) < bz, v) + % un —v))? + &, Vv € H(z,) Vn €N,

where(e, )., €, > 0, is a sequence decreasing to 0.
For everyn € N define a new functiorf,, on E by:

falv) = M@n, v) + 3 [lun — o]
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and observe thaf, is lower semicontinuous, bounded from below, Gateaux differentiable on
H<xn> andfn(un) = h(xnvun)'

Sincef,(u,) < fu(v)+e, Vv e H(zx,), from Ekeland Theorem (see [6]), for everye N
there exists:,, € H(z,) such that:

|lul, — u,|| < /&, and

<%<u;>7u; —U> < V& Il — vl| Vo € H(z,) ¥n € N.

Therefore:
oh / / . afn / / 1o
<%(xn,un),un — v> = < 5 (u,),u, v> a (U, —u,, u, — v)

< Ve llul, —v|| (1 +a) Yve H(x,).
Since the set-valued functiaii has a bounded range, the sequefi¢g,, is 0-approximating

for|(V I)(x)|and the result follows. O

Corollary 4.3. Let E be a real Hilbert space. Assume that, for alke X, the functionh(z, -)

is lower semicontinuous, convex, bounded from below and Géateaux differentialle:pand
the rangeH (X) is a bounded subset @f. Then the family of variational inequalitie’/{)

is parametrically stronglyvn—well-posed (resp. in the generalized sense) with respeet to
if and only if the minimum proble® is parametrically stronglyx—well-posed (resp. in the
generalized sense) with respecito

Corollary 4.4. Let E be a real Hilbert space. Assume that, for ale X, the functionh(z, -)

is lower semicontinuous, convex, bounded from below and Géateaux differentiablecoand

the rangeH (X) is a bounded subset @. Then the family of variational inequalitied/{)

is parametrically strongly0—well-posed (resp. in the generalized sense) if and only if it is
parametrically stronglyx—well-posed (resp. in the generalized sense) for (every)0.

5. a—WELL-POSEDNESS FOROPVIC

In this section we consider a convergencen £ and the problem introduced in Sectign 1:
(OPVIC) inf inf f(z,u),

zeX ueT (x)
where f : X x E — RU{+o0} is bounded from below is a set-valued function fromX to
E, and, for every: € X, A(z,-) is an operator front' to £*, while T'(x) is the set of solutions
to the parametric variational inequality /) (=) defined by the paifA(z, ), H(x)).

In order to obtain sufficient conditions fer—well-posedness ¢dOPVIQ we shall assume
also that the functiorf satisfies a coercivity condition: namely, we say tfias equicoercive
on (X x E,(r x o)) if every sequencéz,, u,),, such thatf(z,,u,) < k Vn € N, has a
(T x o)—convergent subsequence.

Definition 5.1. Leta > 0. A sequencéz,,, u,), is said to bex—approximatingfor[OPVIG f:
) tninf fgun) < i w);
i) there exists a sequence, ), ¢, > 0, decreasingto 0, suchthat € T, . (z,) Vn € N,
that is:

un, € H(x,) and (A(x,, u,), u, — v) — % i —v||> < en Yo € H(xy,).

Observe that forr = 0 the above definition amounts to Definition|3.1/inl[13][@PVIGwith
variational inequalities having a unique solution.
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Definition 5.2. An optimization problem with variational inequality constraf@BVIGis termed
a—well-posedwith respect tq T x o), if it has a unique solutiofiz,, uy) towards which every
a—approximating sequende,,, u, ), (T X o)—converges.

Definition 5.3. An optimization problem with variational inequality constraf@BVIGis termed
a—well-posed in the generalized sensith respect ta7 x o), if OPVIGhas at least a solu-
tion and everyy—approximating sequende.,, u,, ),, has a subsequeneex c—convergent to a
solution folOPVIQ

Remark 5.1. We point out that the sef’(z) of solutions to(V'7)(z)| is not assumed to be
always a singleton. In this situation many different types of “approximating” sequences could be
considered instead of the ones considered in Defirjitign 5.1[(see [20], where the well-posedness
of MinSup problems is investigated).

In order to give sufficient conditions for the—well-posedness ar—well-posedness in the
generalized sense we will distinguish the following situations:
e for everyz € X|(VI)(x)|has a unique solution;
e there exists: € X such tha{V'])(x) has not a unique solution.

First Case for everyz € X |(VI)(x)|has a unique solution
Since this case far = 0 has been already investigated(inl[13], assumedhat0.

Theorem 5.2.1f (VI) is parametricallya.—well-posed with respect g f is sequentially lower
semicontinuous and equicoercive X x E, (7 x ¢)) and/OPVIC has a unigue solution, then

OPVIQ isa—well-posed with respect to- x o).

Proof. Let (z,, u,), be a sequence—approximating fofOPVIG Being f equicoercive, there
exists a subsequence @f,, u,),, still denoted by(z,,, u,),, which (7 x o)—converges to a
point (xg, up).

Since the sequence,, ),, is a—approximating fofV' I)(x,) with respect tqz,,),, and(VI) is
parametricallypn—well-posed with respect te, the pointuy, must belong td’(x,). Therefore,
in light of condition i) in Definitior 5.1 and lower semicontinuity ¢f one has:

f(l’(),’u,o) < inf f(QJ, 'LL),

(z,u)EXXEueT (x)

that is(xo, up) is the unique solution t®PVIC. Since every T x o)—convergent subsequence
of (z,,u,), converges to the unique solution the whole sequende:,,, u,,), (T X
o)—converges to it. O

Bearing in mind the proof of Propositipn 3]10, a sufficient condition for the stromnglyell-
posedness @PVIGwith explicit assumptions on the data can be established.

Theorem 5.3. Assume thaf is sequentially lower semicontinuous and equicoercivé.on«
E, (T x w)), and OPVIC has a unique solution. If the following assumptions are satisfied:

I) the operatorA is strongly monotone of’' in the variableu, uniformly with respect to
x, that is:
38 > 0 such that(A(z, u) — A(z,v),u—v) > Bllu—v|*Ve e X,Yue E,Yv e E;
i) foreveryu € E, A(-,u) is continuous from{ X, 7) to (E*, s);
i) for everyx € X, A(x,-) is hemicontinuous o#/ (z);
iv) A is uniformly bounded oX x F;

v) the set-valued functio/ is w—closed,w—subcontinuouss—lower semicontinuous
and convex-valued.

Then OPVIC isx—well-posed with respect ta- x s), for everya < 2.
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Now we do not assume th@PVIQ has a unique solution. With the same arguments as in
Theoren) 5. one can prove:

Theorem 5.4.1f (VI) is parametricallya—well-posed with respect ta f is sequentially lower
semicontinuous and equicoercive 0% x E, (7 x ¢)) andOPVIC has at least a solution, then
OPVICQ isa—well-posed in the generalized sense with respe¢t te o).

In finite dimensional spaces one obtains:

Corollary 5.5. Assume thaf is sequentially lower semicontinuous and equicoerciveXor

RF,[OPVIG has at least a solution and, for everg X, has a unique solution.

If the following assumptions are satisfied:

i) the set-valued functiof is closed, lower semicontinuous, subcontinuous and convex-
valued;

i) foreveryz € X, A(z, ) is monotone and hemicontinuous Ariz);

iii) for everyu € R, A(-,u) is continuous onX;

iv) A is uniformly bounded oX x R*;

then[OPVIC isn—well-posed in the generalized sense. If the set-valued fun&figmcon-

stant, thatisH (z) = K ¥V z € X, the same result holds assuming ii), iii) and the Ketompact
and convex.

Second Casethere exists: € X such thal(V'I)(x)|does not have a unique solution.

Theorem 5.6.Leta > 0. If (V1) is parametricallya— well-posed in the generalized sense with
respect tas, f is sequentially lower semicontinuous and equicoercivex E, (1 x o)) and
[OPVIQ has at least a solution, then OPVICds-well-posed in the generalized sense with
respect tor x o).

Proof. Let (z,, u,), be a sequence—approximating fofOPVIG From the equicoercivity of
f, there exists a subsequence of, u,),, still denoted by(x,,, u, )., which (7 x o)—converges
to a point(xg, ug).

Since the sequende,),, is a—approximating for(VI) with respect to(z,,),, and (VI) is
parametricallya—well-posed in the generalized sense with respeet,t¢u,,), has a subse-
quence(u,, ),, o— converging to a solutiom, to (V' I)(z,). Therefore, from condition i) in
Definition[5.1 and in light of the lower semicontinuity ¢f one has:

< inf
f('r(b UO) = (:c,u)EXlilE,ueT(:v) f(xv U),
that is(zo, uo) is a solution tgOPVIG O

Theorem 5.7. Under the same assumptions of Theofrem 5.6, if, mordover, QPVIC has a unique
solution, then OPVIC is—well-posed with respect ta- x o).

Proof. Following the proof of the previous theorem, everyapproximating sequencge,,, u,,),,
for OPVIGQ has a subsequence whith x o)—converges to the unique solutiény, uy). This
is sufficient to conclude that the whole sequeficg v, ), (7 x o)—converges tdzg, up). O

When the variational inequality arises from a minimization prob[@RVIG s nothing else
than a bilevel optimization problem, also called strong Stackelberg problem (see [16]):

inf inf f(z,u),

ze€X ueM(x)
where
M (z) = Argmin h(z,-) = {u € H(x) : h(x,u) < inf h(m,u')} .

u'eH (x)
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Theorem 5.8. Assume thalf is sequentially lower semicontinuous, equicoercive(ah x
E, (r x w)) and|OPVIC has a unique solution. If the following assumptions are satisfied:

i) for everyz € X, the functioni(z,-) is lower semicontinuous, bounded from below,
convex and Gateaux differentiable &H(x);
i) the set-valued functiof!/ is w—closed,w—subcontinuouss—lower semicontinuous,
convex-valued and the randé(X) is a bounded subset &f;
iii) for everyu € E, 9%(-,u) is continuous on;
iv) for everyz € X, 2%(z, ) is hemicontinuous ofl (z);
V) % is uniformly bounded oX x F;

then OPVIC isx—well-posed with respect ta- x s).
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