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Abstract

The paper is concerned with the solvability of variational inequalities that con-
tain second-order quasilinear elliptic operators and convex functionals. Appro-
priate concepts of sub- and supersolutions (for inequalities) are introduced and
existence of solutions and extremal solutions are discussed.
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1. Introduction
We are concerned in this paper with the existence of solutions and extremal
solutions of noncoercive variational inequalities of the form:

(1.1)

 〈L(u), v − u〉 − 〈G(u), v − u〉+ j(v)− j(u) ≥ 0, ∀v ∈ W 1,p
0 (Ω)

u ∈ W 1,p
0 (Ω).

HereΩ is a bounded region inRN with smooth boundary.L is (the weak form
of) the second order quasi-linear elliptic operator

(1.2) −
N∑

i=1

∂

∂xi

[Ai(x, u,∇u)] + A0(x, u,∇u)

andG is the lower-order term (cf. (2.1) and (2.6)). j is a convex functional,
representing obstacles or unilateral conditions imposed on the solutions. De-
pending on the choice ofj, the variational inequality (1.1) is the weak form of
an equation or a complementarity problem that contains the operator (1.2) with
various types of free boundaries or constraints (cf. e.g. [14, 3, 12]).

SinceG may have superlinear growth, the operatorL−G is noncoercive in
general. The solvability of problem (1.1) can be studied by several approaches,
for example, bifurcation methods (cf. [16, 27, 29, 19], etc.), recession arguments
([4, 2, 28, 1, 21, 22, 20], etc.), variational approaches ([24, 32, 21], etc.), or
topological/fixed point methods ([30, 31], etc.).

We are concerned here with another way to study the solvability of (1.1),
based on sub- and supersolutions. Recession methods have been quite popular
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recently in studying noncoercive problems. There are essential differences be-
tween these two approaches. Following recession approaches, the solvability
of the problem is usually established by assuming conditions on asymptotic be-
haviors (i.e., behaviors when the involved variables are large) of the lower order
terms (e.g.,G in problem (1.1)). Problems of type (1.1) have been investigated
in detail by recession arguments in [21, 22]. Improvements on the existence re-
sults based on recession approaches in [2, 28, 1, 21, 22] were presented recently
in [20].

Compared to other methods, the sub-supersolution approach when appli-
cable (i.e, when sub- and supersolutions exist) usually permits more flexible
requirements on the growth rate of the perturbing termG (normally, one only
needs to know the behaviors ofG on bounded intervals). Moreover, based on the
lattice structure of the spaceW 1,p(Ω), the sub- and supersolution method could
also give insight into the ordering properties of the solution set between the sub-
and supersolutions, and especially, the existence of maximal and minimal solu-
tions. We refer the reader to [26] or [18] for more discussions on the difficulties
arising when the sub-supersolution method is extended from equations (with
natural symmetric structure) to variational inequalities (without symmetric set-
tings), together with advantages of the method. More remarks on our approach
here for (1.1), compared with the recession approach, are given in Remark4.1.

This paper is the next step of our study plan proposed in [18] on sub- super-
solution methods applied to variational inequalities. In that paper, we consider
inequalities on closed convex sets, that is the particular case wherej is the indi-
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cator function of a closed convex setK:

j(u) =

 0 if u ∈ K

∞ if u 6∈ K.

However, many interesting problems in mechanics and applied mathematics
lead to other types of convex functionals, for example,

j(u) =

∫
Ω

ψ(x, u(x))dx or j(u) =

∫
∂Ω

ψ(x, u|∂Ω(x))dS,

(cf. [12, 11]). Because of the nonsymmetric nature of the problem, sub- super-
solution methods for smooth equations (cf. e.g. [13], [10], [9], or [15]) and also
the arguments in [18] for inequalities on convex sets are not directly applicable
to (1.1). The goal of this paper is to study the variational inequality (1.1) with
more generality on the convex functionalj by a sub- supersolution approach.
The main difficulty we face here is defining sub- and supersolutions for the
inequality (1.1) in an appropriate way such that the truncation–penalization ma-
chinery used for smooth, symmetric equations and for inequalities on convex
sets can be extended to our nonsmooth, nonsymmetric case. Basically, we need
to define sub- and supersolutions of (1.1) such that: (i) under reasonable condi-
tions, one can show the existence of solutions and extremal solutions between
sub- and supersolutions, (ii) there is some way to find sub- supersolutions or
to check whether a given function is a sub- or supersolution, and (iii) sub- and
supersolutions in inequalities extend those in equations.

To meet these requirements, in the next section, we need to make non straight-
forward extensions on the usual sub- and supersolution concepts for equations
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and also on those presented in [18] to the more general situation of inequality
(1.1) (cf. Definition 2.1). In Section3, we prove several existence results for
the inequality (1.1) based on the sub- supersolution concepts in Section2. It
is shown in Theorems3.1 and3.3 that if there exist a subsolution and a super-
solution or merely a subsolution (or a supersolution) and a one-sided growth
condition, then problem (1.1) is solvable. We also consider the existence of
maximal or minimal (extremal) solutions, which are the biggest and smallest
solutions of (1.1) (in certain ordering) within the interval between a subsolution
and a supersolution (Theorems3.2, 3.4). In Section4, we consider some exam-
ples where one can actually find sub- and supersolutions. Combining with the
results in Section3, we obtain the existence of nonnegative nontrivial solutions
and extremal solutions in eigenvalue problems for variational inequalities. The
first problem is about an inequality containing a quasilinear elliptic operator
and the convex term is given by an integral. By using constants as sub- and su-
persolutions, we find conditions such that the inequality has bounded solutions.
The second example is an eigenvalue problem for an inequality that contains the
p-Laplacian. By using sub- and supersolutions constructed from the principal
eigenfunctions of thep-Laplacian, we show the existence of positive solutions
of the inequality.

Compared with sub- supersolution methods for equations or for inequalities
on convex sets, the development of the method for inequalities with general
convex functionals (not necessarily indicators of convex sets) requires some
nontrivial adaptation and modifications and new arguments in several places.
Note that our presentation here is somewhat related to the results in [6, 8, 7]
about sub- supersolution methods for differential inclusions with convex terms
given by certain integrals. The concepts of sub- and supersolutions there are
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for (pointwise) inclusion are defined mostly pointwise, while our concepts here
are for inequalities and are based on the dual betweenW 1,p(Ω) and[W 1,p(Ω)]∗.
An interesting question is to possibly compare the approach here with that in
[6, 8, 7].
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2. General Settings
In this section, we consider the assumptions imposed on the inequality (1.1) and
next define sub- and supersolutions for it. We use the notationX := W 1,p(Ω)
andX0 := W 1,p

0 (Ω) for the usual first-order Sobolev spaces. In (1.1), L is a
mapping fromX toX∗, defined by
(2.1)

〈L(u), v〉 =

∫
Ω

[
N∑

i=1

Ai(x, u,∇u)∂iv + A0(x, u,∇u)v

]
dx, ∀u, v ∈ X,

where, for eachi ∈ {0, 1, . . . , N},Ai is a Carathéodory function fromΩ× RN+1

to R. For i ∈ {1, . . . , N}N ,

(2.2) |Ai(x, u, ξ)| ≤ a0(x) + b0(|u|p−1 + |ξ|p−1),

and

(2.3) |A0(x, u, ξ)| ≤ a1(x) + b1(|u|q−1 + |ξ|
p
q′ ),

for almost allx ∈ Ω, all u ∈ R, ξ ∈ RN with b0, b1 > 0, a0 ∈ Lp′
(Ω), a1 ∈

Lp′
(Ω), 1 ≤ q < p∗. (As usual,p′ is the Hölder conjugate ofp andp∗ is its

Sobolev conjugate.) Moreover,
(2.4)
N∑

i=1

[Ai(x, u, ξ)−Ai(x, u
′, ξ′)](ξi−ξ′i)+[A0(x, u, ξ)−A0(x, u

′, ξ′)](u−u′) > 0,

http://jipam.vu.edu.au/
mailto:vy@umr.edu
http://jipam.vu.edu.au/


Sub- Supersolutions and the
Existence of Extremal Solutions

in Noncoercive Variational
Inequalities

Vy Khoi Le

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 9 of 37

J. Ineq. Pure and Appl. Math. 2(2) Art. 20, 2001

http://jipam.vu.edu.au

if (u, ξ) 6= (u′, ξ′), and

(2.5)
N∑

i=1

Ai(x, u, ξ)ξi + A0(x, u, ξ)u ≥ α(|ξ|p + |u|p)− β(x),

for a.e.x ∈ Ω, all u ∈ R, ξ ∈ RN , whereα > 0 andβ ∈ L1(Ω). The
lower-order operatorG is defined by

(2.6) 〈G(u), v〉 =

∫
Ω

F (x, u,∇u)vdx,

whereF : Ω × RN+1 → R is a Carathéodory function with certain growth
conditions to be specified later. We also assume thatj is a mapping fromX to
R∪{∞} such that the restrictionj|W 1,p

0 (Ω) is convex and lower semicontinuous

onW 1,p
0 (Ω) with non empty effective domain. Before stating our theorem about

existence of solutions, we need to define subsolutions and supersolutions for
inequalities with convex functionals. These definitions extend those definitions
presented in [18] for inequalities on closed convex sets. As seen in the following
definitions, they are more complicated. As usual, we use the notation

u ∨ v = max{u, v}, u ∧ v = min{u, v}.

and
A ∗B = {a ∗ b : a ∈ A, b ∈ B},

whereA,B ⊂ W 1,p(Ω) and ∗ ∈ {∧,∨}. As is well known,W 1,p(Ω) and
W 1,p

0 (Ω) are closed under the operations∨ and∧, that is,

u, v ∈ W 1,p(Ω)(resp.W 1,p
0 (Ω)) =⇒ u ∨ v, u ∧ v ∈ W 1,p(Ω)(resp.W 1,p

0 (Ω)).
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Definition 2.1. A function u ∈ W 1,p(Ω) is called aW -subsolution of (1.1) if
there exists a functionalJ (depending onu):

J = Ju : W 1,p(Ω) → R ∪ {∞},

such that

(2.7)

(i) u ≤ 0 on∂Ω

(ii) F (·, u,∇u) ∈ Lq′
(Ω)

(iii) J(u) <∞, and

(2.8) j(v ∨ u) + J(v ∧ u) ≤ j(v) + J(u), ∀v ∈ W 1,p
0 (Ω) ∩D(j),

and
(2.9)
(iv) 〈L(u), v−u〉−〈G(u), v−u〉+J(v)−J(u) ≥ 0, v ∈ u∧[W 1,p

0 (Ω)∩D(j)],

(D(j) = {v ∈ X : j(v) < ∞} is the effective domain ofj). We have
a similar definition forW -supersolutionu: u is aW -supersolution of (1.1) if
there existsJ = Ju : W 1,p(Ω) → R ∪ {∞} such that:

(2.10)

(i) u ≥ 0 on∂Ω

(ii) F (·, u,∇u) ∈ Lq′
(Ω)

(iii) J(u) <∞, and
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(2.11) j(v ∧ u) + J(v ∨ u) ≤ j(v) + J(u), ∀v ∈ W 1,p
0 (Ω) ∩D(j),

and
(2.12)
(iv) 〈L(u), v−u〉−〈G(u), v−u〉+J(v)−J(u) ≥ 0, v ∈ u∨[W 1,p

0 (Ω)∩D(j)].

A subsolution of (1.1) is a finite maximum ofW -subsolutions and a supersolu-
tion is a finite minimum ofW -supersolutions.

Suppose there exist a subsolutionu = max{ui : 1 ≤ i ≤ k} and a superso-
lution u = min{ul : 1 ≤ l ≤ m} of (1.1). We assume thatF has the following
growth condition:

(2.13) |F (x, u, ξ)| ≤ a2(x) + b2|ξ|p/q′

for a.e.x ∈ Ω, all ξ ∈ RN , all u such thatu0(x) ≤ u ≤ u0(x)), where
a2 ∈ Lq′

(Ω), b2 ≥ 0, q < p∗ (p∗ is the Sobolev conjugate ofp), and

u0 = min{ui : 1 ≤ i ≤ k}, u0 = max{ul : 1 ≤ l ≤ m}.

We conclude this section with some remarks.

Remark 2.1. (i) If u is a solution of (1.1), thenu is a subsolution of (1.1),
providedj satisfies the following condition:

(2.14) j(v ∨ u) + j(v ∧ u) ≤ j(v) + j(u),

for all u, v ∈ W 1,p(Ω). In fact, ifu is a solution of (1.1) then it satisfies (i) – (ii).
By choosingJ = j, we see that (2.8) follows from (2.14). If v = u ∧ w,w ∈
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W 1,p
0 (Ω), thenv = 0 on ∂Ω, i.e.,v ∈ W 1,p

0 (Ω). Hence, (2.9) is a consequence
of (1.1). Similarly, if (2.14) holds, then any solution is a supersolution.

(ii) (2.14) is satisfied for several usual convex functionalsj. For example, if
j is given by

(2.15) j(u) =

∫
E

ψ(x, u)dx,

whereE is a subset ofΩ or ∂Ω, ψ : Ω × R → R ∪ {∞}, is a Carathéodory
function such that

(2.16) ψ(x, u) ≥ a3(x) + b3|u|s, x ∈ Ω, u ∈ R,

wherea3 ∈ L1(Ω) and0 ≤ s < p∗. j is well defined fromW 1,p(Ω) to R∪{∞}
andj is convex ifψ(x, ·) is convex for a.e.x ∈ Ω. Also, by Fatou’s lemma,j is
weakly lower semicontinuous. Letu, v ∈ W 1,p(Ω) and denote

Ω1 = {x ∈ Ω : v(x) < u(x)}, Ω2 = {x ∈ Ω : v(x) ≥ u(x)}.

Then,

j(v ∧ u) + j(v ∨ u) =

(∫
Ω1

+

∫
Ω2

)
ψ(v ∧ u) +

(∫
Ω1

+

∫
Ω2

)
ψ(v ∨ u)

(2.17)

=

∫
Ω1

ψ(x, u) +

∫
Ω2

ψ(x, v) +

∫
Ω1

ψ(x, v) +

∫
Ω2

ψ(x, u)

=

∫
Ω

ψ(x, u) +

∫
Ω

ψ(x, v)

= j(u) + j(v).
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Hence, (2.14) is satisfied. Note that from (2.16), ψ(x, u) is bounded from below
by a function inL1(Ω). Thus, the integrals in (2.17) are inR∪{∞} and we can
split and combine them as done.

(iii) If j = IK , K is a closed convex set inW 1,p
0 (Ω), then we recover the

cases considered in [18]. Moreover, (2.14) holds providedK satisfied the con-
dition

(2.18) u, v ∈ K =⇒ u ∧ v, u ∨ v ∈ K.

As noted in [18], (2.18) is satisfied wheneverK is defined by obstacles or by
certain conditions on the gradients. We can also check that by using (2.15).

(iv) If j = 0, we have an equation in (1.1). By choosingJ = 0 also, we
see that (2.8) – (2.11) obviously hold and (2.9) – (2.12) reduce to the usual
definitions of sub- and supersolutions of equations. Ifj = IK as in (iii), then by
choosingJ = 0, we see that the definition of subsolutions in [18] is equivalent
to the definition in (i) – (iv) here. Thus, Definition2.1 is an extension of that in
[18].

(v) By choosingJ = 0 in (2.8) and (2.9), we see that ifu is a subsolution of
the equation

〈L(u), v〉 − 〈G(u), v〉 = 0, ∀v ∈ W 1,p
0 (Ω)

andj(v ∨ u) ≤ j(v), ∀v ∈ W 1,p
0 (Ω) ∩ D(j), thenu is a subsolution of (1.1).

Similar observations hold for supersolutions.
(vi) Compared to the definitions in [13, 10, 9, 15, 18], the new ingredient

here is the introduction of the functionalJ in Definition 2.1, which permits
more flexibility in constructing sub- and supersolutions (by choosing different
J).
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3. Main Existence Results
In this section, we state and prove our existence results for solutions and ex-
tremal solutions of (1.1), based on the concepts of sub- and supersolutions in
Section2.

Theorem 3.1.Assume (1.1) has a subsolutionu and a supersolutionu such that
u ≤ u and that (2.13) holds. Then, (1.1) has a solutionu such thatu ≤ u ≤ u.

Proof. We follow the usual truncation–penalization technique as in [13, 9, 15]
or [18]. Therefore, we just outline the main arguments and present only the
different points and modifications needed for our situation here. Letb be defined
by (cf. [18])

(3.1) b(x, t) =


[t− u(x)]q−1 if t > u(x)

0 if u(x) ≤ t ≤ u(x)

−[−t+ u(x)]q−1 if t < u(x).

We have the following estimates (cf. (49) and (50) in [18]):

|b(x, t)| ≤ a3(x) + c3|t|q−1,

with a3 ∈ Lq′
(Ω), and ∫

Ω

b(·, u)u ≥ c4‖u‖q
Lq(Ω) − c5,

http://jipam.vu.edu.au/
mailto:vy@umr.edu
http://jipam.vu.edu.au/


Sub- Supersolutions and the
Existence of Extremal Solutions

in Noncoercive Variational
Inequalities

Vy Khoi Le

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 15 of 37

J. Ineq. Pure and Appl. Math. 2(2) Art. 20, 2001

http://jipam.vu.edu.au

for all u ∈ Lq(Ω), where theci’s (i = 3, 4, 5) are positive constants independent
of u. We defineTil (1 ≤ i ≤ k, 1 ≤ l ≤ m) andT by:

Til(u)(x) =


ui(x) if u(x) < ui(x)

u(x) if ui(x) ≤ u(x) ≤ ul(x)

ul(x) if u(x) > ul(x),

and

T (u)(x) =


u(x) if u(x) < u(x)

u(x) if u(x) ≤ u(x) ≤ u(x)

u(x) if u(x) > u(x).

Let us consider the variational inequality
(3.2) 〈L(u) + βB(u)− C(u), v − u〉+ j(u)− j(u) ≥ 0, ∀v ∈ W 1,p

0 (Ω)

u ∈ W 1,p
0 (Ω),

with β > 0 sufficiently large. Consider the (nonlinear) operatorsB andC given
by

〈B(u), φ〉 =

∫
Ω

b(·, u)φ,
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and

〈C(u), φ〉 =

∫
Ω

[F (·, T (u),∇T (u))(3.3)

+
∑
i,l

|F (·, Til(u),∇Til(u))− F (·, T (u),∇T (u))|]φ,

∀u, φ ∈ W 1,p
0 (Ω).

Let us prove thatH = L + βB − C is pseudo-monotone onW 1,p(Ω). In fact,
assumewn ⇀ w in W 1,p(Ω) ("⇀" denotes the weak convergence) and

(3.4) lim sup
n→∞

〈H(wn), wn − w〉 ≤ 0.

We show that

(3.5) lim
n→∞

〈H(wn), wn − v〉 ≥ 〈H(w), w − v〉, ∀v ∈ W 1,p(Ω).

Since the embeddingW 1,p(Ω) ↪→ Lp(Ω) is compact, we havewn → w in
Lp(Ω). By passing to a subsequence, if necessary, we can assume that there is
a functionh in Lp(Ω) such that

(3.6)

 wn → w a.e. inΩ, and

|wn| ≤ h a.e. in Ω, ∀n.

Since the sequence{wn} is bounded inW 1,p(Ω), the sequences
{F (·, Til(wn),∇Til(wn))} and{F (·, T (wn),∇T (wn))} are uniformly bounded
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in Lq′
(Ω). From (3.3), it follows that the sequence{(βB−C)(wn)} is bounded

in Lq′
(Ω). (3.6) thus implies that

〈(βB − C)(wn), wn − w〉 → 0.

Hence, from (3.4),

(3.7) lim sup〈L(wn)− L(w), wn − w〉 = lim sup〈L(wn), wn − w〉 ≤ 0.

Since{Ai} (i = 0, 1, . . . , n) satisfy (2.2) – (2.4), it follows from (3.6) and
(3.7) thatwn → w in W 1,p(Ω). Consequently,H(wn) → H(w) in Lq′

(Ω)
and (3.5) follows. This shows thatL + βB − C is pseudo-monotone. Using
arguments similar to those in [18], we can prove thatL + βB − C is coercive
on W 1,p

0 (Ω). Moreover, this mapping is obviously continuous and bounded.
Classical existence results for variational inequalities (cf. e.g. [23, 14]) give the
existence of at least one solutionu ∈ W 1,p

0 (Ω) of (3.2). Also, it is clear that
u ∈ D(j). We prove thatu ≤ u. Let uq (1 ≤ q ≤ k) be aW -subsolution.
Sinceu ∈ W 1,p

0 (Ω) ∩D(j), (2.9) with u = uq andv = u ∧ u gives

〈(uq), uq ∧ u− uq〉 − 〈G(uq), uq ∧ u− uq〉+ J(uq ∧ u)− J(uq) ≥ 0.

Sinceuq ∧ u = uq − (uq − u)+, the above inequality becomes

(3.8) −〈(uq), (uq − u)+〉 − 〈G(uq), (uq − u)+〉+ J(uq ∧ u)− J(uq) ≥ 0.

On the other hand, sinceuq ∨ u = 0 on ∂Ω, v = uq ∨ u ∈ W 1,p
0 (Ω). Lettingv

into (3.2) and noting thatuq ∨ u = u+ (uq − u)+, we get

(3.9) 〈L(u) + βB(u)− C(u), (uq − u)+〉+ j(uq ∨ u)− j(u) ≥ 0.
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Adding (3.8) and (3.9), one gets

〈L(u)− L(uq), (uq − u)+〉+ 〈G(uq), (uq − u)+〉
+ 〈βB(u)− C(u), (uq − u)+〉j(uq ∨ u)− j(u) + J(uq ∧ u)− J(uq) ≥ 0.

From (2.8),
j(uq ∨ u)− j(u) + J(uq ∧ u)− J(uq) ≤ 0.

Using the integral formulation ofB,C andG, we get

(3.10) 〈L(u)− L(uq), (uq − u)+〉+

∫
Ω

F (x, uq,∇uq)(uq − u)+

+β

∫
Ω

b(x, u)(uq−u)+−
∫

Ω

[
F (x, T (u),∇T (u)) +

∑
i,l

|F (x, Til(u),∇Til(u))

− F (x, T (u),∇T (u))

]
(uq − u)+ ≥ 0.

We have

〈L(u)− L(uq), (uq − u)+〉+ β

∫
Ω

b(·, u)(uq − u)+

+

∫
Ω

[
F (·, uq)− F (·, T (u))−

∑
i,l

|F (·, Til(u))− F (·, T (u))|

]
(uq−u)+ ≥ 0.
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Using

F (x, uq(x))− F (x, T (u)(x))−
∑
i,l

|F (x, Til(u)(x))− F (x, T (u)(x))|

≤ F (x, uq(x))− F (x, T (u)(x))− |F (x, Tq1(u)(x))− F (x, T (u)(x))|
= F (x, uq(x))− F (x, T (u)(x))− |F (x, uq(x))− F (x, u(x))|
≤ 0,

we obtain

∫
Ω

[
F (·, uq)− F (·, T (u))−

∑
i,l

|F (·, Til(u))− F (·, T (u))|

]
(uq − u)+

(3.11)

=

∫
{uq>u}

[
F (·, uq)− F (·, T (u))−

∑
i,l

|F (·, Til(u))− F (·, T (u))|

]
(uq − u)+

≤ 0.

Using the fact that

〈L(u)− L(uq), (uq − u)+〉

= −
∫
{uq−u>0}

{
N∑

i=1

[Ai(x, uq,∇uq)− Ai(x, u,∇u)](∂iuq − ∂iu)

+[A0(x, uq,∇uq)− A0(x, u,∇u)](uq − u)]
}

≤ 0,
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(by (2.4)), we have from (3.10) and (3.11) the following estimate

0 ≤
∫

Ω

b(·, u)(uq − u)+

=

∫
{uq>u}

b(·, u)(uq − u)

= −
∫
{uq>u}

(u− u)q−1(uq − u) (sincea < uq ≤ u)

≤ 0.

Thus,

0 =

∫
Ω

[(uq − u)+]qdx,

and(uq−u)+ = 0 a.e. inΩ, i.e.,u ≥ uq a.e. inΩ. Using these arguments for all
q ∈ {1, . . . , k}, we see thatu ≥ u. We can show in the same way thatu ≤ u.
Now, from (3.1), we haveb(x, u(x)) = 0 for almost allx ∈ Ω, i.e.,B = 0.
Also,Til(u) = T (u) = u, for all i, l and thus

〈C(u), φ〉 =

∫
Ω

F (·, u,∇u)φ = 〈G(u), φ〉.

Hence, sinceu satisfies (3.2), it also satisfies (1.1), i.e.,u is a solution of (1.1)
andu ≤ u ≤ u.

We now prove that (1.1) has a maximal and a minimal solution within the
interval betweenu andu.
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Theorem 3.2.Assume (1.1) has a subsolutionu and a supersolutionu such that
u ≤ u. Moreover, (2.13) and (2.14) hold. Then, (1.1) has a maximal solution
u∗ and a minimal solutionu∗ such that

(3.12) u ≤ u∗ ≤ u∗ ≤ u,

that is,u∗ andu∗ are solutions of (1.1) that satisfy (3.12) and ifu is a solution
of (1.1) such thatu ≤ u ≤ u thenu∗ ≤ u ≤ u∗ onΩ.

The proof is similar to that of the particular casej = IK , which was already
presented in [18]. Therefore, it is omitted.

As in the case of variational inequalities on convex sets, we still have exis-
tence of solutions and extremal solutions provided only subsolutions (or super-
solutions) exist together with certain one-sided growth conditions. We have in
fact the following result.

Theorem 3.3.Assume (1.1) has a subsolutionu andF has the growth condition

(3.13) |F (x, u, ξ)| ≤ a3(x) + b3(|u|σ + |ξ|σ)

for a.e.x ∈ Ω, all u such thatu0(x) ≤ u, all ξ ∈ RN , where0 ≤ σ < p−1, a ∈
Lp′

(Ω), and
u0 = min{ui : 1 ≤ i ≤ k}.

Hence, (1.1) has a solutionu such thatu ≥ u.

The idea of the proof of this result is a combination of Theorem3.1 stated
above and an extension of Theorem 1 in [18]. We omit the proof and refer the
reader to [18] for more details.
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By looking closely at the set of solutions of (1.1), one can improve Theorem
3.3and get the following stronger result.

Theorem 3.4. Under the assumptions of Theorem3.3, (1.1) has a maximal
solutionu∗ and a minimal solutionu∗ such that

(3.14) u ≤ u∗ ≤ u∗ ≤ u,

that is,u∗ andu∗ are solutions of (1.1) that satisfy (3.14) and ifu is a solution
of (1.1) such thatu ≤ u ≤ u thenu∗ ≤ u ≤ u∗ onΩ.

Proof. The proof follows the same line as that in Theorem 2, [18]. A main
ingredient of the proof is the boundedness of the set

S = {u ∈ W 1,p
0 (Ω) : u ≥ u, u is a solution of (1.1)}

in W 1,p
0 (Ω). Proving thatS is bounded requires some different arguments from

those in [18]. From (1.1) with v = φ being a fixed element inD(j), we have

〈L(u), φ− u〉 − 〈G(u), φ− u〉+ j(φ)− j(u) ≥ 0.

Therefore,

〈L(u), φ〉 =

∫
Ω

[∑
i

Ai(x, u,∇u)∂iu+ A0(x, u,∇u)u

]
≥ α

∫
Ω

(|∇u|p + |u|p)−
∫

Ω

βdx (by (2.5))

≥ α‖u‖p

W 1,p
0 (Ω)

− c.
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Hence,

|〈L(u), φ〉| ≤ c

[∑
i

‖Ai(·, u,∇u)‖Lp′
(Ω)‖∂iφ‖Lp(Ω)

+‖A0(·, u,∇u)‖Lp′
(Ω)‖φ‖Lp(Ω)

]
≤ c

[∑
i

‖a0 + b0|u|p−1 + b0|∇u|p−1‖Lp′ (Ω)‖∂iφ‖Lp(Ω)

+‖a1 + b1|u|p−1 + |∇u|p−1‖Lp′
(Ω)‖φ‖Lp(Ω)

]
≤ c(1 + ‖u‖p−1

Lp(Ω) + ‖|∇u|‖p−1
Lp(Ω))

≤ c(1 + ‖u‖p−1
W 1,p(Ω)),

(c denotes a generic constant). From (3.13), we have

|〈G(u), φ〉| ≤ c(1 + ‖u‖σ
W 1,p(Ω))

and

|〈G(u), u〉| ≤ c(1 + ‖u‖σ
W 1,p(Ω))‖u‖W 1,p(Ω) ≤ c(1 + ‖u‖σ+1

W 1,p(Ω)).

Sincej is convex and lower semi-continuous, there exista4, b4 ∈ R such that

j(u) ≥ a4 + b4‖u‖W 1,p
0 (Ω), ∀u ∈ W

1,p
0 (Ω).

Hence,

α‖u‖p
W 1,p(Ω) − c ≤ c(1 + ‖u‖p−1

W 1,p(Ω) + ‖u‖σ
W 1,p(Ω) + ‖u‖W 1,p(Ω)).
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Sinceσ < p, this shows that‖u‖W 1,p(Ω) ≤ c for all solutionsu of (1.1) such
thatu ≥ u. Hence,S is bounded inW 1,p(Ω).

The remainder of the proof is similar to that of Theorem 3 in [18].

Remark 3.1. Note that ifAi = Ai(x, ξ) (i = 1, . . . , N ) do not depend onu,
then we can chooseA0 = 0 and all the results stated above still hold.
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4. Some Examples
We now apply these general results to establish the existence of solutions and
extremal solutions in some particular variational inequalities.

4.1.

In this example, we study a quasi-linear elliptic variational inequality that con-
tains a "unilateral" term given by an integral. Assume that fori = 0, 1, . . . , N ,
Ai satisfies

(4.1) Ai(x, u, 0) = 0

for a.e.x ∈ Ω, all u ∈ R and consider the variational inequality
(4.2)

〈L(u), v − u〉 − λ

∫
Ω

F (x, u,∇u)(v − u) + j(v)− j(u) ≥ 0, ∀v ∈ W 1,p
0 (Ω)

u ∈ W 1,p
0 (Ω).

Here,L andA are defined as in (2.1), (2.2), and (2.3) of Section2. λ is a real
parameter and

(4.3) j(u) =

∫
Ω

ψ(x, u(x))dx,

whereψ : Ω× R → R ∪ {∞} is a Carathéodory function such that

(4.4) ψ(x, u) ≥ −a(x)− b|u|p,

http://jipam.vu.edu.au/
mailto:vy@umr.edu
http://jipam.vu.edu.au/


Sub- Supersolutions and the
Existence of Extremal Solutions

in Noncoercive Variational
Inequalities

Vy Khoi Le

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 26 of 37

J. Ineq. Pure and Appl. Math. 2(2) Art. 20, 2001

http://jipam.vu.edu.au

wherea ∈ L1(Ω), b ≥ 0. It follows from this inequality that foru ∈ W 1,p(Ω),
ψ(x, u(x)) is measurable and since−a(x)−b|u(x)|p ∈ L1(Ω), j is well defined
andj(u) ∈ R ∪ {∞}. Assume also that for almost allx ∈ Ω, ψ(x, ·) is convex.
Hence,j is convex onW 1,p(Ω). It follows from Fatou’s lemma thatj is lower
semicontinuous on that space. The following lemma shows the existence of
constant sub- and supersolutions of (4.2).

Lemma 4.1. (a) AssumeB ∈ R, B ≤ 0 is such that

(4.5)
(i) F (x,B, 0) ≥ 0 for a.e.x ∈ Ω

(ii) F (·, B, 0) ∈ Lq′
(Ω)

and

(4.6) (iii) ψ(x,B) ≤ ψ(x, v), ∀v ≤ B,

thenB is a subsolution of (4.2).
(b) Similarly, ifA ∈ R, A ≥ 0 and

(4.7)
(i) F (x,A, 0) ≤ 0 for a.e.x ∈ Ω

(ii) F (·, A, 0) ∈ Lq′
(Ω)

and

(4.8) (iii) ψ(x,A) ≥ ψ(x, v), ∀v ≥ A,

thenA is a supersolution of (4.2).
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Proof. (a) ChoosingJ = 0, we see thatu = B satisfies conditions (i) – (iii) of
Definition2.1. Moreover, (2.8) becomes, in this case,

(4.9) j(v ∨B) ≤ j(v), v ∈ W 1,p
0 (Ω) ∩D(j),

i.e., ∫
Ω

ψ(x, v(x) ∨B)dx ≤
∫

Ω

ψ(x, v(x))dx.

In view of (4.3) and (4.4), this is equivalent to

(4.10)
∫
{x∈Ω:v(x)>B}

ψ(x, v)dx+

∫
{x∈Ω:v(x)≤B}

ψ(x,B)dx

≤
∫
{x∈Ω:v(x)>B}

ψ(x, v)dx+

∫
{x∈Ω:v(x)≤B}

ψ(x, v)dx.

Now, from (4.6), we have

ψ(x,B) ≤ ψ(x, v(x)) on{x ∈ Ω : v(x) ≤ B}

and thus ∫
{x∈Ω:v(x)≤B}

ψ(x,B) ≤
∫
{x∈Ω:v(x)≤B}

ψ(x, v),

which implies (4.10) and thus (4.9).
To check (2.9), we assume thatv = B ∧w with somew ∈ W 1,p

0 (Ω)∩D(j).
From (4.1) and the definition ofL, L(B) = 0. Sincev − B ≤ 0, we have from
(4.5)(i) that

〈G(B), v −B〉 =

∫
Ω

F (x,B, 0)(v −B)dx ≤ 0.

http://jipam.vu.edu.au/
mailto:vy@umr.edu
http://jipam.vu.edu.au/


Sub- Supersolutions and the
Existence of Extremal Solutions

in Noncoercive Variational
Inequalities

Vy Khoi Le

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 28 of 37

J. Ineq. Pure and Appl. Math. 2(2) Art. 20, 2001

http://jipam.vu.edu.au

This implies (2.9), completing the proof of (a). The proof of (b) is similar.

By using Theorems3.2, 3.4, and Lemma4.1, we have the following exis-
tence result for (4.2).

Theorem 4.2. (a) AssumeB ∈ R satisfies (4.5), ψ satisfies (4.6), and that

|F (x, u, ξ)| ≤ a(x) + b(|u|σ + |ξ|σ)

for a.e.x ∈ Ω, u ≥ B, ξ ∈ RN , with 0 ≤ σ < p− 1, a ∈ Lp′
(Ω). Then, (4.2)

has a minimal solutionu∗ and a maximal solutionu∗ such thatB ≤ u∗ ≤ u∗.
(b) AssumeA,B ∈ R (A ≥ B) satisfy (4.5) – (4.8) and thatF has the

growth condition
|F (x, u, ξ)| ≤ a(x) + b(|ξ|p/q′

)

for a.e.x ∈ Ω, ξ ∈ RN , u ∈ [A,B] with q < p∗, a ∈ Lp′
(Ω). Then, (4.2) has a

minimal solutionu∗ and a maximal solutionu∗ such thatB ≤ u∗ ≤ u∗ ≤ A.

Remark 4.1. As shown in Theorem4.2(see also Theorem4.4below), compar-
ing sub-supersolution with recession method, we note that more flexible condi-
tions are usually required in the first method. In fact, in Theorem4.2, if there
areA,B ∈ R satisfying (4.5) – (4.8), then the growth condition forF is lim-
ited to onlyu ∈ [A,B]. On the other hand, when recession arguments are used
(cf. e.g. Theorems 3.4, 3.16 in [2], Theorems 2.3, 4.3 in [5], Theorems 2.5, 4.4,
Corollary 6.10 in [21], or Theorems 1, 2, 3 in [20], etc.) conditions on behaviors
of the functionalG containingF at infinity are assumed, which is completely
different from our approach here.
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Another advantage of the method here is that we obtain, in addition to the
solvability of (1.1), ordering properties of the solution sets, especially the ex-
istence of maximal and minimal solutions. This cannot be obtained by reces-
sion arguments. However, sub-supersolution method works only in function
spaces with some lattice structure (such asW 1,p(Ω)). That is the reason why
the method is normally restricted to problems with second-order operators, such
as (1.1). Recession methods, on the other hand, are applicable to higher order
problems.

4.2.

We consider in this example a variational inequality that contains thep-Laplacian,
that is, the inequality (1.1) with

〈L(u), v〉 =

∫
Ω

|∇u|p−2∇u · ∇v dx,

In this case,Ai = |∇u|p−2∂iu, (1 ≤ i ≤ N) andA0 = 0. The coefficientsAi

(i = 0, 1, . . . , N) clearly satisfy (2.2) and (2.3). For eachK > 0, suppose that
the function

(4.11) x 7→ sup{|F (x, u, ξ)| : 0 ≤ u ≤ K, |ξ| ≤ K}

belongs toLq′
(Ω). We also assume the following behavior ofF (x, u, ξ) when

u is very small or very large:

(4.12) lim inf
u→0+,|ξ|→0

F (x, u, ξ)

up−1
>
λ0

λ
> lim sup

u→∞,ξ∈RN

F (x, u, ξ)

up−1
,
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whereλ0 is the principal eigenvalue of thep-Laplacian,

λ0 = inf

{(∫
Ω

|u|pdx
)−1 ∫

Ω

|∇u|pdx : u ∈ W 1,p
0 (Ω) \ {0}

}
.

Let φ0 be the (unique) eigenfunction corresponding toλ0 such thatφ0(x) > 0
for all x ∈ Ω. (It is known, see e.g. [25], that φ0 ∈ C1,α(Ω) for someα ∈
(0, 1).) By choosingJ = 0 and using the arguments in [17] (Lemma 1), we can
show that the functionu = εφ0 satisfies (2.9) for all ε > 0 sufficiently small.
On the other hand, let̃Ω be a bounded open region that containsΩ and letλ̃
be the principal eigenvalue of thep-Laplacian onΩ̃ and φ̃ the corresponding
eigenfunction oñΩ such thatφ̃ > 0 on Ω̃. Then, we can prove thatu = Rφ̃|Ω
satisfies (2.12) (with J = 0) for R > 0, sufficiently large. The proofs of these
statements are somewhat lengthy; we refer the reader to [17] for more details.
The following lemma is about the construction of sub- and supersolutions of
(1.1) based on the eigenfunctionsφ0 andφ̃ of thep-Laplacian.

Lemma 4.3. (a) If there existsC1 > 0 such thatψ is nonincreasing on(−∞, C1),
i.e.,

(4.13) ψ(x, u) ≤ ψ(x, v), for a.e.x ∈ Ω, for all u, v such thatv ≤ u < C1,

then, forε > 0 sufficiently small,u = εφ0 is a subsolution of (4.2).
(b) Similarly, if there existsC2 > 0 such thatψ is nondecreasing on(C2,∞),

i.e.,

(4.14) ψ(x, u) ≥ ψ(x, v), for a.e.x ∈ Ω, for all u, v such thatu ≥ v > C2,

then forR > 0 sufficiently large,u = Rφ̃|Ω is a supersolution of (4.2).
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Proof. (a) We need only to check (2.8), i.e.,

j(v ∨ εφ0) ≤ j(v), ∀v ∈ W 1,p
0 (Ω) ∩D(j).

This is equivalent to∫
{x∈Ω:v<εφ0}

ψ(x, εφ0)dx+

∫
{x∈Ω:v≥εφ0}

ψ(x, v)dx

≤
(∫

{x∈Ω:v<εφ0}
+

∫
{x∈Ω:v≥εφ0}

)
ψ(x, v)dx,

that is,

(4.15)
∫
{x∈Ω:v<εφ0}

ψ(x, εφ0)dx ≤
∫
{x∈Ω:v<εφ0}

ψ(x, v)dx.

Now, sinceφ0 ∈ L∞(Ω), εφ0(x) < C1, for a.e.x ∈ Ω for ε > 0 small. Hence,
for v < εφ0 < C1, (4.13) impliesψ(x, v(x)) ≥ ψ(x, εφ0(x)) for a.e.x ∈ Ω.
This implies (4.15). Hence,εφ0 is a subsolution of (4.2). The proof of (b) is
similar.

As a consequence of Lemma4.3 and Theorem3.2, we have the following
result.

Theorem 4.4.Under the conditions (4.12) and (4.11), there exist a subsolution
u∗ and a supersolutionu∗ of (4.2) such that

(0 <)εφ0 ≤ u∗ ≤ u∗ ≤ Rφ̃|Ω,
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whereε > 0 sufficiently small andR > 0 sufficiently large. In particular, ifF
has the growth condition (4.11) andλ satisfies (4.12), then, (4.2) has a positive
solution.

Remark 4.2. (a) (4.2) can be seen as an eigenvalue problem for a variational
inequality. We have proved that forλ in certain appropriate interval (given by
(4.12)) , then (4.2) has positive eigenfunction.

(b) One can replace (2.4) by a somewhat different condition, concentrating
only on the higher-order coefficientsAi (1 ≤ i ≤ N). Namely, we assume that
A0 = 0 and instead of (2.4),

N∑
i=1

[Ai(x, u, ξ)− Ai(x, u
′, ξ)](ξi − ξ′i) > 0,

for a.e.x ∈ Ω, all u ∈ R, all ξ, ξ′ ∈ RN , ξ 6= ξ′, and in (2.5),

N∑
i=1

Ai(x, u, ξ)ξi ≥ α|ξ|p − β, a.e.x ∈ Ω, ∀u ∈ R, ∀ξ ∈ RN ,

(α > 0). Also, we need a Hölder-continuity type of assumption with respect to
u:

|Ai(x, u, ξ)− Ai(x, u
′, ξ)| ≤ [k(x) + |u|p−1 + |u′|p−1 + |ξ|p−1]ω(|u− u′|),

for a.e.x ∈ Ω, all u, u′ ∈ R, all ξ ∈ RN , whereω : [0,∞) → [0,∞) satisfies∫
0+

dr

ωp′(r)
= ∞
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(cf. [7]). Assume also thatj is given by an integral:

j(u) =

∫
Ω

ψ(x, u(x))dx,

whereψ satisfies the following growth condition (instead of (2.16)):

|ψ(x, u)| ≤ a3(x) + b3|u|s, a.e.x ∈ Ω,∀u ∈ R,

with a3 ∈ L1(Ω), 0 ≤ s < p∗. It can be checked thatj is continuous. By using
the arguments in [7] (see also [18]), we can prove the following result:

Theorem 4.5. If u1 andu2 satisfy (2.9) with J = j, thenu = max{u1, u2} also
satisfies (2.9) with J = j.

It follows that if u1, u2 are solutions of (1.1), thenmax{u1, u2} satisfies
(2.9).
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