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ABSTRACT. In this note we give a short and elegant proof of the resijit, e*(“i+*) — o(n)

for a not a rational multiple ofr, uniformly inw. This was first proved by Hardy and Littlewood,

in 1938. The main ingredient of our proof is Van der Corput’s inequality. We then generalize
this to obtainy_}_, t?e!(@ttat®) — o(nf+1), wheref is a nonnegative constant.
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1. INTRODUCTION

Hardy and Littlewood[[1] studied the series of the fol}", ¢*“*+**) and other similar
series associated with the elliptic Theta functions. It was noted there that the behavior is inter-
esting and difficult whenv is not a rational multiple ofr. The main result proved in[1] can
essentially be stated &3], e"“*) = o(n) for a not a rational multiple ofr uniformly in w.

We became interested i |n thls result, rather a generalization of it, while working on a problem
of estimation of parameters of a chirp-type statistical model. Although we hoped to find an easy
proof of this result in the literature, we were unable to find one. The purpose of this note is to
give an easy proof of it. We then generalize this to obtain a similar resuftfor, ¢!«
where/ is a positive constant.

The main ingredient of our proof is the following remarkable inequality.

Theorem 1.1(Van der Corput’s Fundamental Inequality®), p. 25}

Letug ---u, be complex numbers, and IBtbe an integer with < H < N. Then

H-1 N—h
H? Zun H(N + H —1) Z]un] +2AN+H—=1)Y (H=h) > tnlinin|.
n=1 h=1 n=1
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2. MAIN RESULT
Theorem 2.1.Let 3 be a nonnegative real number. Them", 7’ @+ot) = o(nf+1), for a
not a rational multiple ofr, uniformly inw.

Proof. By using Van der Corput’s inequality with fixell andu, = e*“+°%*) we obtain

n 2

2
w(wt+at?)

2.1) H?|Y et < Hn+H-1)) |e
t=1 t=1
H-1 n—h
+2> (n+H—1)(H=h)|> wi,
h=1 =
forall n > H. Butuii,,, = e “h—h’~2ath gnd so
n—h
_ Z e—21ath )
t=1

Substituting this in the inequality (2.1), we obtain

n 2 H-1 —h

H* Y @™ < Hn+ H-1)n+2Y (n+H—1)(H—h) Z —2ath

t=1 h=1 t=1

Thus
n 2 H-1 —h

1 2 1 1 1 (n+ H —1)(
292 - 1(wttat?) < - 2 —2wath .
(2:2) n;e _H+n nH+ Pt n2H2 Z
Let

n—h
e—szth'
t=1

Thus if « is not a rational multiple of we can writeM,, («, k) in the following form.

—wah(n—h+1) Sin[(” — h)ah‘]

M, h) =
nlash) = e sin(ah)
Then
My(a, h)| < ——.
Mo I < o]
If ho is the member of1,2,---,(H — 1)} for which
|sin(achg)| = oin |sin(ah)],
then
1

M [
| Mo, h)| < [sin(cho )|
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Substituting this in equation (2.2) we get

2
] — 2 1 1 1
- (wi+at?) < -
n Ze - H + n nH
t=1
< (n+H-1)(H-h 1
+2 i
P n’H sin(cv, ho)|
1 1 1 2
-~ H n nH |sin(ahy)|
Since this is true for alh > H, we obtain
lim Z ez (wttat?) i
n—oo H
Since thisis true for alH > 1, it foIIows that
lim =0,

E ez wt+at2)
n

uniformly inw. That is, ifa is not a ratlonal multiple of,

n

(23) Z ez(wt+at2) _ O(TL),

t=1

n—oo

uniformly in w.
Now we will show thaty ™" | t7e!(“t+et*) — o(nf+1) provideda is not a rational multiple of
. Let
Qo(w,a) =0,
and, forn > 1,

Qn(w’ @) = Z ez(thrat?) andsﬂ(w, Oé) _ Ztﬁez(“’t*o‘ﬁ),

t=1 t=1

Then
Suw,0) = S P(Quw, )~ Qui(w,a)
= WQu(.0) ~ Qo) ~ Y[+ 1)~ )Qu(w.0)
(2.4) = ’BQn (w, ) th (w, @)
where

folw, @) =[(n+1)" —n°|Q.(w,a) for n=12...
By the mean-value theorem we have
(n+1)°—n=pn°"1 where n<n<n+l1.

If 0 <3< 1,theni”~t < nf~1 whileif 3 > 1, theni”~! < (n+1)%~1 < (2n)%~1. It follows
that, forg > 0,

(2.5) (n+1)7 —n’ < cgn 1,
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wherecgs is a constant. Hence

[fo(w, )] < e Qu(w, )]

But by (2.3), ifa is not a rational multiple ofr, then@,,(w, &) = o(n) uniformly inw.
Thus if « is not a rational multiple of, then

| falw; a)] < egn’to(n),
o)
fulw, a) = o(n?).
uniformly in w. However,f,(w, @) = o(n”) implies that the mean' 37! f,(w, @) is o(n?).
Hence, ifa is not a rational multiple oft,

n—1
Z ft(W7 a) = O(Hﬁ—H)’
t=1

uniformly in w. But by (2.3)

[y

Sp(w, o) = nPQy,(w,a) — Y fi(w, a).

It follows that .S, (w, a) = o(n”*!), for a not a rational multiple ofr, uniformly inw.
This completes the proof of the Theorem. O
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