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Abstract

In this note, we present a generalization of the Ky Fan’s minimax inequality
theorem by means of a new version of the KKM lemma. Application is then
given to establish existence of solutions for mixed equilibrium problems. Finally,
we investigate the relationship between the latter problems and hemivariational
inequalities.
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1. Introduction
Blum-Oettli [2] understood by the so-called equilibrium problem, the following
abstract variational inequality problem:

(EP) findx̄ ∈ C such thatf(x̄, y) ≥ 0 for all y ∈ C,

whereC is a given set andf is a given scalar valued bifunction onC. It is
well-known that (EP) is closely related to Ky Fan’s minimax inequalities [9].
Whenf is written as a sum of two real bifunctions, (EP) will be called a mixed
equilibrium problem and we shall denote it by (MEP).
Many interesting and sophisticated problems in nonlinear analysis can be cast
into the form of (EP); say, for instance, optimization, saddle points, Nash equi-
librium, fixed points, variational inequalities and complementarity problems.

The purpose of this paper is two-fold. First, we continuously study the exis-
tence problem of solutions for (EP) under some more general conditions, using
a new version of the Fan KKM lemma. Then, to show the significance of the
treatment of such problems, we investigate the relationship between hemivari-
ational inequalities and mixed equilibrium problems. More precisely, the plan
of our contribution is as follows. In Section2, we state most of the material
used in this paper. In Section3, we present first a generalized Fan KKM lemma
for transfer closed-valued maps. This result is then used as a tool for proving
a new existence theorem for (EP). Some special cases are derived from this
result; in particular, we give an application to saddle point problems. In Section
4, we confine ourselves to the study of mixed equilibrium problems. Indeed, we
prove the existence of a mixed equilibrium by relaxing the upper semicontinu-
ity condition on the nonmonotone part; then we apply this result to solve some
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mixed variational inequality problems. Finally, Section5 indicates how the re-
sult of the previous section can be used to ensure the existence of solutions to
hemivariational inequalities involving some topological pseudomonotone func-
tionals.
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2. Definitions and Notations
Before the formal discussion, we begin with some notations and definitions,
which will be needed in the sequel. LetX be a topological vector space, and let
X ′ be its topological dual. LetC be a nonempty convex subset inX. Denote
byF(C) the set of all nonempty finite subsets ofC. Let

F : C → 2C be a set-valued map,

f : C × C → R and Φ : C → R two functions, and

S : C → 2X′
a set-valued operator.

F is called a KKM map if for any subsetA ∈ F(C), coA ⊂
⋃

x∈A F (x). φ
is said to be quasi convex if the strict lower level set{x ∈ C : φ(x) < 0} is
convex. It is quasi concave if−φ is quasi convex. Forλ ∈ R, φ is λ-quasi
convex (concave) ifφ− λ is quasi convex (concave).
F is said to be transfer closed-valued [13] if, for anyx, y ∈ C with y /∈ F (x),

there existsx′ ∈ C such thaty /∈ clCF (x). It is clear that this definition is
equivalent to say that

⋂
x∈C F (x) =

⋂
x∈C clCF (x). We will say thatF is

transfer closed-valued on a subsetB of C if the set-valued mapFB : B → 2B,
defined byFB(x) := F (x)∩B for all x ∈ B, is transfer closed-valued. Related
to this concept, let us recall the definition of transfer semicontinuity.f is said
to be transfer lower semicontinuous iny if, for eachx, y ∈ C with f(x, y) > 0,
there existx′ ∈ C and a neighborhoodUy of y in C such thatf(x′, z) > 0 for
all z ∈ Uy. f is said to be transfer upper semicontinuous if−f is transfer lower
semicontinuous. It’s easily seen that a lower (upper) semicontinuous bifunction
in y is transfer lower (upper) semicontinuous iny. We will say thatf is transfer
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lower semicontinuous onB if the restriction off onB × B is transfer lower
semicontinuous. Forλ ∈ R, f is λ-transfer lower (upper) semicontinuous iny
if the bifunctionf − λ is transfer lower (upper) semicontinuous iny.

Φ is called upper hemicontinuous if, for eachx, y ∈ C, the functiont 7→
Φ(tx+ (1− t)y), defined fort ∈ [0, 1], is upper semicontinuous. The operator
S is said to be upper hemicontinuous ift 7→ S(tx + (1 − t)y), defined for
t ∈ [0, 1], is upper semicontinuous as a set-valued map.
f is said to be monotone iff(x, y) + f(y, x) ≤ 0 for all x, y ∈ C. f

is pseudomonotone if, for everyx, y ∈ C, f(x, y) ≥ 0 implies f(y, x) ≤ 0.
One can easily see that a monotone bifunction is pseudomonotone.S is said
to be monotone if for allx, y ∈ C and for all s ∈ Sx , r ∈ Sy, one has
〈s− r, x− y〉 ≥ 0.
f is pseudomonotone in the topological sense (T-pseudomonotone for short),

whenever(xα) is a net onC converging tox ∈ C such thatlim inf f(xα, x) ≥ 0,
thenlim sup f(xα, y) ≤ f(x, y) for all y ∈ C. Suppose now thatX is a reflex-
ive Banach space. LetJ : C → IR be a locally Lipschitz function. Denote
by J0 its directional differential in the sense of Clarke. We know [7] that J0

is upper semicontinuous andJ0(x, .) is convex for everyx ∈ C. We say that
J ∈ PM(C) if the bifunctionf , defined byf(x, y) := J0(x, y − x) for all
x, y ∈ C, is T-pseudomonotone. When this bifunction is only T-quasi pseu-
domonotone (that is, if for any sequence(xn) ∈ C such thatxn ⇀ x in
C and lim inf J0(xn, x − xn) ≥ 0, then lim J0(xn, x − xn) = 0)), we shall
say thatJ ∈ QPM(C). A function belonging to the classPM(C) (resp.
QPM(C)) has the property that its Clarke’s subdifferential is pseudomono-
tone in the sense of Browder and Hess (resp. quasi-pseudomonotone) (see [10,
Proposition 2.13]). The operatorS is said to be T-pseudomonotone [6] if so is
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the bifunctionf , given byf(x, y) := sup
s∈Sx

〈s, y − x〉. Suppose now thatS is

single-valued. We recall also thatS satisfies the(S)+ condition, if

xn ⇀ x in C and lim sup〈Sxn, xn − x〉 ≤ 0 imply xn → x in C.

φ is said to be inf compact [1, p 318] if the set lower level setclC{x ∈ C :
φ(x) ≤ 0} is compact.φ is sup compact if−φ is inf compact. Forλ ∈ R,
φ is λ-inf (sup) compact ifφ − λ is inf (sup) compact. We say thatS is x0-
coercive for somex0 ∈ C if there exists a real-valued functionc on IR+ with
lim

r→+∞
c(r) = +∞ such that for allx ∈ C 〈Sx, x− x0〉 ≥ c(‖x‖)‖x‖.
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3. Ky Fan’s Minimax Inequality

3.1. A KKM Result

It is interesting to note that the Fan KKM lemma [8] plays a crucial role to
prove existence results for (EP). In [3], this result was improved by assuming
the closedness condition only upper finite dimensional subspaces, with some
topological pseudomonotone condition. In [6], Chowdhury and Tan, replac-
ing finite dimensional subspaces by convex hulls of finite subsets, restated the
Brézis-Nirenberg-Stampacchia result under weaker assumptions. On the other
hand, Tian [13] introduced a new class of closedness conditions, namely the
transfer closedness, and give the KKM conclusion for multifunctions satisfy-
ing this weak assumption. Here, using this class, we give another more refined
version of the Fan KKM lemma containing Chowdhury-Tan result as a special
case.

Lemma 3.1. Suppose thatC is convex. If

(i) clCF (x0) is compact for somex0 ∈ C;

(ii) F is a KKM map;

(iii) for eachA ∈ F(C) with x0 ∈ A, F is transfer closed-valued oncoA;

(iv) for everyA ∈ F (C) with x0 ∈ A, we have

[clC(
⋂

x∈coA

F (x))] ∩ coA = [
⋂

x∈coA

F (x)] ∩ coA,
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then
⋂
x∈C

F (x) 6= ∅.

Proof. Let A ∈ F(C) with x0 ∈ A. Consider a set-valued mapFA : coA →
2coA, defined byFA(x) := clC(F (x) ∩ coA) for all x ∈ coA. FA so defined
satisfies the KKM conditions. Indeed, firstFA is nonempty and compact-valued
sinceF is a KKM map (x ∈ F (x) for all x ∈ coA) andcoA is compact; then,
for eachB ∈ F(coA), we havecoB ⊂

⋃
x∈B F (x), butcoB ⊂ coA, hence

coB ⊂
⋃
x∈B

F (x) ∩ coA ⊂
⋃
x∈B

clC(F (x) ∩ coA),

thusFA is a KKM map. It follows that⋂
x∈coA

FA(x) 6= ∅.

Hence by (iii), we obtain ⋂
x∈coA

F (x) ∩ coA 6= ∅.

Then we follow the same argument in [6, proof of Lemma 2] to get our assertion.

3.2. General Existence Results

Now we are in position to give the following generalization of Ky Fan’s mini-
max inequality theorem.
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Theorem 3.2. Suppose thatφ andψ are two scalar valued bifunctions onC
such that

(A1) ψ(x, y) ≤ 0 impliesφ(x, y) ≤ 0 for all x, y ∈ C;

(A2) for eachA ∈ F(C), sup
y∈coA

min
x∈A

ψ(x, y) ≤ 0;

(A3) for eachA ∈ F(C), φ is transfer lower semicontinuous iny on coA;

(A4) for eachA ∈ F(C), wheneverx, y ∈ coA and(yα) is a net onC converg-
ing toy, then

φ(tx+ (1− t)y, yα) ≤ 0 ∀t ∈ [0, 1] ⇒ φ(x, y) ≤ 0 ;

(A5) there isx0 ∈ C such thatφ(x0, .) is inf compact.

Then there existsy ∈ C such thatφ(x, y) ≤ 0 for all x ∈ C.

Proof. It’s a simple matter to see that all conditions of Lemma3.1are fulfilled
if we take

F (x) = {y ∈ C : φ(x, y) ≤ 0} ∀x ∈ C.

Indeed, (i) follows from (A5), and (ii) from (A1) and (A2). It remains to show
that (A3) implies (iii), and (A4) implies (iv). To do the former, fixA ∈ F (C)
and let(x, y) ∈ coA × coA with y /∈ F (x); that isφ(x, y) > 0; hence, there
existx′ ∈ coA and a neighborhoodUy of y in coA such thatφ(x′, z) > 0 for all
z ∈ Uy; thusx /∈ clC(F (x)∩coA). For the latter, fix alsoA ∈ F (C) and lety ∈
clC [

⋂
x∈coA F (x)]∩ coA; that isy ∈ coA and there is a net(yα) converging toy

such thatφ(x, yα) ≤ 0 for all x ∈ coA; it follows thatφ(tx+ (1− t)y, yα) ≤ 0
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for all x ∈ coA and all t ∈ [0, 1]; hence, from (A4), we getφ(x, y) ≤ 0
for all x ∈ coA; we conclude thaty ∈ [

⋂
x∈coA F (x)] ∩ coA. The proof is

complete.

Remark 3.1. It has to be observed that assumption (A2) holds provided that

(i) ψ(x, x) ≤ 0 for all x ∈ C, and

(ii) for eachy ∈ C, ψ(., y) is quasi concave.

Remark 3.2. Assumption (A3) holds clearly whenφ(x, .) is supposed to be
lower semicontinuous oncoA, for everyA ∈ F(C) and everyx ∈ coA. More-
over, both of assumptions (A3) and (A4) are satisfied when the classical assump-
tion of lower semicontinuity ofφ(x, .) is supposed to be true for everyx ∈ C.

Remark 3.3. The compactness condition (A5) is satisfied if we suppose that
there exists a compact subsetB ofC andx0 ∈ B such thatφ(x0, y) > 0 for all
y ∈ C \B.

Theorem3.2is now a generalization of [6, Theorem 4]. It also improves [12,
Theorem 1]. Let us single out some particular cases of this theorem. First, let
φ = ψ and make use of Remark3.1.

Theorem 3.3.Suppose thatφ : C → R satisfy

(B1) φ(x, x) ≤ 0 for all x ∈ C;

(B2) for eachy ∈ C, φ(., y) is quasi concave;

(B3) for eachA ∈ F(C), φ is transfer lower semicontinuous iny on coA;
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(B4) for eachA ∈ F(C), wheneverx, y ∈ coA and(yα) is a net onC converg-
ing toy, then

φ(tx+ (1− t)y, yα) ≤ 0 ∀t ∈ [0, 1] ⇒ φ(x, y) ≤ 0 ;

(B5) there isx0 ∈ C such thatφ(x0, .) is inf compact.

Then there existsy ∈ C such thatφ(x, y) ≤ 0 for all x ∈ C.

We can also derive the following generalization of a Ky Fan’s minimax in-
equality theorem due to Yen [14, Theorem 1].

Theorem 3.4.Letf, g : C → R. Suppose thatλ = sup
x∈C

g(x, x) <∞, and

(C1) f(x, y) ≤ g(x, y) for all x, y ∈ C;

(C2) for eachy ∈ C, g(., y) is λ-quasi concave;

(C3) for eachA ∈ F(C), f is λ-transfer lower semicontinuous iny on coA;

(C4) for eachA ∈ F(C), wheneverx, y ∈ coA and(yα) is a net onC converg-
ing toy, then

f(tx+ (1− t)y, yα) ≤ λ ∀t ∈ [0, 1] ⇒ f(x, y) ≤ λ;

(C5) there exist a compact subsetB of C andx0 ∈ B such thatf(x0, y) > λ
for all y ∈ C \B.

Then we have the following minimax inequality

inf
y∈B

sup
x∈C

f(x, y) ≤ sup
x∈C

g(x, x).
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Proof. Setφ(x, y) = f(x, y) − λ andψ(x, y) = g(x, y) − λ for all x, y ∈ C.
By virtue of Theorem3.2and taking into account assumption (C5), there exists
y ∈ B such thatsupx∈C f(x, y) ≤ supx∈C g(x, x), which is our assertion.

The following another particular case will be needed in the next section.

Theorem 3.5.LetC be closed convex inX. Suppose that

(D1) ψ(x, y) ≤ 0 impliesφ(x, y) ≤ 0 for all x, y ∈ C;

(D2) ψ(x, x) ≤ 0 for all x ∈ C,

(D3) for every fixedy ∈ C,ψ(., y) is quasi concave.

(D4) for every fixedx ∈ C, φ(x, .) is lower semicontinuous on the intersection
of finite dimensional subspaces ofX withC;

(D5) wheneverx, y ∈ C and(yα) is a net onC converging toy, then

φ(tx+ (1− t)y, yα) ≤ 0 ∀t ∈ [0, 1] ⇒ φ(x, y) ≤ 0 ;

(D6) there exist a compact subsetB ofX andx0 ∈ C∩B such thatφ(x0, y) > 0
for all y ∈ C \B.

Then there existsy ∈ C ∩B such thatφ(x, y) ≤ 0 for all x ∈ C.
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Proof. According to Theorem3.2, there existsy ∈ C such thatφ(x, y) ≤ 0 for
all x ∈ C. The elementy is in the compactB due to condition (D6).

If we setφ = ψ, we recover [3, Theorem 1].
We balance now the continuity requirements by assuming the algebraic pseu-

domonotonicity on the criterion bifuncion, and we get from Theorem3.2 the
following existence theorem for (EP).

Theorem 3.6.Letf : C × C → R be a bifunction such as to satisfy

(E1) f is pseudomonotone,

(E2) f(x, x) ≥ 0 for all x ∈ C,

(E3) for eachx ∈ C, f(x, .) is convex,

(E4) for eachA ∈ F(C), f is transfer lower semicontinuous iny on coA,

(E5) for eachA ∈ F(C), wheneverx, y ∈ coA and(yα) is a net onC converg-
ing toy, then

f(tx+ (1− t)y, yα) ≤ 0 ∀t ∈ [0, 1] ⇒ f(x, y) ≤ 0 ;

(E6) for eachy ∈ C, f(., y) is upper hemicontinuous,

(E7) there exist a compact subsetB of C andx0 ∈ B such thatφ(x0, y) > 0
for all y ∈ C \B.

Then (EP) has at least one solution, which is inB.
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Proof. Setϕ(x, y) = f(x, y), ψ(x, y) = −f(y, x) for all x, y ∈ C. All as-
sumptions of Theorem3.2 are clearly satisfied; hence there existsx ∈ B such
thatf(y, x) ≤ 0 for all y ∈ C. The conclusion holds if we show the following
assertion: for everyx ∈ C, one has

f(y, x) ≤ 0 ∀y ∈ C =⇒ f(x, y) ≥ 0 ∀y ∈ C

To do this, letx ∈ C such that

(3.1) f(y, x) ≤ 0 ∀y ∈ C

Fix y ∈ C, and setyt = ty + (1− t)x for t ∈]0, 1[. Sincef(yt, .) is convex and
f(yt, yt) ≥ 0, thentf(yt, y) + (1− t)f(yt, x) ≥ 0. It follows clearly from (3.1)
that tf(yt, y) ≥ 0; hencef(yt, y) ≥ 0. The upper hemicontinuity off(., y)
allow us to conclude thatf(x, y) ≥ 0. This completes our proof.

3.3. Saddle Points

Let F : C × C → R. A (strategy) pair(x, y) is a saddle point ofF if one has

F (x, y) ≤ F (x, y) ≤ F (x, y) ∀x, y ∈ C.

This equivalent to writing

inf
x∈C

sup
y∈C

F (x, y) = sup
y∈C

inf
x∈C

F (x, y) = F (x, y).

By making use of Theorem3.3, we can formulate the following existence theo-
rem for saddle points.
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Theorem 3.7.Assume that

(i) F (x, x) = 0 for all x ∈ C,

(ii) F is quasi convex (resp. concave) with respect tox (resp.y),

(iii) for eachA ∈ F(C), F is transfer upper (resp. lower) semicontinuous in
y (resp.x) on coA,

(iv) for eachA ∈ F(C), wheneverx, y ∈ coA and (yα) (resp. (xα)) is a net
onC converging toy (resp.x), then

F (tx+ (1− t)y, yα) ≥ 0 ∀t ∈ [0, 1] ⇒ F (x, y) ≥ 0

(resp.

F (xα, tx+ (1− t)y) ≤ 0 ∀t ∈ [0, 1] ⇒ φ(x, y) ≤ 0);

(v) there existx0 (resp.y0) ∈ C such thatF (x0, .) (resp.F (., y0)) is sup (resp.
inf) compact.

ThenF has at least one saddle point(x, y) in C, which satisfiesF (x, y) = 0.

Proof. We apply Theorem3.3, first forφ = −F , we get the existence ofy ∈ C
which satisfiesF (x, y) ≥ 0 for all x ∈ C; then forφ(x, y) = F (y, x) for all
x, y ∈ C, there existsx ∈ C such thatF (x, y) ≤ 0 for all y ∈ C. We conclude
that(x, y) is a saddle point forF , with F (x, y) = 0.

We can deduce easily the von Neumann’s minimax theorem [1, p 319, The-
orem 8] when the sets of strategies are the same.
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4. Mixed Equilibrium Problems
Here we focus our attention on the existence of solutions for equilibrium prob-
lems. The criterion mapping is composed of two parts, a monotone bifunction
and a nonmonotone perturbation. Our aim is to establish the existence of equi-
libria by relaxing the upper semicontinuity condition on the nonmonotone part.
From this point on,C is supposed to be closed and convex inX.

Theorem 4.1.Considerf, g : C × C → R such that

(1) g is monotone;

(2) f(x, x) = g(x, x) = 0 for all x ∈ C;

(3) for every fixedx ∈ C, f(x, .) andg(x, .) are convex;

(4) for every fixedx ∈ C, g(x, .) is lower semicontinuous;

(5) for every fixedy ∈ C, f(., y) is upper semicontinuous onC ∩ F , whileF
is a finite dimensional subspace inX;

(6) f is T-pseudomonotone;

(7) for every fixedy ∈ C, g(., y) is upper hemicontinuous;

(8) there is a compact subsetB ofX andx0 ∈ C ∩B such that

g(x0, y)− f(y, x0) > 0, for all y ∈ C\B.

Then there exists at least one solution to (MEP) associated tof andg.

http://jipam.vu.edu.au/
mailto:ekalmoun@ucam.ac.ma
http://jipam.vu.edu.au/


On Ky Fan’s Minimax
Inequalities, Mixed Equilibrium
Problems and Hemivariational

Inequalities

El Mostafa Kalmoun

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 18 of 31

J. Ineq. Pure and Appl. Math. 2(1) Art. 12, 2001

http://jipam.vu.edu.au

Proof. In order to apply Theorem3.5, setφ(x, y) = g(x, y) − f(y, x) and
ψ(x, y) = −g(y, x)− f(y, x) for all x, y ∈ C.
Let us show that the assumptions of Theorem3.5are satisfied.
(D1), (D2) and (D6) are easily checked from (1), (2) and (8) respectively. For
(D3), if x, y, z ∈ C then for anyt ∈]0, 1[ one has

g(y, tx+(1−t)z)+f(y, tx+(1−t)z) ≤ t[g(y, x)+f(y, x)]+(1−t)[g(y, z)+f(y, z)].

In this way, the set

{x ∈ C : f(x, y) + g(x, y) < 0}

is convex for ally ∈ C.
Moreover, sinceg(x, .) is lower semicontinuous andf(., x) is upper semicon-
tinuous on every finite dimensional subspace for allx ∈ C, g(x, .) − f(., x) is
lower semicontinuous on every finite dimensional subspace inC for all x ∈ C.
This means that (D4) holds.
To check (D5). Letx, y ∈ C and(yα) a net onC which converges toy such
that, for everyt ∈ [0, 1],

(4.1) g(tx+ (1− t)y, yα)− f(yα, tx+ (1− t)y) ≤ 0.

For t = 0, one has

(4.2) g(y, yα)− f(yα, y) ≤ 0.

Sinceg(y, .) is lower semicontinuous, it follows thatg(y, y) ≤ lim inf f(yα, y).
Combining with (2), one can write0 ≤ lim inf f(yα, y). Therefore

(4.3) lim sup f(yα, x) ≤ f(y, x)
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sincef is T-pseudomonotone.
Recall (4.1) and taket = 1, it follows thatg(x, yα) − f(yα, x) ≤ 0. By virtue
of assumption (4) and relation (4.3), we get

g(x, y)− f(y, x) ≤ 0.

Thus (D5) is satisfied.
We deduce that there existsx ∈ C such that

(4.4) g(y, x)− f(x, y) ≤ 0 for all y ∈ C,

Let y ∈ C be a fixed point and setyt = ty+(1− t)x for t ∈]0, 1[. Sinceg(yt, .)
is convex andg(yt, yt) = 0, then

(4.5) tg(yt, y) + (1− t)g(yt, x) ≥ 0.

From relation (4.4), one has(1 − t)g(yt, x) − (1 − t)f(x, yt) ≤ 0. Combining
with (4.5), it follows tg(yt, y) + (1 − t)f(x, yt) ≥ 0. Using the convexity of
f(x, .), we can writeg(yt, y) + (1 − t)f(x, y) ≥ 0 becausef(x, x) = 0. The
upper hemicontinuity ofg(., y) make it possible to write

g(x, y) + f(x, y) ≥ 0.

The proof is complete.

Remark 4.1. Since the upper semicontinuity off(., y), for all y ∈ C, implies
that assumptions (5) and (6) are satisfied, the result of Blum-Oettli (Theorem 1
in [2] ) is an immediate consequence of Theorem4.1whenC is supposed to be
compact. On the other hand, iff = 0 then Theorem4.1collapses to a Ky Fan’s
minimax inequality theorem for monotone bifunctions given in [1] (Theorem 9,
p 332).
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A consequence of this theorem is the following existence theorem for mixed
variational inequalities. Suppose that the duality pairing〈., .〉 betweenX and
X ′ is continuous.

Theorem 4.2.Leth be a real convex lower semicontinuous function onC, and
let S, T be two operators fromC to 2X′

such as to satisfy :
(i) S is T-pseudomonotone, upper semicontinuous on finite dimensional sub-
spaces, and has convex weakly* compact values;
(ii) T is monotone, upper hemicontinuous, and has convex weakly* compact
values;
(iii) there is a compact subsetB ofX andx0 ∈ C ∩B such that

inf
s∈Sy

〈s, y − x0〉+ sup
t∈Tx0

〈t, y − x0〉+ h(y)− h(x0) > 0 ∀y ∈ C\B.

Then there existsx ∈ B solution to the following mixed variational inequality

(4.6) ∃s ∈ Sx , ∃t ∈ Tx : 〈s+ t, y − x〉+ h(y)− h(x ≥ 0 ∀y ∈ C.

Proof. First of all, it has to be observed that inequality (4.6) is equivalent to
write

sup
s ∈ Sx
t ∈ Tx

inf
y∈C

[〈s+ t, y − x〉+ h(y)− h(x)] ≥ 0.

Let D := Sx × Tx andϕ(d, y) := 〈s + t, y − x〉 + h(y) − h(x) for all d =
(s, t) ∈ D and ally ∈ C. It’s easily seen thatϕ(., y) is concave and upper
semicontinuous for everyy ∈ C, and thatϕ(d, .) is convex for everyd ∈ D.
Moreover,D is a convex weakly* compact subset ofX ′. It follows, according
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to the Lopsided minimax theorem (see [1, p 319, Theorem 7]) that

sup
d∈D

inf
y∈C

ϕ(d, y) = inf
y∈C

sup
d∈D

ϕ(d, y).

Hence, if we setf(x, y) = sups∈Sx〈s, y−x〉 andg(x, y) = supt∈Tx〈t, y−x〉+
h(y)− h(x), then inequality (4.6) will be now equivalent to

inf
y∈C

(f(x, y) + g(x, y)) ≥ 0.

Let us now check the assumptions of Theorem4.1. Assumptions (2), (3) and
(4) hold clearly. (iii) implies (8). By definition, the T-pseudomonotonicity of
S implies that of f; hence (6) holds. On the other hand, the finite dimensional
upper semicontinuity ofS together with the fact thatS has weakly* compact
values imply that (5) is satisfied (see [1, p 119, Proposition 21]. For (1), we
have for eachx, y ∈ C,

g(x, y) + g(y, x) = sup
t∈Tx

〈t, y − x〉+ sup
r∈Ty

〈r, x− y〉

= sup
t ∈ Tx
r ∈ Ty

〈t− r, y − x〉

≤ 0.

Finally, by virtue of [1, p 373, Lemma 11], we have that the functionx 7→
sups∈Sx〈s, y − x〉 is upper hemicontinuous sinceS is upper hemicontinuous
and has weakly* compact values; thus (7) holds. The conclusion follows the
from the assertion of Theorem4.1.
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Remark 4.2. The coercivity condition (iii) is satisfied if there existsx0 ∈ C
such that

lim
‖y‖ → ∞

y ∈ C

inf
s∈Sy

〈s, y − x0〉+ sup
t∈Tx0

〈t, y − x0〉+ h(y)− h(x0) > 0.

Remark 4.3. Whenh = 0 andS = 0, Theorem4.2 collapses to an existence
result of a generalization of the Browder-Hartman-Stampacchia variational in-
equality [5, Theorem 4.1]. ForT = 0 and S is a single-valued operator, it
extends [3, Application 3]. Finally, under a minor change in the setting of The-
orem4.2, we can recover also [6, Theorem 7].
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5. Hemivariational Inequalities
When studying generalized mechanical problems that involve nonconvex en-
ergy functionals, Panagiotopoulos [11] introduced the hemivariational inequali-
ties as a mathematical formulation. Since then, this theory has been proved very
efficient for the treatment of certain as yet unsolved or partially solved problems
in mechanic, engineering and economics.

The aim of this section is to show how that (MEP) can be an efficient tool
for studying hemivariational inequalities that involve topological pseudomono-
tone functionals. More precisely, we shall use an existence result for (MEP)
(Theorem4.1) to get the existence of solutions to these inequalities without the
hypothesis of quasi or strong quasi boundedness as in [10].

First, to illustrate the idea of hemivariational inequalities, we discuss an ex-
ample concerning a body contact, which its variational formulation leads to a
hemivariational inequality.

5.1. An example

Assume we are given a linear elastic body referred to a Cartesian orthogonal
coordinate systemOx1x2x3. This body is identified to an open bounded subset
Ω of R3. We denote byΓ the boundary ofΩ, which is supposed to be appro-
priately smooth. We denote also byu = (ui)1≤i≤3 the displacement vector and
by S = (Si)1≤i≤3 the stress vector overΓ. We recall thatSi = σijnj, where
σ = (σij) is the stress tensor andn = (ni) is the outward unit normal vector
onΓ. The vectorS (resp.,u) may be decomposed into a normal componentSN

(resp.,uN ) and a tangential oneST (resp.,uT ) with respect toΓ.
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We begin first with the treatment of the case of monotone boundary con-
ditions, which leads to variational inequalities as a formulation. LetβN be a
maximal monotone operator fromR to 2

R
. Then we may consider the following

boundary condition in the normal direction:

(5.1) −SN ∈ βN(uN),

Similar conditions may be considered in the tangential direction−ST ∈ βT (uT ),
or generally−S ∈ β(u).
One can formulate relations (5.1) otherwise by calling upon some proper convex
and lower semicontinuous functionalJN that satisfiesβN = ∂JN . Henceforth
one can write

−SN ∈ ∂JN(uN).

This law is multivalued and monotone. It includes many classical unilateral
boundary conditions (e.g.uN = 0 or SN = 0). This kind of conditions have as
variational formulation the following variational inequality:

JN(vN)− JN(uN) ≥ −SN(vN − uN), ∀vN ∈ R.

However there are many other problems concerning the contact on an elastic
body that may be expressed with multivalued boundary conditions which are
nonmonotone. Consider an example which describes an adhesive contact with
a rubber support. It may take the following form

(5.2)


−SN ∈ β̃(uN) if uN < a

β̃(a) ≤ −SN < +∞ if uN = a
SN = ∅ if uN > a
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whereβ̃ is defined as follows. Giving a functionβ : R → R in L∞locR, consider

two associated functionsβρ andβρ defined forρ > 0 by

βρ(t) := ess sup
|t1−t|<ρ

β(t1), ∀t ∈ R

and
βρ(t) := ess inf

|t1−t|<ρ
β(t1), ∀t ∈ R.

They are respectively decreasing and increasing with respect toρ; hence their
limits, whenρ→ 0+, exist. We note

β(t) := lim
ρ→0+

βρ(t), ∀t ∈ R

and
β(t) := lim

ρ→0+

βρ(t), ∀t ∈ R.

At this stage, we definẽβ by

β̃(t) := [β(t), β(t)], ∀t ∈ R.

In general,̃β so defined is not necessarily monotone.
Let us turn to (5.2). We have alwaysuN ≤ a; while the caseuN > a is
impossible. Thus, foruN = a, the relation my become infinite. (5.2) can be
written as

(5.3) −SN ∈ β̃(uN) +NC(uN).
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HereC =]−∞, a] andNC is the normal cone ofC. Moreover, Chang stated in
[4] that, if β(t±0) exist for allt ∈ R, then we can determine a locally Lipschitz
functionJ by

J(t) =

∫ t

0

β(s)ds, ∀t ∈ R

so that
∂J(t) = β̃(t), ∀t ∈ R.

Here∂ stands for the generalized gradient of Clarke (see [7]). Clearly (5.3)
becomes

J0(uN , vN − uN) ≥ −SN(vN − uN), ∀vN ∈ C.

This is a simple hemivariational inequality. Panagiotopoulos called it so to point
out its difference to the classical variational inequalities.ß

This example was summarized from [10], which is a comprehensive refer-
ence for the interested reader in the theory and applications of hemivariational
inequalities.
We shall now turn our attention to the mathematical concepts of the theory by
considering a general form.

5.2. Problem Formulation

LetX be a reflexive Banach space andC be a nonempty convex closed subset
ofX. LetJ : C → IR be a locally Lipschitz function. Let alsoA be an operator
from C to X ′, ϕ be a real lower semicontinuous convex function onC and
l ∈ X ′

.
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We are concerned with the following hemivariational inequality :
Findx ∈ C such that

(HI) 〈Ax, y − x〉+ J0(x, y − x) + ϕ(y)− ϕ(x) ≥ 〈l, y − x〉, ∀y ∈ C.

Particular cases of this inequality arise, e.g in the variational formulation of the
problem of a linear elastic body subjected to two- or three-dimensional friction
law and also in the theory of laminated von Kármán plates.

Remark 5.1. Due to the presence of the monotone part corresponding toϕ,
(HI) was called in [10] variational-hemivariational inequality. The particular
case of hemivariational inequalities of [10] corresponds to (HI) whenϕ = 0.

5.3. Existence Theorem

As an application of Theorem4.1, we get the existence of solutions to the (HI)
problem.

Theorem 5.1.Assume that

(i) A is pseudomonotone and locally bounded on finite dimensional subspaces;

(ii) eitherJ ∈ PM(C), or J ∈ QPM(C) andA satisfies the(S)+ condition;

(iii) there existsx0 ∈ C such thatA is x0-coercive and

(5.4) J0(y, x0 − y) ≤ k(1 + ‖y‖) for all y ∈ C, k = const.

Then the hemivariational inequality (HI) has at least one solution.

http://jipam.vu.edu.au/
mailto:ekalmoun@ucam.ac.ma
http://jipam.vu.edu.au/


On Ky Fan’s Minimax
Inequalities, Mixed Equilibrium
Problems and Hemivariational

Inequalities

El Mostafa Kalmoun

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 28 of 31

J. Ineq. Pure and Appl. Math. 2(1) Art. 12, 2001

http://jipam.vu.edu.au

Proof. Assumption (i) implies thatA is continuous from each finite dimensional
subspace ofX to the weak topology onX

′
(see [15, Proposition 27.7, (b)]). If

we takeX equipped with the weak topology,f(x, y) = 〈Ax, y−x〉+J0(x, y−
x) andg(x, y) = ϕ(y)−ϕ(x)−〈l, y−x〉, then it suffices according to Theorem
4.1 to prove two assertions: First thatf is pseudomonotone, and second that
assumption (8) of Theorem4.1 is satisfied.

Let us begin with the proof of the first one. Suppose thatJ ∈ PM(C) then
f is pseudomonotone as a sum of two pseudomonotone mappings (see [15,
Proposition 27.6, (e)]); the same proof can be used here).
Suppose on the other hand thatJ ∈ QPM(C) andA has the (S)+ property. Let
(xn) be a sequence inC converging weakly tox ∈ C such that

(5.5) lim inf[〈Axn, x− xn〉+ J0(xn, x− xn)] ≥ 0.

It suffices to show that

(5.6) lim inf〈Axn, x− xn〉 ≥ 0.

Indeed, if (5.6) holds then, by pseudomonotonicity ofA, we can write

(5.7) lim sup〈Axn, y − xn〉 ≤ 〈Ax, y − x〉 for all y ∈ C.

The (S)+ condition ofA implies thatxn → x in C. Therefore

(5.8) lim sup J0(xn, y − xn) ≤ J0(x, y − x) for all y ∈ C

sinceJ0 is upper semicontinuous. Hence, combining (5.7) with (5.8), it follows

lim sup[〈Axn, y−xn〉+J0(xn, y−xn)] ≤ 〈Ax, y−x〉+J0(x, y−x) for all y ∈ C.

http://jipam.vu.edu.au/
mailto:ekalmoun@ucam.ac.ma
http://jipam.vu.edu.au/


On Ky Fan’s Minimax
Inequalities, Mixed Equilibrium
Problems and Hemivariational

Inequalities

El Mostafa Kalmoun

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 29 of 31

J. Ineq. Pure and Appl. Math. 2(1) Art. 12, 2001

http://jipam.vu.edu.au

Now, let us show that (5.6) holds. Suppose on the contrary that there existr < 0
and a subsequence of(xn), which we note also(xn), such thatlim〈Axn, x −
xn〉 = r. Hence, due to (5.5) we can write

(5.9) lim inf J0(xn, x− xn) ≥ −r > 0.

SinceJ ∈ QPM(C), it follows

lim J0(xn, x− xn) = 0,

which contradicts (5.9).
To show the second result, it suffices, sinceg(x, .) is weakly lower semicontin-
uous for everyx ∈ C and following a remark of Blum and Oettli ([2, p. 131]),
to prove that

(〈Ay, x0 − y〉+ J0(y, x0 − y))/‖y − x0‖ −→ −∞ as‖y − x0‖ → +∞.

This is ensured by assumption (iii).

Remark 5.2.

1. Estimation (5.4) is given in [10] with another form more relaxed. It can
be omitted when the multivalued operatorA+ ∂J is x0-coercive.

2. Observe that we have got here a solution of the variational-hemivariational
inequalities problem without recourse to a condition of quasi or strong
quasi boundedness onA or ∂ϕ as it was made in [10].

3. It is also interesting to note that we cannot make use of Theorem 1 in [2]
to solve (HI) with the same conditions since the functionJ0(, , y) is not
necessarily weakly upper semicontinuous which is the assumption of [2].
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