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Abstract: A family of optimal inequalities is obtained involving the intrinsic scalar
curvature and the extrinsic Casorati curvature of submanifolds of real space
forms. Equality holds in the inequalities if and only if these submanifolds are
invariantly quasi-umbilical. In the particular case of a hypersurface in a real
space form, the equality case characterises a special class of rotation hypersur-
faces.
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1. Introduction

B.-Y. Chen obtained manyoptimal inequalities between intrinsic and extrinsic quan-
tities for n-dimensional Riemannian manifolds which are isometrically immersed
into (n+m)-dimensional real space forms, in particular, in terms of some new intrin-
sic scalar-valued curvature invariants on these manifolds, the so-calledδ-curvatures
of Chen(see e.g. [4, 5, 6]). The δ-curvatures of Chen originated by considering
the minimum or maximum value of thesectional curvatureof all two-planes, or the
extremal values of thescalar curvatureof all k-planes(2 < k < n), etc., in the
tangent space at a point of the manifold. These invariants provide lower bounds for
thesquared mean curvatureand equality holds if and only if the second fundamental
form assumes some specified expressions with respect to special adapted orthonor-
mal frames. For the corresponding immersions, these Riemannian manifolds receive
the least amount of “surface-tension” from the surrounding spaces and therefore are
called ideal submanifolds. Such inequalities have been extended, amongst others,
to submanifolds in general Riemannian manifolds [8], to Kaehler submanifolds in
Kaehler manifolds [7, 20, 22] and to Lorentzian submanifolds in semi-Euclidean
spaces [18].

Instead of balancingintrinsic scalar valued curvatures, such as thescalar cur-
vatureor the more sophisticatedChen curvatures, with theextrinsic squared mean
curvature, in the following, we will obtain optimal inequalities using theCasorati
curvatureof hyperplanes in the tangent space at a point. For a surface inE3 the Ca-
sorati curvature is defined as the normalised sum of the squaredprincipal curvatures
[2]. This curvature was preferred by Casorati over the traditional Gauss curvature
because the Casorati curvature vanishes if and only if both principal curvatures of a
surface inE3 are zero at the same time and thus corresponds better with thecommon
intuition of curvature.

In Section2 we obtain a family ofoptimal inequalitiesinvolving thescalar cur-
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vatureand theCasorati curvatureof a Riemannian submanifold in a real space form.
The proof is based on an optimalisation procedure by showing that a quadratic poly-
nomial in the components of the second fundamental form is parabolic. Further
we show thatequalityin the inequalities at every point characterises theinvariantly
quasi-umbilical submanifolds. Submanifolds for which the equality holds, will be
calledCasorati ideal submanifolds. It turns out that they are all intrinsicallypseudo-
symmetricand, if the codimension is one, they constitute a special class ofrotation
hypersurfaces.
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2. Optimal Inequalities

Let (Mn, g) be ann-dimensional Riemannian manifold and denote byR andτ the
Riemann-Christoffel curvature tensorand thescalar curvatureof M , respectively.
We assume that(Mn, g) admits an isometric immersionx : Mn → M̃n+m(c̃) into an
(n + m)-dimensional Riemannian space form(M̃n+m(c̃), g̃) with constant sectional
curvaturẽc. TheLevi-Civita connectionsonM̃ andM will be denoted bỹ∇ and∇,
respectively. Thesecond fundamental formh of M in M̃ is defined by theGauss
formula:

∇̃XY = ∇XY + h(X, Y ),

wherebyX andY aretangentvector fields onM . Theshape operatorAξ associated
with a normal vector fieldξ and thenormal connection∇⊥ of M in M̃ are defined
by theWeingarten formula:

∇̃Xξ = −Aξ(X) +∇⊥
Xξ.

Sincẽg(h(X, Y ), ξ) = g(Aξ(X), Y ), the knowledge of the second fundamental form
is equivalent to the knowledge of the shape operatorsAξ (for all ξ’s of a normal frame
onM in M̃ ).

A submanifoldMn in a Riemannian manifold̃Mn+m is called (properly)quasi-
umbilical with respect to a normal vector fieldξ if the shape operatorAξ has an
eigenvalue with multiplicity≥ n − 1 (= n − 1). In this case,ξ is called aquasi-
umbilical normal sectionof M . An n-dimensional submanifoldM of an (n + m)-
dimensional Riemannian manifold̃M is calledtotally quasi-umbilicalif there exist
m mutually orthogonalquasi-umbilical normal sectionsξ1, . . . , ξm of M . In the
particular case that thedistinguished eigendirectionsof the shape operatorsAα with
respect toξα, i.e. the tangent directions corresponding to the eigenvalues of the

http://jipam.vu.edu.au
mailto:Stefan.Haesen@wis.kuleuven.be
mailto:Stefan.Haesen@wis.kuleuven.be
http://jipam.vu.edu.au


Quasi-umbilical Submanifolds
Simona Decu, Stefan Haesen,

and Leopold Verstraelen

vol. 9, iss. 3, art. 79, 2008

Title Page

Contents

JJ II

J I

Page 7 of 17

Go Back

Full Screen

Close

matricesAα with multiplicity 1, are the same for allξα, the totally quasi-umbilical
submanifold under consideration is calledinvariantly quasi-umbilical[1, 3].

The squared normof the second fundamental formh over the dimensionn is
called theCasorati curvatureC of the submanifoldM in M̃ , i.e.,

C =
1

n

m∑
α=1

(
n∑

i,j=1

(hα
ij)

2

)
,

wherehα
ij = g̃(h(ei, ej), ξα) are the components of the second fundamental form

with respect to an orthonormal tangent frame{e1, . . . , en} and an orthonormal nor-
mal frame{ξ1, . . . , ξm} of M in M̃ . Thesquared mean curvatureof a submanifold
M in M̃ being given by

‖H‖2 =
1

n2

m∑
α=1

(
n∑

i=1

hα
ii

)2

,

from theGauss equation

Rijkl =
m∑

α=1

(
hα

ilh
α
jk − hα

ikh
α
jl

)
+ c̃
(
gilgjk − gikgjl

)
,

one readily obtains the following well-known relation between thescalar curvature,
thesquared mean curvatureand theCasorati curvaturefor anyn-dimensionalsub-
manifoldM in anyreal space form̃M of curvaturẽc [3]:

τ = n2‖H‖2 − n C + n(n− 1)c̃.

TheCasorati curvature of aw-plane fieldW , spanned by{eq+1, . . . , eq+w}, q <
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n− w, w ≥ 2, is defined by

C(W ) =
1

w

m∑
α=1

(
q+w∑

i,j=q+1

(hα
ij)

2

)
.

At any pointp of Mn in a Euclidean ambient spaceEn+m, (C(W ))(p) is the Casorati
curvature atp of the w-dimensional normal sectionΣw

W of Mn in En+m which is
obtained by locally cuttingMn with the normal(w + m)-space inEn+m passing
throughp and spanned byW andT⊥

p M : (C(W ))(p) = CΣw
W

(p). For any positive
real numberr, different fromn(n− 1), set

a(r) :=
(n− 1)(r + n)(n2 − n− r)

nr
,

in order to define thenormalizedδ-Casorati curvaturesδC(r; n− 1) andδ̂C(r; n− 1)

of M in M̃ as follows:

δC(r; n− 1) |p := r C |p +a(r) · inf{C(W ) | W a hyperplane of TpM},
if 0 < r < n(n− 1), and:

δ̂C(r; n− 1) |p := r C |p +a(r) · sup{C(W ) | W a hyperplane of TpM},
if r > n(n− 1).

Theorem 2.1.For any Riemannian submanifoldMn of any real space form̃Mn+m(c̃),
for any real numberr such that0 < r < n(n− 1):

(2.1) τ ≤ δC(r; n− 1) + n(n− 1) c̃,

and for any real numberr such thatn(n− 1) < r:

(2.2) τ ≤ δ̂C(r; n− 1) + n(n− 1) c̃.
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Proof. Consider the following functionP which is a quadratic polynomial in the
components of the second fundamental form:

P = r C + a(r) C(W )− τ + n(n− 1) c̃.

Assuming, without loss of generality, that the hyperplaneW involved is spanned by
the tangent vectorse1, e2, . . . anden−1, it follows that

(2.3) P =
m∑

α=1

{(
r

n
+

a(r)

n− 1

) n−1∑
i=1

(hα
ii)

2 +
r

n
(hα

nn)2

+ 2

(
r

n
+

a(r)

n− 1
+ 1

) n−1∑
i,j=1(i6=j)

(hα
ij)

2

+2
( r

n
+ 1
) n−1∑

i=1

(hα
in)2 − 2

n∑
i,j=1(i6=j)

hα
iih

α
jj

 .

Thecritical pointshc = (h1
11, h

1
12, . . . , h

1
nn, . . . , h

m
11, . . . , h

m
nn) of P are the solutions

of the following system of linear homogeneous equations:

∂P
∂hα

ii

= 2

(
r

n
+

a(r)

n− 1

)
hα

ii − 2
n∑

k 6=i,k=1

hα
kk = 0,

∂P
∂hα

nn

= 2
r

n
hα

nn − 2
n−1∑
k=1

hα
kk = 0,(2.4)

∂P
∂hα

ij

= 4

(
r

n
+

a(r)

n− 1
+ 1

)
hα

ij = 0, (i 6= j),
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∂P
∂hα

in

= 4
( r

n
+ 1
)

hα
in = 0,

with i, j ∈ {1, . . . , n− 1} andα ∈ {1, . . . ,m}. Thus, every solutionhc of (2.4) has
hα

ij = 0 for i 6= j (which corresponds to submanifolds withtrivial normal connec-
tion) and the determinant of the first two sets of equations of (2.4) is zero (implying
that there exist solutions which do not correspond tototally geodesic submanifolds).
Moreover, the eigenvalues of the Hessian matrix ofP are

λα
11 = 0; λα

22 =
2

nr

(
r2 + n2(n− 1)

)
; λα

33 = · · · = λα
nn =

2(n− 1)

r
(r + n);

λα
ij = 4

(
r

n
+

a(r)

n− 1
+ 1

)
, (i 6= j); λα

in = 4
( r

n
+ 1
)

, (i, j ∈ {1, . . . , n−1}).

Hence,P is parabolic and reaches a minimumP(hc) = 0 for each solutionhc of
(2.4), as follows from inserting (2.4) in (2.3). Thus,P ≥ 0, i.e.,

τ ≤ r C + a(r) C(W ) + n(n− 1) c̃ .

And because this holds for every tangent hyperplaneW of M , (2.1) and (2.2) triv-
ially follow.
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3. Characterisations of the Equality Cases

Equality holds in the inequalities (2.1) and (2.2) if and only if

(3.1) hα
ij = 0, (i 6= j ∈ {1, . . . , n}),

and

(3.2) hα
11 = · · · = hα

n−1,n−1 =
r

n(n− 1)
hα

nn, (α ∈ {1, . . . ,m}).

Equation (3.1) means that the shape operators with respect to all normal directions
ξα commute, or equivalently, that thenormal connection∇⊥ is flat, or still, that the
normal curvature tensorR⊥, i.e., the curvature tensor of the normal connection, is
zero. Furthermore, (3.2) means that there existm mutually orthogonal unit normal
vector fieldsξ1, . . . , ξm such that the shape operators with respect to all directions
ξα have an eigenvalue of multiplicityn − 1 and that for eachξα the distinguished
eigendirection is the same (namelyen), i.e., that the submanifold isinvariantly quasi-
umbilical. Thus, we have proved the following.

Corollary 3.1. LetMn be a Riemannian submanifold of a real space form̃Mn+m(c̃).
Equality holds in (2.1) or (2.2) if and only ifM is invariantly quasi-umbilical with
trivial normal connection inM̃ and, with respect to suitable tangent and normal
orthonormal frames, the shape operators are given by

(3.3) A1 =


λ · · · 0 0
...

...
...

...
0 · · · λ 0

0 · · · 0 n(n−1)
r

λ

 , A2 = · · · = Am = 0.
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From a result in [11] it follows that every totally quasi-umbilical submanifold of
dimension≥ 4 in a real space form isconformally flat. In [10] it is shown that every
n(≥ 4)-dimensionalconformally flat submanifold with trivial normal connectionin
a conformally flat space of dimensionn+m is totally quasi-umbilical ifm < n− 2,
and in [21] it is shown that everyn(≥ 4)-dimensionalsubmanifold inEn+m with
m ≤ min{4, n − 3} is totally quasi-umbilical if and only if it is conformally flat.
Thus, in particular, we also have the following.

Corollary 3.2. The Casorati ideal submanifolds for (2.1) and (2.2) with n ≥ 4 are
conformally flat submanifolds with trivial normal connection.

We remark that anobstructionfor a manifold to be conformally flat in terms of
theδ-curvatures of Chen was given in [9].

The pseudo-symmetric spaceswere introduced by Deszcz (see e.g. [13, 15])
in the study of totally umbilical submanifolds with parallel mean curvature vector,
i.e. of extrinsic spheres, in semi-symmetric spaces. A pseudo-symmetric manifold
has the property thatR · R = L (∧g · R), wherebyR · R is the (0, 6)-tensor ob-
tained by the action of the curvature operatorR(X, Y ) as a derivation on the(0, 4)
curvature tensor,∧g · R is the (0, 6) Tachibana tensor, obtained by the action of
the metrical endomorphismX ∧g Y as a derivation on the(0, 4) curvature tensor,
andL is a scalar valued function on the manifold, called thesectional curvature of
Deszcz(see [19] for a geometrical interpretationof this curvature). It follows from
(3.3), by a straightforward calculation, that the Casorati ideal submanifoldsM in M̃
are pseudo-symmetric spaces (see also [14]) whose sectional curvature of Deszcz is
given byL = τ

n(n+1)
[12]. Thus, we also have the following.

Corollary 3.3. The Casorati ideal submanifolds of (2.1) and (2.2) are pseudo-symmetric
manifolds whose sectional curvatureL of Deszcz can be expressed in terms of the
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Casorati curvature as

L =
nr

(n− 1)(n + 1)(r + n)

[
r(n− 2) + 2n(n− 1)

]
C2 +

(n− 1)

n + 1
c̃.

A rotation hypersurfaceof a real space form̃Mn+1 is generated by moving an
(n − 1)-dimensional totally umbilical submanifold along a curve iñM [17]. If Mn

is a Casorati idealhypersurfacein M̃n+1(c̃), it follows from [16, 17] that Mn is a
rotation hypersurface whoseprofile curveis the graph of a functionf of one real
variablex which satisfies the differential equation

(3.4) f(f ′′ + c̃ f) +
n(n− 1)

r
(ε− c̃ f 2 − f ′2) = 0,

wherebyε = 0, 1 or −1 if c̃ < 0 (the rotation hypersurfaceMn is parabolical,
sphericalor hyperbolical, respectively), andε = 1 if c̃ ≥ 0.

Corollary 3.4. The Casorati ideal hypersurfaces of real space forms are rotation
hypersurfaces whose profile curves are given by the solutions of (3.4).

By way of examples, we finally list a few solutions of (3.4) for some special
values of̃c, ε andr.
If c̃ = 0, ε = 1 andr = 2n(n− 1):

f(x) =
c2
1(x + c2)

2 − 4

4c1

;

if c̃ = −1, ε = 1 andr = 2n(n− 1):

f(x) =
4ex − c2

1(1 + c2e
x)2e−x

4c1

;
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if c̃ = −1, ε = 0 andr = 2n(n− 1):

f(x) =
1

4
(c1 − c2e

x)2e−x;

if c̃ = −1, ε = −1 andr = 2n(n− 1):

f(x) =
4ex + c2

1(1 + c2e
x)2e−x

4c1

;

wherebyc1 andc2 are integration constants.
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Figure 1: The profile curve on the left isf(x) = 4ex−e−x(1+ex)2

4 and on the right isf(x) =
e−x(1−ex)2

4 .
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