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ABSTRACT. A family of optimal inequalities is obtained involving the intrinsic scalar curvature

and the extrinsic Casorati curvature of submanifolds of real space forms. Equality holds in the
inequalities if and only if these submanifolds are invariantly quasi-umbilical. In the particular
case of a hypersurface in a real space form, the equality case characterises a special class of
rotation hypersurfaces.
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1. INTRODUCTION

B.-Y. Chen obtained mangptimal inequalities between intrinsic and extrinsic quantities
for n-dimensional Riemannian manifolds which are isometrically immersed (inte- m)-
dimensional real space forms, in particular, in terms of some new intrinsic scalar-valued cur-
vature invariants on these manifolds, the so-cafledirvatures of Cherisee e.g. [[4, 15,16]).
The §-curvatures of Chen originated by considering the minimum or maximum value of the
sectional curvatureof all two-planes or the extremal values of thecalar curvatureof all k-
planes(2 < k < n), etc., in the tangent space at a point of the manifold. These invariants
provide lower bounds for thequared mean curvaturend equality holds if and only if the
second fundamental form assumes some specified expressions with respect to special adapted
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orthonormal frames. For the corresponding immersions, these Riemannian manifolds receive
the least amount of “surface-tension” from the surrounding spaces and therefore arelealled
submanifolds Such inequalities have been extended, amongst others, to submanifolds in gen-
eral Riemannian manifolds][8], to Kaehler submanifolds in Kaehler manifolds [7, 20, 22] and
to Lorentzian submanifolds in semi-Euclidean spaces [18].

Instead of balancingntrinsic scalar valued curvaturesuch as thecalar curvatureor the
more sophisticate€hen curvatureswith the extrinsic squared mean curvatyra the fol-
lowing, we will obtain optimal inequalities using tl@@asorati curvatureof hyperplanes in the
tangent space at a point. For a surfac&irthe Casorati curvature is defined as the normalised
sum of the squareprincipal curvatureqg2]. This curvature was preferred by Casorati over the
traditional Gauss curvature because the Casorati curvature vanishes if and only if both principal
curvatures of a surface ifi® are zero at the same time and thus corresponds better with the
commorintuition of curvature.

In Section 2 we obtain a family adptimal inequalitiesnvolving the scalar curvatureand
the Casorati curvatureof a Riemannian submanifold in a real space form. The proof is based
on an optimalisation procedure by showing that a quadratic polynomial in the components of
the second fundamental form is parabolic. Further we showebaality in the inequalities
at every point characterises thevariantly quasi-umbilical submanifoldsSubmanifolds for
which the equality holds, will be calle@Gasorati ideal submanifolddt turns out that they are
all intrinsically pseudo-symmetrignd, if the codimension is one, they constitute a special class
of rotation hypersurfaces

2. OPTIMAL |INEQUALITIES

Let (M™, g) be ann-dimensional Riemannian manifold and denotefbgndr the Riemann-
Christoffel curvature tensoand thescalar curvatureof M, respectively. We assume that

(M", g) admits an isometric immersian : M" — M""™(Z) into an (n 4+ m)-dimensional
Riemannian space forrM/™+™(¢), ) with constant sectional curvatute The Levi-Civita
connectionsn M and M will be denoted bﬁ andV, respectively. Theecond fundamental
form h of M in M is defined by th&auss formula

VyY = VxY 4+ h(X,Y),

wherebyX andY aretangentvector fields on)/. Theshape operatord, associated with a

normal vector field and thenormal connectiorV+ of M in M are defined by théVeingarten
formula

Vx€ = —A(X) + VxE.

Sinceg(h(X,Y),§) = g(A:(X),Y), the knowledge of the second fundamental form is equiv-
alent to the knowledge of the shape operattygfor all £'s of a normal frame o/ in M).

A submanifold " in a Riemannian manifold/™*™ is called (properly)quasi-umbilical
with respect to a normal vector fieldif the shape operatad, has an eigenvalue with multi-
plicity > n — 1 (= n — 1). In this case( is called aguasi-umbilical normal sectioaf M. An
n-dimensional submanifold/ of an (» + m)-dimensional Riemannian manifoltf is called
totally quasi-umbilicalif there existm mutually orthogonalguasi-umbilical normal sections
&, ..., &, of M. Inthe particular case that tlggstinguished eigendirectiortd the shape oper-
ators A, with respect tct,,, i.e. the tangent directions corresponding to the eigenvalues of the

matricesA,, with multiplicity 1, are the same for &l,, the totally quasi-umbilical submanifold
under consideration is calledvariantly quasi-umbilica[l, [3].
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The squared nornof the second fundamental fori over the dimensiom is called the
Casorati curvature® of the submanifoldV/ in M, i.e.,

1 - a2
e 13 (3o0pr).
a=1 \i,j=1
wherehy; = g(h(ei, e;), &) are the components of the second fundamental form with respect
to an orthonormal tangent frares, . . ., e,,} and an orthonormal normal frard€, ..., &}
of M in M. Thesquared mean curvatud a submanifold\/ in M being given by

m n 2
=S (Z hz;) ,

=1
from theGauss equation

Riju = Z <hﬁh§y;€ — h?kh?z) + 5(911%’1: — gikgjl)a
a=1
one readily obtains the following well-known relation betweengt@ar curvaturethesquared
mean curvaturand theCasorati curvaturdor any n-dimensionaksubmanifold)/ in anyreal

space form\/ of curvatures [3]:
7 =n?||H||*> = nC +n(n - 1)c.

The Casorati curvature of av-plane fieldW, spanned by{e,1,...,e+w}, ¢ < n — w,
w > 2, is defined by

C(W) = %Z ( Z (h;?;.)2> :

At any pointp of M™ in a Euclidean ambient spa& ™, (C(W))(p) is the Casorati curvature
at p of the w-dimensional normal section}, of M™ in E**™ which is obtained by locally
cutting M™ with the normal(w + m)-space inE"*™ passing through and spanned bi#” and
T-M: (C(W))(p) = Csu (p). For any positive real numbey different fromn(n — 1), set
_ 2 _ g
a(r) = (n—1)(r+n)(n*—n r)’

nr

in order to define th@ormalizeds-Casorati curvaturesg(r;n — 1) andgc(r; n—1)of M in
M as follows:

de(r;n—1) |, := rCl, +a(r) - inf{C(W) | W a hyperplane of T,M},
if 0 <r<n(n-—1),and:

3\5(7"; n—1)|,:= rCl, +a(r) -sup{C(W) | W a hyperplane of T,M },
if r >n(n—1).

Theorem 2.1. For any Riemannian submanifold™ of any real space form7"+m(a,
for any real number such that) < r < n(n — 1):

(2.1) T <dc(r;n—1)+n(n—1)¢,
and for any real number such thati(n — 1) < r:

(2.2) T <be(rin—1)+n(n—1)z
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Proof. Consider the following functiofP which is a quadratic polynomial in the components
of the second fundamental form:

P=rC+a(r)C(W)—1+n(n—1)c.

Assuming, without loss of generality, that the hyperpl@nenvolved is spanned by the tangent
vectorse, es, . .. ande,,_1, it follows that

@3) P- }j{( 20 S+ L,

i=1

n—1 n—1

r Cl(T) a2 r apa
+2(E+n_1+1>-z‘(hzj)+2(5+1)Z 22 Z hehe,
i,7=1(i#7) i=1 i,j=1(i#7)
The critical points h¢ = (hiy, iy, ..., hL. ... K%, ... k™) of P are the solutions of the

following system of linear homogeneous equations:

JP r
3hf§:2(ﬁ+n—1) 2 Z P

k#i,k=1
oP T 2 N
(2.4) P~ 2—hip —2 > hgy =
oP roa(r) S,
—4( = 1) pe =
iz =1 (G r ) =0, #)

JP r
—4 (- 1) he =0,
ohg, n + o

withi,7 € {1,...,n—1}anda € {1,...,m}. Thus, every solution® of ) hashg; = 0 for

1 # 7 (which corresponds to submanifolds witivial normal connectiopand the determinant

of the first two sets of equations ¢f (2.4) is zero (implying that there exist solutions which do not
correspond taotally geodesic submanifoldsMoreover, the eigenvalues of the Hessian matrix
of P are

2 2(n — 1
Ny =0 A= — (P - 1)); Ny mpe 22D

T
Ag;:4(%+ alr )1 +1) G#7); A= (7’;+1), Gjefl,....n—1}).
Hence,P is parabolic and reaches a minimuR{.) = 0 for each solutiom.“ of (2.4), as
follows from inserting[(2.4) in[(2]3). Thug® > 0, i.e.,
T<rC+a(r)C(W)+n(n—1)c
And because this holds for every tangent hyperplanef A/, (2.1) and[(2.R) trivially follow.
O

3. CHARACTERISATIONS OF THE EQUALITY CASES
Equality holds in the inequalities (2.1) and (2.2) if and only if

(3.1) h;?;:o, (t#£j5€{l,...,n}),
and
(3.2) h{, = =hy 1 = —ho‘ (e {l,...,m}).

n(n—1) "

J. Inequal. Pure and Appl. Matt9(3) (2008), Art. 79, 7 pp. http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

QUASI-UMBILICAL SUBMANIFOLDS 5

Equation|(3.]l) means that the shape operators with respect to all normal dirégtammsmute,
or equivalently, that theormal connectiorV+ is flat, or still, that thenormal curvature tensor
R*, i.e., the curvature tensor of the normal connectiorzeg Furthermore,[(3]2) means
that there exisin mutually orthogonal unit normal vector fields, . . . , &, such that the shape
operators with respect to all directiof§s have an eigenvalue of multiplicity — 1 and that for
each¢, the distinguished eigendirection is the same (namg)yi.e., that the submanifold is
invariantly quasi-umbilical Thus, we have proved the following.

Corollary 3.1. Let M™ be a Riemannian submanifold of a real space fddft*"(¢). Equality
holds in [2.1) or[(2.R) if and only it/ is invariantly quasi-umbilical with trivial normal con-
nection inM and, with respect to suitable tangent and normal orthonormal frames, the shape
operators are given by

A 0 0
(3.3) A=l A=A
0 ... ( ™n=by

From a result in[[11] it follows that every totally quasi-umbilical submanifold of dimension
> 4 in a real space form isonformally flat In [10] it is shown that every.(> 4)-dimensional
conformally flat submanifold with trivial normal connectiona conformally flat space of di-
mensionn + m is totally quasi-umbilical ifm < n — 2, and in [21] it is shown that every
n(> 4)-dimensionakubmanifold ifE"*™ with m < min{4, n — 3} is totally quasi-umbilical if
and only if it is conformally flat. Thus, in particular, we also have the following.

Corollary 3.2. The Casorati ideal submanifolds f¢r (2.1) and (2.2) witk> 4 are conformally
flat submanifolds with trivial normal connection.

We remark that arobstructionfor a manifold to be conformally flat in terms of the
curvatures of Chen was given in [9].

The pseudo-symmetric spacegre introduced by Deszcz (see elg.![13, 15]) in the study of
totally umbilical submanifolds with parallel mean curvature vector, i.eextfinsic sphergsn
semi-symmetric spaces. A pseudo-symmetric manifold has the properfytRat L (A, - R),
wherebyR - R is the(0, 6)-tensor obtained by the action of the curvature operB{oY, Y) as
a derivation on th€0, 4) curvature tensor), - R is the(0, 6) Tachibana tensor, obtained by the
action of the metrical endomorphisi A, Y as a derivation on th@, 4) curvature tensor, and
L is a scalar valued function on the manifold, calledsbetional curvature of Desz¢zee [19]
for a geometrical interpretatiorf this curvature). It follows from[(3]3), by a straightforward
calculation, that the Casorati ideal submanifoldsin M are pseudo-symmetric spaces (see
also [14]) whose sectional curvature of Deszcz is givel. by m [12]. Thus, we also have
the following.

Corollary 3.3. The Casorati ideal submanifolds ¢f (2.1) ahd {2.2) are pseudo-symmetric mani-
folds whose sectional curvatufeof Deszcz can be expressed in terms of the Casorati curvature

as

L= (n—1)(n+1)(r+n) [r(n —2)+2n(n - 1)]02 *

n+1

A rotation hypersurfacef a real space form/+! is generated by moving afm — 1)-
dimensional totally umbilical submanifold along a curveMh[17]. If M™ is a Casorati ideal
hypersurfacen M"+1(¢), it follows from [16,[17] thatM™ is a rotation hypersurface whose
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profile curveis the graph of a functiorf of one real variable: which satisfies the differential
equation

(3.4) e+ e ap =0

wherebys = 0, 1 or —1 if ¢ < 0 (the rotation hypersurfac&/™ is parabolical sphericalor
hyperbolical respectively), and = 1 if ¢ > 0.

Corollary 3.4. The Casorati ideal hypersurfaces of real space forms are rotation hypersurfaces

whose profile curves are given by the solutions of| (3.4).

By way of examples, we finally list a few solutions §f (3.4) for some special valuészof
andr.
If c=0,e=1andr =2n(n —1):

ifc=—1,e=1andr =2n(n—1):

4e” — A (1 + cpe”)?e™™

flz) = Ier ;

ifc=—1,e=0andr =2n(n —1):
1
f(z) = Z(Cl — cpe”)e
ifc=—1,e=—1andr =2n(n —1):

4e® 4 (1 4 c9e®)%e™™
flz) = i+ ace”.

4C1 ’
wherebyc; andc, are integration constants.

2 15
_— 10
o = o 2 2
- x
/ - ° /
7

— -

—40 =

e % (1—e®)2

Figure 3.1: The profile curve on the left gz) = w and on the rightisf(z) = 1

REFERENCES

[1] D. BLAIR, Quasi-umbilical, minimal submanifolds of Euclidean spa8&mon Stevins1 (1977),
3-22.

[2] F. CASORATI, Mesure de la courbure des surfaces suivant I'idée comrateeMath.,14 (1890),
95-110.

J. Inequal. Pure and Appl. Matt9(3) (2008), Art. 79, 7 pp. http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

QUASI-UMBILICAL SUBMANIFOLDS 7

[3] B.-Y. CHEN, Geometry of submanifoldMarcel Dekker, New York, 1973.

[4] B.-Y. CHEN, Some pinching and classification theorems for minimal submanifaldk, Math.,
60(1993), 568-578.

[5] B.-Y. CHEN, Some new obstructions to minimal and Lagrangian isometric immersiapan J.
Math.,26 (2000), 105-127.

[6] B.-Y. CHEN, Riemannian submanifoldén Handbook of Differential Geometryol. 1, eds. F.
Dillen and L. Verstraelen, Elsevier North-Holland, Amsterdam, 2000.

[7] B.-Y. CHEN, A series of K&hlerian invariants and their applications to K&hlerian geometry,
Beitrage Algebra Geom42 (2001), 165-178.

[8] B.-Y.CHEN, A general optimal inequality for arbitrary Riemannian submanifddsequal. Pure
Appl. Math.,6(3) (2005), Art. 77. [ONLINE http://jipam.vu.edu.au/article.php?
sid=550 .

[9] B.-Y. CHEN, A general inequality for conformally flat submanifolds and its applicatidasa
Math. Hungar.,106 (2005), 239-252.

[10] B.-Y. CHENAND L. VERSTRAELEN, A characterization of quasiumbilical submanifolds and its
applicationsBoll. Un. Mat. Ital.,14 (1977), 49-57. Erratéid 14 (1977), 634.

[11] B.-Y. CHEN AND K. YANO, Sous-variétés localement conformes a un espace eucli@ieR.
Acad. Sci. Paris275(1972), 123-126.

[12] F. DEFEVER, R. DESZCZ, P. DHOOGHE, L. VERSTRAELEMND S. YAPRAK, On Ricci-
pseudosymmetric hypersurfaces in spaces of constant cungeselts in Math.27 (1995), 227—
236.

[13] R. DESZCZ, Notes on totally umbilical submanifolds, Geometry and Topology of Submanifolds
I, eds. J.M. Morvan and L. Verstraelen, World Scientific, River Edge, N.Y., 1987, 89-97.

[14] R. DESZCZAND L. VERSTRAELEN, Hypersurfaces of semi-Riemannian conformally flat man-
ifolds, in: Geometry and Topology of Submanifolds #ds. L. Verstraelen and A. West, World
Scientific, River Edge, N.Y., 1991, 131-147.

[15] R. DESZCZ, On pseudosymmetric spadesll. Soc. Math. Belg. Sér. 44 (1992), 1-34.

[16] F. DILLEN, M. PETROVIC-TORGASEVAND L. VERSTRAELEN, The conharmonic curvature
tensor and 4-dimensional catenoi8s¢idia Univ. Babes - Bolyai, Mathemati&8 (1988), 16—-23.

[17] M. DO CARMO AND M. DAJCZER, Rotation hypersurfaces in spaces of constant curvature,
Trans. Amer. Math. So2,77(1983), 685-709.

[18] S. HAESENAND L. VERSTRAELEN, Ideally embedded space-timé@sMath. Phys.45 (2004),
1497-1510.

[19] S. HAESENAND L. VERSTRAELEN, Properties of a scalar curvature invariant depending on two
planesManuscripta Math.122(2007), 59-72.

[20] I. MIHAI, Ideal Kaehlerian slant submanifolds in complex space forRacky Mt. J. Math.35
(2005), 941-951.

[21] J.D. MOOREAND J.M. MORVAN, Sous-variétés conformmément plates de codimension quatre,
C. R. Acad. Sci. Pari£87(1978), 655-657.

[22] Z. SENTURKAND L. VERSTRAELEN, Chen ideal Kaehler hypersurfac@éaiwanese J. Math.,
(to appear).

J. Inequal. Pure and Appl. Matt9(3) (2008), Art. 79, 7 pp. http://jipam.vu.edu.au/


http://jipam.vu.edu.au/article.php?sid=550
http://jipam.vu.edu.au/article.php?sid=550
http://jipam.vu.edu.au/

	1. Introduction
	2. Optimal Inequalities
	3. Characterisations of the Equality Cases
	References

