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ABSTRACT. A family of optimal inequalities is obtained involving the intrinsic scalar curvature
and the extrinsic Casorati curvature of submanifolds of real space forms. Equality holds in the
inequalities if and only if these submanifolds are invariantly quasi-umbilical. In the particular
case of a hypersurface in a real space form, the equality case characterises a special class of
rotation hypersurfaces.
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1. I NTRODUCTION

B.-Y. Chen obtained manyoptimal inequalities between intrinsic and extrinsic quantities
for n-dimensional Riemannian manifolds which are isometrically immersed into(n + m)-
dimensional real space forms, in particular, in terms of some new intrinsic scalar-valued cur-
vature invariants on these manifolds, the so-calledδ-curvatures of Chen(see e.g. [4, 5, 6]).
The δ-curvatures of Chen originated by considering the minimum or maximum value of the
sectional curvatureof all two-planes, or the extremal values of thescalar curvatureof all k-
planes(2 < k < n), etc., in the tangent space at a point of the manifold. These invariants
provide lower bounds for thesquared mean curvatureand equality holds if and only if the
second fundamental form assumes some specified expressions with respect to special adapted
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orthonormal frames. For the corresponding immersions, these Riemannian manifolds receive
the least amount of “surface-tension” from the surrounding spaces and therefore are calledideal
submanifolds. Such inequalities have been extended, amongst others, to submanifolds in gen-
eral Riemannian manifolds [8], to Kaehler submanifolds in Kaehler manifolds [7, 20, 22] and
to Lorentzian submanifolds in semi-Euclidean spaces [18].

Instead of balancingintrinsic scalar valued curvatures, such as thescalar curvatureor the
more sophisticatedChen curvatures, with the extrinsic squared mean curvature, in the fol-
lowing, we will obtain optimal inequalities using theCasorati curvatureof hyperplanes in the
tangent space at a point. For a surface inE3 the Casorati curvature is defined as the normalised
sum of the squaredprincipal curvatures[2]. This curvature was preferred by Casorati over the
traditional Gauss curvature because the Casorati curvature vanishes if and only if both principal
curvatures of a surface inE3 are zero at the same time and thus corresponds better with the
commonintuition of curvature.

In Section 2 we obtain a family ofoptimal inequalitiesinvolving thescalar curvatureand
theCasorati curvatureof a Riemannian submanifold in a real space form. The proof is based
on an optimalisation procedure by showing that a quadratic polynomial in the components of
the second fundamental form is parabolic. Further we show thatequality in the inequalities
at every point characterises theinvariantly quasi-umbilical submanifolds. Submanifolds for
which the equality holds, will be calledCasorati ideal submanifolds. It turns out that they are
all intrinsicallypseudo-symmetricand, if the codimension is one, they constitute a special class
of rotation hypersurfaces.

2. OPTIMAL I NEQUALITIES

Let (Mn, g) be ann-dimensional Riemannian manifold and denote byR andτ theRiemann-
Christoffel curvature tensorand thescalar curvatureof M , respectively. We assume that
(Mn, g) admits an isometric immersionx : Mn → M̃n+m(c̃) into an (n + m)-dimensional
Riemannian space form(M̃n+m(c̃), g̃) with constant sectional curvaturẽc. The Levi-Civita
connectionson M̃ andM will be denoted bỹ∇ and∇, respectively. Thesecond fundamental
formh of M in M̃ is defined by theGauss formula:

∇̃XY = ∇XY + h(X, Y ),

wherebyX andY are tangentvector fields onM . Theshape operatorAξ associated with a
normal vector fieldξ and thenormal connection∇⊥ of M in M̃ are defined by theWeingarten
formula:

∇̃Xξ = −Aξ(X) +∇⊥
Xξ.

Sinceg̃(h(X, Y ), ξ) = g(Aξ(X), Y ), the knowledge of the second fundamental form is equiv-
alent to the knowledge of the shape operatorsAξ (for all ξ’s of a normal frame onM in M̃ ).

A submanifoldMn in a Riemannian manifold̃Mn+m is called (properly)quasi-umbilical
with respect to a normal vector fieldξ if the shape operatorAξ has an eigenvalue with multi-
plicity ≥ n− 1 (= n− 1). In this case,ξ is called aquasi-umbilical normal sectionof M . An
n-dimensional submanifoldM of an (n + m)-dimensional Riemannian manifold̃M is called
totally quasi-umbilicalif there existm mutually orthogonalquasi-umbilical normal sections
ξ1, . . . , ξm of M . In the particular case that thedistinguished eigendirectionsof the shape oper-
atorsAα with respect toξα, i.e. the tangent directions corresponding to the eigenvalues of the
matricesAα with multiplicity 1, are the same for allξα, the totally quasi-umbilical submanifold
under consideration is calledinvariantly quasi-umbilical[1, 3].
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The squared normof the second fundamental formh over the dimensionn is called the
Casorati curvatureC of the submanifoldM in M̃ , i.e.,

C =
1

n

m∑
α=1

(
n∑

i,j=1

(hα
ij)

2

)
,

wherehα
ij = g̃(h(ei, ej), ξα) are the components of the second fundamental form with respect

to an orthonormal tangent frame{e1, . . . , en} and an orthonormal normal frame{ξ1, . . . , ξm}
of M in M̃ . Thesquared mean curvatureof a submanifoldM in M̃ being given by

‖H‖2 =
1

n2

m∑
α=1

(
n∑

i=1

hα
ii

)2

,

from theGauss equation

Rijkl =
m∑

α=1

(
hα

ilh
α
jk − hα

ikh
α
jl

)
+ c̃
(
gilgjk − gikgjl

)
,

one readily obtains the following well-known relation between thescalar curvature, thesquared
mean curvatureand theCasorati curvaturefor anyn-dimensionalsubmanifoldM in any real
space form̃M of curvaturẽc [3]:

τ = n2‖H‖2 − n C + n(n− 1)c̃.

The Casorati curvature of aw-plane fieldW , spanned by{eq+1, . . . , eq+w}, q < n − w,
w ≥ 2, is defined by

C(W ) =
1

w

m∑
α=1

(
q+w∑

i,j=q+1

(hα
ij)

2

)
.

At any pointp of Mn in a Euclidean ambient spaceEn+m, (C(W ))(p) is the Casorati curvature
at p of the w-dimensional normal sectionΣw

W of Mn in En+m which is obtained by locally
cuttingMn with the normal(w + m)-space inEn+m passing throughp and spanned byW and
T⊥

p M : (C(W ))(p) = CΣw
W

(p). For any positive real numberr, different fromn(n− 1), set

a(r) :=
(n− 1)(r + n)(n2 − n− r)

nr
,

in order to define thenormalizedδ-Casorati curvaturesδC(r; n − 1) andδ̂C(r; n − 1) of M in
M̃ as follows:

δC(r; n− 1) |p := r C |p +a(r) · inf{C(W ) | W a hyperplane of TpM},
if 0 < r < n(n− 1), and:

δ̂C(r; n− 1) |p := r C |p +a(r) · sup{C(W ) | W a hyperplane of TpM},
if r > n(n− 1).

Theorem 2.1.For any Riemannian submanifoldMn of any real space form̃Mn+m(c̃),
for any real numberr such that0 < r < n(n− 1):

(2.1) τ ≤ δC(r; n− 1) + n(n− 1) c̃,

and for any real numberr such thatn(n− 1) < r:

(2.2) τ ≤ δ̂C(r; n− 1) + n(n− 1) c̃.

J. Inequal. Pure and Appl. Math., 9(3) (2008), Art. 79, 7 pp. http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


4 SIMONA DECU, STEFAN HAESEN, AND LEOPOLDVERSTRAELEN

Proof. Consider the following functionP which is a quadratic polynomial in the components
of the second fundamental form:

P = r C + a(r) C(W )− τ + n(n− 1) c̃.

Assuming, without loss of generality, that the hyperplaneW involved is spanned by the tangent
vectorse1, e2, . . . anden−1, it follows that

(2.3) P =
m∑

α=1

{(
r

n
+

a(r)

n− 1

) n−1∑
i=1

(hα
ii)

2 +
r

n
(hα

nn)2

+ 2

(
r

n
+

a(r)

n− 1
+ 1

) n−1∑
i,j=1(i6=j)

(hα
ij)

2 + 2
( r

n
+ 1
) n−1∑

i=1

(hα
in)2 − 2

n∑
i,j=1(i6=j)

hα
iih

α
jj

 .

The critical points hc = (h1
11, h

1
12, . . . , h

1
nn, . . . , h

m
11, . . . , h

m
nn) of P are the solutions of the

following system of linear homogeneous equations:

∂P
∂hα

ii

= 2

(
r

n
+

a(r)

n− 1

)
hα

ii − 2
n∑

k 6=i,k=1

hα
kk = 0,

∂P
∂hα

nn

= 2
r

n
hα

nn − 2
n−1∑
k=1

hα
kk = 0,(2.4)

∂P
∂hα

ij

= 4

(
r

n
+

a(r)

n− 1
+ 1

)
hα

ij = 0, (i 6= j),

∂P
∂hα

in

= 4
( r

n
+ 1
)

hα
in = 0,

with i, j ∈ {1, . . . , n− 1} andα ∈ {1, . . . ,m}. Thus, every solutionhc of (2.4) hashα
ij = 0 for

i 6= j (which corresponds to submanifolds withtrivial normal connection) and the determinant
of the first two sets of equations of (2.4) is zero (implying that there exist solutions which do not
correspond tototally geodesic submanifolds). Moreover, the eigenvalues of the Hessian matrix
of P are

λα
11 = 0; λα

22 =
2

nr

(
r2 + n2(n− 1)

)
; λα

33 = · · · = λα
nn =

2(n− 1)

r
(r + n);

λα
ij = 4

(
r

n
+

a(r)

n− 1
+ 1

)
, (i 6= j); λα

in = 4
( r

n
+ 1
)

, (i, j ∈ {1, . . . , n− 1}).

Hence,P is parabolic and reaches a minimumP(hc) = 0 for each solutionhc of (2.4), as
follows from inserting (2.4) in (2.3). Thus,P ≥ 0, i.e.,

τ ≤ r C + a(r) C(W ) + n(n− 1) c̃ .

And because this holds for every tangent hyperplaneW of M , (2.1) and (2.2) trivially follow.
�

3. CHARACTERISATIONS OF THE EQUALITY CASES

Equality holds in the inequalities (2.1) and (2.2) if and only if

(3.1) hα
ij = 0, (i 6= j ∈ {1, . . . , n}),

and

(3.2) hα
11 = · · · = hα

n−1,n−1 =
r

n(n− 1)
hα

nn, (α ∈ {1, . . . ,m}).
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Equation (3.1) means that the shape operators with respect to all normal directionsξα commute,
or equivalently, that thenormal connection∇⊥ is flat, or still, that thenormal curvature tensor
R⊥, i.e., the curvature tensor of the normal connection, iszero. Furthermore, (3.2) means
that there existm mutually orthogonal unit normal vector fieldsξ1, . . . , ξm such that the shape
operators with respect to all directionsξα have an eigenvalue of multiplicityn− 1 and that for
eachξα the distinguished eigendirection is the same (namelyen), i.e., that the submanifold is
invariantly quasi-umbilical. Thus, we have proved the following.

Corollary 3.1. LetMn be a Riemannian submanifold of a real space form̃Mn+m(c̃). Equality
holds in (2.1) or (2.2) if and only ifM is invariantly quasi-umbilical with trivial normal con-
nection inM̃ and, with respect to suitable tangent and normal orthonormal frames, the shape
operators are given by

(3.3) A1 =


λ · · · 0 0
...

.. .
...

...
0 · · · λ 0

0 · · · 0 n(n−1)
r

λ

 , A2 = · · · = Am = 0.

From a result in [11] it follows that every totally quasi-umbilical submanifold of dimension
≥ 4 in a real space form isconformally flat. In [10] it is shown that everyn(≥ 4)-dimensional
conformally flat submanifold with trivial normal connectionin a conformally flat space of di-
mensionn + m is totally quasi-umbilical ifm < n − 2, and in [21] it is shown that every
n(≥ 4)-dimensionalsubmanifold inEn+m with m ≤ min{4, n− 3} is totally quasi-umbilical if
and only if it is conformally flat. Thus, in particular, we also have the following.

Corollary 3.2. The Casorati ideal submanifolds for (2.1) and (2.2) withn ≥ 4 are conformally
flat submanifolds with trivial normal connection.

We remark that anobstruction for a manifold to be conformally flat in terms of theδ-
curvatures of Chen was given in [9].

Thepseudo-symmetric spaceswere introduced by Deszcz (see e.g. [13, 15]) in the study of
totally umbilical submanifolds with parallel mean curvature vector, i.e. ofextrinsic spheres, in
semi-symmetric spaces. A pseudo-symmetric manifold has the property thatR ·R = L (∧g ·R),
wherebyR · R is the(0, 6)-tensor obtained by the action of the curvature operatorR(X, Y ) as
a derivation on the(0, 4) curvature tensor,∧g ·R is the(0, 6) Tachibana tensor, obtained by the
action of the metrical endomorphismX ∧g Y as a derivation on the(0, 4) curvature tensor, and
L is a scalar valued function on the manifold, called thesectional curvature of Deszcz(see [19]
for a geometrical interpretationof this curvature). It follows from (3.3), by a straightforward
calculation, that the Casorati ideal submanifoldsM in M̃ are pseudo-symmetric spaces (see
also [14]) whose sectional curvature of Deszcz is given byL = τ

n(n+1)
[12]. Thus, we also have

the following.

Corollary 3.3. The Casorati ideal submanifolds of (2.1) and (2.2) are pseudo-symmetric mani-
folds whose sectional curvatureL of Deszcz can be expressed in terms of the Casorati curvature
as

L =
nr

(n− 1)(n + 1)(r + n)

[
r(n− 2) + 2n(n− 1)

]
C2 +

(n− 1)

n + 1
c̃.

A rotation hypersurfaceof a real space form̃Mn+1 is generated by moving an(n − 1)-
dimensional totally umbilical submanifold along a curve iñM [17]. If Mn is a Casorati ideal
hypersurfacein M̃n+1(c̃), it follows from [16, 17] thatMn is a rotation hypersurface whose
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profile curveis the graph of a functionf of one real variablex which satisfies the differential
equation

(3.4) f(f ′′ + c̃ f) +
n(n− 1)

r
(ε− c̃ f 2 − f ′2) = 0,

wherebyε = 0, 1 or −1 if c̃ < 0 (the rotation hypersurfaceMn is parabolical, sphericalor
hyperbolical, respectively), andε = 1 if c̃ ≥ 0.

Corollary 3.4. The Casorati ideal hypersurfaces of real space forms are rotation hypersurfaces
whose profile curves are given by the solutions of (3.4).

By way of examples, we finally list a few solutions of (3.4) for some special values ofc̃, ε
andr.
If c̃ = 0, ε = 1 andr = 2n(n− 1):

f(x) =
c2
1(x + c2)

2 − 4

4c1

;

if c̃ = −1, ε = 1 andr = 2n(n− 1):

f(x) =
4ex − c2

1(1 + c2e
x)2e−x

4c1

;

if c̃ = −1, ε = 0 andr = 2n(n− 1):

f(x) =
1

4
(c1 − c2e

x)2e−x;

if c̃ = −1, ε = −1 andr = 2n(n− 1):

f(x) =
4ex + c2

1(1 + c2e
x)2e−x

4c1

;

wherebyc1 andc2 are integration constants.
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Figure 3.1: The profile curve on the left isf(x) = 4ex−e−x(1+ex)2

4 and on the right isf(x) = e−x(1−ex)2
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